KYUNGPOOK Math. J. 59(2019), 209-214 https://doi.org/10.5666/KMJ.2019.59.2.209 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Quasi 2-absorbing Submodules

FARANAK FARSHADIFAR

Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran

e-mail : f.farshadifar@cfu.ac.ir

ABSTRACT. In this paper, we introduce the notion of quasi 2-absorbing submodules of modules over a commutative ring and obtain some basic properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and " \subset " will denote the strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be *prime* if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [6].

The notion of 2-absorbing ideals as a generalization of prime ideals was introduced and studied in [3]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. The authors in [5] and [12], extended 2-absorbing ideals to 2-absorbing submodules. A proper submodule N of an R-module M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$.

The purpose of this paper is to introduce the concepts of quasi 2-absorbing submodules as a generalization of 2-absorbing submodules and obtain some related results.

2. Main Results

Definition 2.1. We say that a proper submodule N of an R-module M is a quasi 2-absorbing submodule if $(N :_R M)$ is a 2-absorbing ideal of R.

2010 Mathematics Subject Classification: 13C13, 13C99.

209

Received August 16, 2018; revised April 25, 2019; accepted May 8, 2019.

Key words and phrases: 2-absorbing submodule, 2-absorbing ideal, quasi 2-absorbing submodule.

Example 2.2. By [12, 2.3], every 2-absorbing submodule is a quasi 2-absorbing submodule. But the converse is not true in general. For example, the submodules $\langle 1/p^2 + Z \rangle$ and $\langle 1/p + Z \rangle$ of the Z-module $Z_{p^{\infty}}$ are quasi 2-absorbing submodules which are not 2-absorbing submodules.

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [4].

Proposition 2.3. Let M be a multiplication R-module. Then a submodule N of M is a 2-absorbing submodule of M if and only if it is a quasi 2-absorbing submodule of M.

Proof. This follows from [2, Theorem 3.9].

Proposition 2.4. Let M be an R-module and N_1 , N_2 be two submodules of M with $(N_1 :_R M)$ and $(N_2 :_R M)$ prime ideals of R. Then $N_1 \cap N_2$ is a quasi 2-absorbing submodule of M.

Proof. Since $(N_1 \cap N_2 :_R M) = (N_1 :_R M) \cap (N_2 :_R M)$, the result follows from [3].

Let N be a submodule of an R-module M. The intersection of all prime submodules of M containing N is said to be the (*prime*) radical of N and denote by rad(N). In case N does not contained in any prime submodule, the radical of N is defined to be M [10].

An R-module M is said to be a *Laskerian module* if every proper submodule of M is a finite intersection of primary submodules of M [8]. We know that every Noetherian module is Laskerian.

Theorem 2.5. Let M be an R-module and N be a quasi 2-absorbing submodule of M. Then we have the following:

- (a) $(N :_M I)$ is a quasi 2-absorbing submodules of M for all ideals I of R with $I \not\subseteq (N :_R M)$.
- (b) If I is an ideal of R, then $(N:_R I^n M) = (N:_R I^{n+1}M)$, for all $n \ge 2$.
- (c) If M is a finitely generated Laskerian R-module, then rad(N) is a quasi 2-absorbing submodule of M.

Proof. (a) Let I be an ideal of R with $I \not\subseteq (N :_R M)$. Then $((N :_M I) :_R M)$ is a proper ideal of R. Now let $a, b, c \in R$ and $abcM \subseteq (N :_M I)$. Then $abcIM \subseteq N$. Thus either $acM \subseteq N$ or $cbIM \subseteq N$ or $abIM \subseteq N$. If $cbIM \subseteq N$ or $abIM \subseteq N$, then we are done. If $acM \subseteq N$, then $acM \subseteq (N :_M I)$, as needed.

(b) It is enough to show that $(N:_R I^2 M) = (N:_R I^3 M)$. It is clear that $(N:_R I^2 M) \subseteq (N:_R I^3 M)$. Since N is quasi 2-absorbing submodule, $(N:_R I^3 M)I^3 M \subseteq N$ implies that $(N:_R I^3 M)I^2 M \subseteq N$ or $I^2 M \subseteq N$. If $(N:_R I^3 M)I^2 M \subseteq N$, then $(N:_R I^3 M) \subseteq (N:_R I^2 M)$. If $I^2 M \subseteq N$, then $(N:_R I^3 M) \subseteq (N:_R I^3 M)$.

