• Title/Summary/Keyword: 2D Offset

Search Result 531, Processing Time 0.03 seconds

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

LC VCO using dual metal inductor in $0.18{\mu}m$ mixed signal CMOS process

  • Choi, Min-Seok;Jung, Young-Ho;Shin, Hyung-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.503-504
    • /
    • 2006
  • This paper presents the design and fabrication of a LC voltage-controlled oscillator (VCO) using 1-poly 6-metal mixed signal CMOS process. To obtain the high-quality factor inductor in LC resonator, patterned-ground shields (PGS) is placed under the symmetric inductor to reduce the effect from image current of resistive Si substrate. Moreover, due to the incapability of using thick top metal layer of which the thickness is over $2{\mu}m$, as used in many RF CMOS process, the structure of dual-metal layer in which we make electrically short circuit between the top metal and the next metal below it by a great number of via materials along the metal traces is adopted. The circuit operated from 2.63 GHz to 3.09 GHz tuned by accumulation-mode MOS varactor. The corresponding tuning range was 460 MHz. The measured phase noise was -115 dBc/Hz @ 1MHz offset at 2.63 GHz carrier frequency and the current consumption and the corresponding power consumption were about 2.6 mA and 4.68 mW respectively.

  • PDF

Wide-Band Fine-Resolution DCO with an Active Inductor and Three-Step Coarse Tuning Loop

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Moon, Yeon-Kug;Kim, Su-Ki;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.201-209
    • /
    • 2011
  • This paper presents a wide-band fine-resolution digitally controlled oscillator (DCO) with an active inductor using an automatic three-step coarse and gain tuning loop. To control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. To cover the wide tuning range, a three-step coarse tuning scheme is used. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. The DCO tuning range is 58% at 2.4 GHz, and the power consumption is 6.6 mW from a 1.2 V supply voltage. An effective frequency resolution is 0.14 kHz. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Phase Noise Analysis of 2.4 GHz PLL using SPD (SPD를 이용한 2.4 GHz PLL의 위상잡음 분석)

  • Chae, Myeoung-ho;Kim, Jee-heung;Park, Beom-jun;Lee, Kyu-song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • In this paper, phase noise analysis result for 2.4 GHz PLL(phase locked loop) using SPD(sample phase detector) is proposed. It can be used for high performance frequency synthesizer's LO(local oscillator) to extend output frequency range or for LO of offset PLL to reduce a division rate or for clock signal of DDS(direct digital synthesizer). Before manufacturing, theoretical estimation of PLL's phase noise performance should be performed. In order to calculate phase noise of PLL using SPD, Leeson model is used for modeling phase noise of VCO(voltage controlled oscillator) and OCXO(ovened crystal oscillator). After theoretically analyzing phase noise of PLL, optimized loop filter bandwidth was determined. And then, phase noise of designed loop filter was calculated to find suitable OP-Amp. Also, the calculated result of phase noise was compared with the measured one. The measured phase noise of PLL was -130 dBc/Hz @ 10 kHz.

Design of an 1.8V 6-bit 2GSPS CMOS ADC with an One-Zero Detecting Encoder and Buffered Reference (One-Zero 감지기와 버퍼드 기준 저항열을 가진 1.8V 6-bit 2GSPS CMOS ADC 설계)

  • Park Yu Jin;Hwang Sang Hoon;Song Min Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, CMOS A/D converter with 6bit 2GSPS Nyquist input at 1.8V is designed. In order to obtain the resolution of 6bit and the character of high-speed operation, we present an Interpolation type architecture. In order to overcome the problems of high speed operation, a novel One-zero Detecting Encoder, a circuit to reduce the Reference Fluctuation, an Averaging Resistor and a Track & Hold, a novel Buffered Reference for the improved SNR are proposed. The proposed ADC is based on 0.18um 1-poly 3-metal N-well CMOS technology, and it consumes 145mW at 1.8V power supply and occupies chip area of 977um $\times$ 1040um. Experimental result show that SNDR is 36.25 dB when sampling frequency is 2GHz and INL/DNL is $\pm$0.5LSB at static performance.

A CMOS Fractional-N Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 CMOS Fractional-N 주파수합성기)

  • Ko, Seung-O;Seo, Hee-Teak;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • The Digital TV(DTV) standard has ushered in a new era in TV broadcasting and raised a great demand for DTV tuners. There are many challenges in designing a DTV tuner, of which the most difficult part is the frequency synthesizer. This paper presents the design of a frequency synthesizer for DTV Tuners in a $0.18{\mu}m$ CMOS process. It satisfies the DTV(ATSC) frequency band(54~806MHz). A scheme is proposed to cover the full band using only one VCO. The VCO has been designed to operate at 1.6~3.6GHz band such that the LO pulling effect is minimized, and reliable broadband characteristics have been achieved by reducing the variations of VCO gain and frequency step. The simulation results show that the designed VCO has gains of 59~94MHz(${\pm}$17.7MHz/V,${\pm}$23%) and frequency steps of 26~42.5MHz(${\pm}$8.25MHz/V,${\pm}$24%), and a very wide tuning range of 76.9%. The designed frequency synthesizer has a phase noise of -106dBc/Hz at 100kHz offset, and the lock time is less than $10{\mu}$sec. It consumes 20~23mA from a 1.8V supply, and the chip size including PADs is 2.0mm${\times}$1.8mm.

