Quasi 2-absorbing Submodules

Faranak Farshadifar
Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran
e-mail: f.farshadifar@cfu.ac.ir
Abstract. In this paper, we introduce the notion of quasi 2-absorbing submodules of modules over a commutative ring and obtain some basic properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and " \subset " will denote the strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $r m \in P$, we have $m \in P$ or $r \in\left(P:_{R} M\right)$ [6].

The notion of 2-absorbing ideals as a generalization of prime ideals was introduced and studied in [3]. A proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. The authors in [5] and [12], extended 2-absorbing ideals to 2 -absorbing submodules. A proper submodule N of an R-module M is called a 2-absorbing submodule of M if whenever $a b m \in N$ for some $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$.

The purpose of this paper is to introduce the concepts of quasi 2-absorbing submodules as a generalization of 2-absorbing submodules and obtain some related results.

2. Main Results

Definition 2.1. We say that a proper submodule N of an R-module M is a quasi 2-absorbing submodule if $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R.

Received August 16, 2018; revised April 25, 2019; accepted May 8, 2019. 2010 Mathematics Subject Classification: 13C13, 13C99.
Key words and phrases: 2-absorbing submodule, 2-absorbing ideal, quasi 2-absorbing submodule.

Example 2.2. By [12, 2.3], every 2-absorbing submodule is a quasi 2-absorbing submodule. But the converse is not true in general. For example, the submodules $\left\langle 1 / p^{2}+Z\right\rangle$ and $\langle 1 / p+Z\rangle$ of the Z-module $Z_{p \infty}$ are quasi 2-absorbing submodules which are not 2 -absorbing submodules.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$ [4].
Proposition 2.3. Let M be a multiplication R-module. Then a submodule N of M is a 2-absorbing submodule of M if and only if it is a quasi 2-absorbing submodule of M.
Proof. This follows from [2, Theorem 3.9].
Proposition 2.4. Let M be an R-module and N_{1}, N_{2} be two submodules of M with $\left(N_{1}:_{R} M\right)$ and $\left(N_{2}:_{R} M\right)$ prime ideals of R. Then $N_{1} \cap N_{2}$ is a quasi 2-absorbing submodule of M.
Proof. Since $\left(N_{1} \cap N_{2}:_{R} M\right)=\left(N_{1}:_{R} M\right) \cap\left(N_{2}:_{R} M\right)$, the result follows from [3].

Let N be a submodule of an R-module M. The intersection of all prime submodules of M containing N is said to be the (prime) radical of N and denote by $\operatorname{rad}(N)$. In case N does not contained in any prime submodule, the radical of N is defined to be M [10].

An R-module M is said to be a Laskerian module if every proper submodule of M is a finite intersection of primary submodules of M [8]. We know that every Noetherian module is Laskerian.
Theorem 2.5. Let M be an R-module and N be a quasi 2-absorbing submodule of M. Then we have the following:
(a) $\left(N:_{M} I\right)$ is a quasi 2-absorbing submodules of M for all ideals I of R with $I \nsubseteq\left(N:_{R} M\right)$.
(b) If I is an ideal of R, then $\left(N:_{R} I^{n} M\right)=\left(N:_{R} I^{n+1} M\right)$, for all $n \geq 2$.
(c) If M is a finitely generated Laskerian R-module, then $\operatorname{rad}(N)$ is a quasi 2absorbing submodule of M.
Proof. (a) Let I be an ideal of R with $I \nsubseteq\left(N:_{R} M\right)$. Then $\left(\left(N:_{M} I\right):_{R} M\right)$ is a proper ideal of R. Now let $a, b, c \in R$ and $a b c M \subseteq\left(N:_{M} I\right)$. Then $a b c I M \subseteq N$. Thus either $a c M \subseteq N$ or $c b I M \subseteq N$ or $a b I M \subseteq N$. If $c b I M \subseteq N$ or $a b I M \subseteq N$, then we are done. If $a c M \subseteq N$, then $a c M \subseteq\left(N:_{M} I\right)$, as needed.
(b) It is enough to show that $\left(N:_{R} I^{2} M\right)=\left(N:_{R} I^{3} M\right)$. It is clear that $\left(N:_{R}\right.$ $\left.I^{2} M\right) \subseteq\left(N:_{R} I^{3} M\right)$. Since N is quasi 2-absorbing submodule, $\left(N:_{R} I^{3} M\right) I^{3} M \subseteq$ N implies that $\left(N:_{R} I^{3} M\right) I^{2} M \subseteq N$ or $I^{2} M \subseteq N$. If $\left(N:_{R} I^{3} M\right) I^{2} M \subseteq N$, then $\left(N:_{R} I^{3} M\right) \subseteq\left(N:_{R} I^{2} M\right)$. If $I^{2} M \subseteq N$, then $\left(N:_{R} I^{2} M\right)=R=\left(N:_{R} I^{3} M\right)$.
(c) Let M be a finitely generated Laskerian R-module. Then $\sqrt{\left(N:_{R} M\right)}=$ $\left(\operatorname{rad}(N):_{R} M\right)$ by $[9$, Theorem 5]. Now the result follows from the fact that $\sqrt{\left(N:_{R} M\right)}$ is a 2-absorbing ideal of R by [3, Theorem 2.1].