(c) Let M be a finitely generated Laskerian R-module. Then $\sqrt{(N:_R M)} = (rad(N):_R M)$ by [9, Theorem 5]. Now the result follows from the fact that $\sqrt{(N:_R M)}$ is a 2-absorbing ideal of R by [3, Theorem 2.1].

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0:_M Ann_R(N))$ [1].

Corollary 2.6. Let M be a comultiplication R-module such that the zero submodule of M is a quasi 2-absorbing submodule. Then every proper submodule of M is a quasi 2-absorbing submodule of M.

Proof. This follows from Theorem 2.5 (a).

Proposition 2.7. Let M be an R-module and $\{K_i\}_{i \in I}$ be a chain of quasi 2absorbing submodules of M. Then $\bigcap_{i \in I} K_i$ is a quasi 2-absorbing submodule of M.

Proof. Clearly, $(\bigcap_{i \in I} K_i :_R M) \neq R$. Let $a, b, c \in R$ and $abc \in (\bigcap_{i \in I} K_i :_R M) = \bigcap_{i \in I} (K_i :_R M)$. Assume to the contrary that $ab \notin \bigcap_{i \in I} (K_i :_R M)$, $bc \notin \bigcap_{i \in I} (K_i :_R M)$, and $ac \notin \bigcap_{i \in I} (K_i :_R M)$. Then exist $m, n, t \in I$ such that $ab \notin (K_n :_R M)$, $bc \notin (K_m :_R M)$, and $ac \notin (K_t :_R M)$. Since $\{K_i\}_{i \in I}$ is a chain, we can assume without loss of generality that $K_m \subseteq K_n \subseteq K_t$. Then

$$(K_m :_R M) \subseteq (K_n :_R M) \subseteq (K_t :_R M).$$

As $abc \in (K_m :_R M)$, we have either $ab \in (K_m :_R M)$ or $ac \in (K_m :_R M)$ or $bc \in (K_m :_R M)$. In any case, we have a contradiction. \Box

Definition 2.8. We say that a quasi 2-absorbing submodule N of an R-module M is a minimal quasi 2-absorbing submodule of a submodule K of M, if $K \subseteq N$ and there does not exist a quasi 2-absorbing submodule T of M such that $K \subset T \subset N$.

It should be noted that a minimal quasi 2-absorbing submodule of M means that a minimal quasi 2-absorbing submodule of the submodule 0 of M.

Lemma 2.9. Let M be an R-module. Then every quasi 2-absorbing submodule of M contains a minimal quasi 2-absorbing submodule of M.

Proof. This is proved easily by using Zorn's Lemma and Proposition 2.7. \Box

Theorem 2.10. Let M be a Noetherian R-module. Then M contains a finite number of minimal quasi 2-absorbing submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of all proper submodules N of M such that the module M/N has an infinite number of minimal quasi 2-absorbing submodules. Since $0 \in \Sigma$, we have $\Sigma \neq \emptyset$. Therefore Σ has a maximal member T, since M is a Noetherian R-module. Clearly, T is not a quasi 2-absorbing submodule. Therefore, there exist $a, b, c \in R$ such that abc(M/T) =0 but $ab(M/T) \neq 0$, $ac(M/T) \neq 0$, and $bc(M/T) \neq 0$. The maximality of Timplies that M/(T + abM), M/(T + acM), and M/(T + bcM) have only finitely many minimal quasi 2-absorbing submodules. Suppose P/T is a minimal quasi 2-absorbing submodule of M/T. So $abcM \subseteq T \subseteq P$, which implies that either $abM \subseteq P$ or $acM \subseteq P$ or $bcM \subseteq P$. Thus either P/(T + abM) is a minimal quasi 2-absorbing submodule of M/(T + abM) or P/(T + bcM) is a minimal quasi 2-absorbing submodule of M/(T + bcM) or P/(T + acM) is a minimal quasi 2-absorbing submodule of M/(T + acM). Therefore, there are only a finite number of possibilities for the submodule P. This is a contradiction. \Box

Recall that Z(R) denotes the set of zero divisors of R.

Proposition 2.11. Let N be a submodule of a finitely generated R-module M and S be a multiplicatively closed subset of R. If N is a quasi 2-absorbing submodule and $(N:_R M) \cap S = \emptyset$, then $S^{-1}N$ is a quasi 2-absorbing $S^{-1}R$ -submodule of $S^{-1}M$. Furthermore, if $S^{-1}N$ is a quasi 2-absorbing $S^{-1}R$ -submodule and $S \cap Z(R/(N:_R M)) = \emptyset$, then N is a quasi 2-absorbing submodule of M.

