• Title/Summary/Keyword: (commutative) ideal

Search Result 210, Processing Time 0.023 seconds

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

ON STRONGLY QUASI J-IDEALS OF COMMUTATIVE RINGS

  • El Mehdi Bouba;Yassine EL-Khabchi;Mohammed Tamekkante
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Let R be a commutative ring with identity. In this paper, we introduce a new class of ideals called the class of strongly quasi J-ideals lying properly between the class of J-ideals and the class of quasi J-ideals. A proper ideal I of R is called a strongly quasi J-ideal if, whenever a, b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R). Firstly, we investigate some basic properties of strongly quasi J-ideals. Hence, we give the necessary and sufficient conditions for a ring R to contain a strongly quasi J-ideals. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the primary ideals, the prime ideals and the maximal ideals. Finally, we give an idea about some strongly quasi J-ideals of the quotient rings, the localization of rings, the polynomial rings and the trivial rings extensions.

WEAKLY (m, n)-CLOSED IDEALS AND (m, n)-VON NEUMANN REGULAR RINGS

  • Anderson, David F.;Badawi, Ayman;Fahid, Brahim
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1031-1043
    • /
    • 2018
  • Let R be a commutative ring with $1{\neq}0$, I a proper ideal of R, and m and n positive integers. In this paper, we define I to be a weakly (m, n)-closed ideal if $0{\neq}x^m\;{\in}I$ for $x{\in}R$ implies $x^n{\in}I$, and R to be an (m, n)-von Neumann regular ring if for every $x{\in}R$, there is an $r{\in}R$ such that $x^mr=x^n$. A number of results concerning weakly(m, n)-closed ideals and (m, n)-von Neumann regular rings are given.

TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL

  • Atani, Shahabaddin Ebrahimi;Hesari, Saboura Dolati Pish;Khoramdel, Mehdi
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.159-176
    • /
    • 2015
  • Let R be a semiring, I a strong co-ideal of R and S(I) the set of all elements of R which are not prime to I. In this paper we investigate some interesting properties of S(I) and introduce the total identity-summand graph of a semiring R with respect to a co-ideal I. It is the graph with all elements of R as vertices and for distinct x, $y{\in}R$, the vertices x and y are adjacent if and only if $xy{\in}S(I)$.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.