A Evaluation of the Maximum Power of the 94 GHz Gunn Diode Based on the Measured Oscillation Power (발진출력 측정을 통한 94 GHz Gunn Diode의 최대 전력 조사)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan;Jung, Myung-Suk;Chun, Young-Hoon;Kang, Yeon-Duk;Han, Ki-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.471-482
    • /
    • 2015
  • In this paper, design and implementation of the 94 GHz Gunn oscillator and the evaluation of the maximum power of the Gunn diode used in the oscillator are presented. The 94 GHz Gunn oscillator is used InP Gunn diode and designed employing a WR-10 waveguide. The designed oscillator is fabricated through machining and its performance is measured. The fabricated oscillator shows an oscillation frequency of 95 GHz, output power of 12.64 dBm, and phase noise of -92.7 dBc/Hz at 1 MHz offset frequency. To evaluation the maximum power of the InP Gunn diode used in oscillator, the oscillator structure is modified to a structure having a diaphram. The height of thick diaphram which is used in the oscillator is varied. As a result, an oscillator has several different load impedances, which makes it possible to plot $G_L-V^2$ plot at the post plane. Using the $G_L-V^2$ plot, the maximum power of used Gunn diode including post is computed to be 16.8 dBm. Furthermore using the shorted and zero bias Gunn diode, the post loss used for DC biasing can be computed. Using the two losses, The maximum power of a InP Gunn diode is computed to be 18.55 dBm at 95 GHz. This result is close to a datasheet.

Design of Digital PLL with Asymmetry Compensator in High Speed DVD Systems (고속 DVD 시스템에서 비대칭 신호 보정기와 결합한 Digital PLL 설계)

  • 김판수;고석준;최형진;이정현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2000-2011
    • /
    • 2001
  • In this Paper, we convert conventional low speed(1x, 6x) DVD systems designed by analog PLL(Phase Locked Loop) into digital PLL to operate at high speed systems flexibly, and present optimal DPLL model in high speed(20x) DVD systems. Especially, we focused on the design of DPLL that can overcome channel effects such as bulk delay, sampling clock frequency offset and asymmetry phenomenon in high speed DVD systems. First, the modified Early-Late timing error detector as digital timing recovery scheme is proposed. And the four-sampled compensation algorithm using zero crossing point as asymmetry compensator is designed to achieve high speed operation and strong reliability. We show that the proposed timing recovery algorithm provides enhanced performances in jitter valiance and SNR margin by 4 times and 3dB respectively. Also, the new four-sampled zero crossing asymmetry compensation algorithm provides 34% improvement of jitter performance, 50% reduction of compensation time and 2.0dB gain of SNR compared with other algorithms. Finally, the proposed systems combined with asymmetry compensator and DPLL are shown to provide improved performance of about 0.4dB, 2dB over the existing schemes by BER evaluation.

  • PDF

A 14b 100MS/s $3.4mm^2$ 145mW 0.18um CMOS Pipeline A/D Converter (14b 100MS/s $3.4mm^2$ 145mW 0.18un CMOS 파이프라인 A/D 변환기)

  • Kim Young-Ju;Park Yong-Hyun;Yoo Si-Wook;Kim Yong-Woo;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.54-63
    • /
    • 2006
  • This work proposes a 14b 100MS/s 0.18um CMOS ADC with optimized resolution, conversion speed, die area, and power dissipation to obtain the performance required in the fourth-generation mobile communication systems. The 3-stage pipeline ADC, whose optimized architecture is analyzed and verified with behavioral model simulations, employs a wide-band low-noise SHA to achieve a 14b level ENOB at the Nyquist input frequency, 3-D fully symmetric layout techniques to minimize capacitor mismatch in two MDACs, and a back-end 6b flash ADC based on open-loop offset sampling and interpolation to obtain 6b accuracy and small chip area at 100MS/s. The prototype ADC implemented in a 0.18um CMOS process shows the measured DNL and INL of maximum 1.03LSB and 5.47LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 59dB and 72dB, respectively, and a power consumption of 145mW at 100MS/s and 1.8V. The occupied active die area is $3.4mm^2$.

Design and Implementation of Receiver Algorithms for VDL Mode-2 Systems (VDL Mode-2 시스템을 위한 수신 알고리듬 설계 및 구현)

  • Lee, Hui-Soo;Kang, Dong-Hoon;Park, Hyo-Bae;Oh, Wang-Rock
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.10
    • /
    • pp.28-33
    • /
    • 2009
  • In this paper, we propose the receiver algorithms suitable for the VHF (Very High Frequency) digital link mode-2(VDL Mode-2) system. Unlike conventional digital communication systems using the root raised cosine filter as a transmit and receive filter, raised cosine filter is used as a transmit filter in the VDL Mode-2 system. Hence, it is crucial to design and implement the optimum lowpass receive filter by considering inter-symbol interference and noise performance. On the other hand, due to the short preamble pattern, it is crucial to develop an efficient packet detection algorithm for reliable communication link for the VDL Mode-2 system. Also, frequency offset due to the carrier frequency difference between transmitter and receiver and doppler frequency shift must be estimated and compensated for reliable communication. In this paper, the optimum receive filter, packet detection and frequency offset compensation algorithms are proposed and the performance of the VDL system employing the proposed algorithms are evaluated.