Proof. As M is a finitely generated R-module,

$$(S^{-1}N:_{S^{-1}R}S^{-1}M) = S^{-1}((N:_RM))$$

by [13, Lemma 9.12]. Now the result follows from [11, Theorem 1.3].

Lemma 2.12. Let $f : M \to M$ be a monomorphism of *R*-modules. Then *N* is a quasi 2-absorbing submodule of *M* if and only if f(N) is a quasi 2-absorbing submodule of f(M).

Proof. This follows from the fact that $(N :_R M) = (f(N) :_R f(M))$.

Lemma 2.13.([7, Corollary 2.11]) Let N be a submodule of a multiplication R-module M. Then N is a prime submodule of M if and only if $(N :_R M)$ is a prime ideal of R.

Let R_i be a commutative ring with identity and M_i be an R_i -module for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.14. Let $R = R_1 \times R_2$ be a decomposable ring and let $M = M_1 \times M_2$ be an *R*-module, where M_1 is a multiplication R_1 -module and M_2 is a multiplication R_2 -module. Suppose that $N = N_1 \times N_2$ is a proper submodule of M. Then the following conditions are equivalent:

- (a) N is a quasi 2-absorbing submodule of M;
- (b) Either $N_1 = M_1$ and N_2 is a quasi 2-absorbing submodule of M_2 or $N_2 = M_2$ and N_1 is a quasi 2-absorbing submodule of M_1 or N_1 , N_2 are prime submodules of M_1 , M_2 , respectively.

Proof. Since $(N_1 \times N_2 :_{R_1 \times R_2} M_1 \times M_2) = (N_1 :_{R_1} M_1) \times (N_2 :_{R_2} M_2)$, the result follows from [11, Theorem 1.2] and Lemma 2.13.

Theorem 2.15. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposable ring and $M = M_1 \times M_2 \cdots \times M_n$ be an *R*-module, where for every $1 \le i \le n$, M_i is a multiplication R_i -module, respectively. Then for a proper submodule N of M the following conditions are equivalent:

- (a) N is a quasi 2-absorbing submodule of M;
- (b) Either $N = \times_{i=1}^{n} N_i$ such that for some $k \in \{1, 2, ..., n\}$, N_k is a quasi 2absorbing submodule of M_k and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{i=1}^{n} N_i$ such that for some $k, m \in \{1, 2, ..., n\}$, N_k is a prime submodule of M_k , N_m is a prime submodule of M_m , and $N_i = M_i$ for every $i \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We use induction on *n*. For n = 2 the result holds by Theorem 2.14. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem ??, *N* is a quasi 2-absorbing submodule of *M* if and only if either $N = L \times M_n$ for some quasi 2-absorbing submodule *L* of *K* or $N = K \times L_n$ for some quasi 2-absorbing submodule *L* of *K* or $N = K \times L_n$ for some quasi 2-absorbing submodule L_n of M_n or $N = L \times L_n$ for some prime submodule *L* of *K* is a prime submodule L_n of M_n . Notice that a proper submodule *L* of *K* is a prime submodule of *K* if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, ..., n - 1\}$, N_k is a prime submodule of M_k , and $N_i = M_i$ for every $i \in \{1, 2, ..., n - 1\} \setminus \{k\}$. Consequently we reach the claim. \Box

Acknowledgements. The author would like to thank Prof. Habibollah Ansari-Toroghy for his helpful suggestions and useful comments.

References

- H. Ansari-Toroghy and F. Farshadifar, *The dual notion of multiplication modules*, Taiwanese J. Math., **11(4)**(2007), 1189–1201.
- [2] H. Ansari Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine J. Math., 8(2)(2019), 159–168.
- [3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(2007), 417–429.
- [4] A. Barnard, *Multiplication modules*, J. Algebra, **71**(1981), 174–178.
- [5] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3)(2011), 577–584.
- [6] J. Dauns, Prime modules, J. Reine Angew. Math., 298(1978), 156-181.
- [7] Z. A. El-Bast and P. F. Smith, *Multiplication modules*, Comm. Algebra, 16(1988), 755–779.
- [8] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra, 72(1981), 101–114.
- [9] C. P. Lu, *M*-radicals of submodules in modules, Math. Japon., **34(2)**(1989), 211-219.
- [10] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29(1)(1986), 37–39.

F. Farshadifar

- [11] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, 7(2012), 265–271.
- [12] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq., 19(2012), 913–920.
- [13] R. Y. Sharp, Steps in commutative algebra, Cambridge University Press, Cambridge, 1990.