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$, equivalently, for each submodule N of M, we have $N=\left(0:_{M} \operatorname{Ann}_{R}(N)\right)[1]$.
Corollary 2.6. Let M be a comultiplication R-module such that the zero submodule of M is a quasi 2-absorbing submodule. Then every proper submodule of M is a quasi 2-absorbing submodule of M.
Proof. This follows from Theorem 2.5 (a).
Proposition 2.7. Let M be an R-module and $\left\{K_{i}\right\}_{i \in I}$ be a chain of quasi 2absorbing submodules of M. Then $\cap_{i \in I} K_{i}$ is a quasi 2-absorbing submodule of M.

Proof. Clearly, $\left(\cap_{i \in I} K_{i}:_{R} M\right) \neq R$. Let $a, b, c \in R$ and $a b c \in\left(\cap_{i \in I} K_{i}:_{R} M\right)=$ $\cap_{i \in I}\left(K_{i}:_{R} M\right)$. Assume to the contrary that $a b \notin \cap_{i \in I}\left(K_{i}:_{R} M\right), b c \notin \cap_{i \in I}\left(K_{i}:_{R}\right.$ $M)$, and $a c \notin \cap_{i \in I}\left(K_{i}:_{R} M\right)$. Then exist $m, n, t \in I$ such that $a b \notin\left(K_{n}:_{R} M\right)$, $b c \notin\left(K_{m}:_{R} M\right)$, and $a c \notin\left(K_{t}:_{R} M\right)$. Since $\left\{K_{i}\right\}_{i \in I}$ is a chain, we can assume without loss of generality that $K_{m} \subseteq K_{n} \subseteq K_{t}$. Then

$$
\left(K_{m}:_{R} M\right) \subseteq\left(K_{n}:_{R} M\right) \subseteq\left(K_{t}:_{R} M\right)
$$

As $a b c \in\left(K_{m}:_{R} M\right)$, we have either $a b \in\left(K_{m}:_{R} M\right)$ or $a c \in\left(K_{m}:_{R} M\right)$ or $b c \in\left(K_{m}:_{R} M\right)$. In any case, we have a contradiction.

Definition 2.8. We say that a quasi 2-absorbing submodule N of an R-module M is a minimal quasi 2-absorbing submodule of a submodule K of M, if $K \subseteq N$ and there does not exist a quasi 2-absorbing submodule T of M such that $K \subset T \subset N$.

It should be noted that a minimal quasi 2 -absorbing submodule of M means that a minimal quasi 2 -absorbing submodule of the submodule 0 of M.

Lemma 2.9. Let M be an R-module. Then every quasi 2-absorbing submodule of M contains a minimal quasi 2-absorbing submodule of M.
Proof. This is proved easily by using Zorn's Lemma and Proposition 2.7.
Theorem 2.10. Let M be a Noetherian R-module. Then M contains a finite number of minimal quasi 2-absorbing submodules.
Proof. Suppose that the result is false. Let Σ denote the collection of all proper submodules N of M such that the module M / N has an infinite number of minimal quasi 2 -absorbing submodules. Since $0 \in \Sigma$, we have $\Sigma \neq \emptyset$. Therefore Σ has a maximal member T, since M is a Noetherian R-module. Clearly, T is not a quasi 2 -absorbing submodule. Therefore, there exist $a, b, c \in R$ such that $a b c(M / T)=$ 0 but $a b(M / T) \neq 0, a c(M / T) \neq 0$, and $b c(M / T) \neq 0$. The maximality of T implies that $M /(T+a b M), M /(T+a c M)$, and $M /(T+b c M)$ have only finitely many minimal quasi 2-absorbing submodules. Suppose P / T is a minimal quasi 2-absorbing submodule of M / T. So $a b c M \subseteq T \subseteq P$, which implies that either
$a b M \subseteq P$ or $a c M \subseteq P$ or $b c M \subseteq P$. Thus either $P /(T+a b M)$ is a minimal quasi 2-absorbing submodule of $M /(T+a b M)$ or $P /(T+b c M)$ is a minimal quasi 2-absorbing submodule of $M /(T+b c M)$ or $P /(T+a c M)$ is a minimal quasi 2absorbing submodule of $M /(T+a c M)$. Therefore, there are only a finite number of possibilities for the submodule P. This is a contradiction.

Recall that $Z(R)$ denotes the set of zero divisors of R.
Proposition 2.11. Let N be a submodule of a finitely generated R-module M and S be a multiplicatively closed subset of R. If N is a quasi 2-absorbing submodule and $\left(N:_{R} M\right) \cap S=\emptyset$, then $S^{-1} N$ is a quasi 2-absorbing $S^{-1} R$-submodule of $S^{-1} M$. Furthermore, if $S^{-1} N$ is a quasi 2-absorbing $S^{-1} R$-submodule and $S \cap Z\left(R /\left(N:_{R}\right.\right.$ $M)=\emptyset$, then N is a quasi 2-absorbing submodule of M.
Proof. As M is a finitely generated R-module,

$$
\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)=S^{-1}\left(\left(N:_{R} M\right)\right)
$$

by [13, Lemma 9.12]. Now the result follows from [11, Theorem 1.3].
Lemma 2.12. Let $f: M \rightarrow M^{\prime}$ be a monomorphism of R-modules. Then N is a quasi 2-absorbing submodule of M if and only if $f(N)$ is a quasi 2-absorbing submodule of $f(M)$.
Proof. This follows from the fact that $\left(N:_{R} M\right)=\left(f(N):_{R} f(M)\right)$.
Lemma 2.13.([7, Corollary 2.11]) Let N be a submodule of a multiplication R module M. Then N is a prime submodule of M if and only if $\left(N:_{R} M\right)$ is a prime ideal of R.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module and each submodule of M is in the form of $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}.
Theorem 2.14. Let $R=R_{1} \times R_{2}$ be a decomposable ring and let $M=M_{1} \times M_{2}$ be an R-module, where M_{1} is a multiplication R_{1}-module and M_{2} is a multiplication R_{2}-module. Suppose that $N=N_{1} \times N_{2}$ is a proper submodule of M. Then the following conditions are equivalent:
(a) N is a quasi 2-absorbing submodule of M;
(b) Either $N_{1}=M_{1}$ and N_{2} is a quasi 2-absorbing submodule of M_{2} or $N_{2}=$ M_{2} and N_{1} is a quasi 2-absorbing submodule of M_{1} or N_{1}, N_{2} are prime submodules of M_{1}, M_{2}, respectively.
Proof. Since $\left(N_{1} \times N_{2}:_{R_{1} \times R_{2}} M_{1} \times M_{2}\right)=\left(N_{1}:_{R_{1}} M_{1}\right) \times\left(N_{2}:_{R_{2}} M_{2}\right)$, the result follows from [11, Theorem 1.2] and Lemma 2.13.

Theorem 2.15. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}(2 \leq n<\infty)$ be a decomposable ring and $M=M_{1} \times M_{2} \cdots \times M_{n}$ be an R-module, where for every $1 \leq i \leq n$, M_{i} is a multiplication R_{i}-module, respectively. Then for a proper submodule N of M the following conditions are equivalent:
(a) N is a quasi 2-absorbing submodule of M;
(b) Either $N=\times_{i=1}^{n} N_{i}$ such that for some $k \in\{1,2, \ldots, n\}, N_{k}$ is a quasi 2absorbing submodule of M_{k} and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k\}$ or $N=\times_{i=1}^{n} N_{i}$ such that for some $k, m \in\{1,2, \ldots, n\}, N_{k}$ is a prime submodule of M_{k}, N_{m} is a prime submodule of M_{m}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n\} \backslash\{k, m\}$.

Proof. We use induction on n. For $n=2$ the result holds by Theorem 2.14. Now let $3 \leq n<\infty$ and suppose that the result is valid when $K=M_{1} \times \cdots \times M_{n-1}$. We show that the result holds when $M=K \times M_{n}$. By Theorem ??, N is a quasi 2-absorbing submodule of M if and only if either $N=L \times M_{n}$ for some quasi 2-absorbing submodule L of K or $N=K \times L_{n}$ for some quasi 2-absorbing submodule L_{n} of M_{n} or $N=L \times L_{n}$ for some prime submodule L of K and some prime submodule L_{n} of M_{n}. Notice that a proper submodule L of K is a prime submodule of K if and only if $L=\times_{i=1}^{n-1} N_{i}$ such that for some $k \in\{1,2, \ldots, n-1\}$, N_{k} is a prime submodule of M_{k}, and $N_{i}=M_{i}$ for every $i \in\{1,2, \ldots, n-1\} \backslash\{k\}$. Consequently we reach the claim.

Acknowledgements. The author would like to thank Prof. Habibollah AnsariToroghy for his helpful suggestions and useful comments.

References

[1] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4)(2007), 1189-1201.
[2] H. Ansari Toroghy and F. Farshadifar, Some generalizations of second submodules, Palestine J. Math., 8(2)(2019), 159-168.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(2007), 417-429.
[4] A. Barnard, Multiplication modules, J. Algebra, 71(1981), 174-178.
[5] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3)(2011), 577-584.
[6] J. Dauns, Prime modules, J. Reine Angew. Math., 298(1978), 156-181.
[7] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(1988), 755-779.
[8] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra, 72(1981), 101-114.
[9] C. P. Lu, M-radicals of submodules in modules, Math. Japon., 34(2)(1989), 211-219.
[10] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29(1)(1986), 37-39.
[11] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum, $7(2012)$, 265-271.
[12] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Collq., 19(2012), 913-920.
[13] R. Y. Sharp, Steps in commutative algebra, Cambridge University Press, Cambridge, 1990.

