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Abstract. In this paper, we introduce the notion of quasi 2-absorbing submodules of

modules over a commutative ring and obtain some basic properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and
“⊂” will denote the strict inclusion. Further, Z will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for
any r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [6].

The notion of 2-absorbing ideals as a generalization of prime ideals was intro-
duced and studied in [3]. A proper ideal I of R is called a 2-absorbing ideal of
R if whenever a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. The
authors in [5] and [12], extended 2-absorbing ideals to 2-absorbing submodules. A
proper submodule N of an R-module M is called a 2-absorbing submodule of M if
whenever abm ∈ N for some a, b ∈ R and m ∈ M , then am ∈ N or bm ∈ N or
ab ∈ (N :R M).

The purpose of this paper is to introduce the concepts of quasi 2-absorbing
submodules as a generalization of 2-absorbing submodules and obtain some related
results.

2. Main Results

Definition 2.1. We say that a proper submodule N of an R-module M is a quasi
2-absorbing submodule if (N :R M) is a 2-absorbing ideal of R.

Received August 16, 2018; revised April 25, 2019; accepted May 8, 2019.
2010 Mathematics Subject Classification: 13C13, 13C99.
Key words and phrases: 2-absorbing submodule, 2-absorbing ideal, quasi 2-absorbing sub-
module.

209



210 F. Farshadifar

Example 2.2. By [12, 2.3], every 2-absorbing submodule is a quasi 2-absorbing
submodule. But the converse is not true in general. For example, the submodules
⟨1/p2 + Z⟩ and ⟨1/p+ Z⟩ of the Z-module Zp∞ are quasi 2-absorbing submodules
which are not 2-absorbing submodules.

An R-module M is said to be a multiplication module if for every submodule N
of M there exists an ideal I of R such that N = IM [4].

Proposition 2.3. Let M be a multiplication R-module. Then a submodule N of M
is a 2-absorbing submodule of M if and only if it is a quasi 2-absorbing submodule
of M .

Proof. This follows from [2, Theorem 3.9]. 2

Proposition 2.4. Let M be an R-module and N1, N2 be two submodules of M with
(N1 :R M) and (N2 :R M) prime ideals of R. Then N1 ∩N2 is a quasi 2-absorbing
submodule of M .

Proof. Since (N1 ∩ N2 :R M) = (N1 :R M) ∩ (N2 :R M), the result follows from
[3]. 2

Let N be a submodule of an R-module M . The intersection of all prime sub-
modules of M containing N is said to be the (prime) radical of N and denote by
rad(N). In case N does not contained in any prime submodule, the radical of N is
defined to be M [10].

An R-module M is said to be a Laskerian module if every proper submodule
of M is a finite intersection of primary submodules of M [8]. We know that every
Noetherian module is Laskerian.

Theorem 2.5. Let M be an R-module and N be a quasi 2-absorbing submodule of
M . Then we have the following:

(a) (N :M I) is a quasi 2-absorbing submodules of M for all ideals I of R with
I ̸⊆ (N :R M).

(b) If I is an ideal of R, then (N :R InM) = (N :R In+1M), for all n ≥ 2.

(c) If M is a finitely generated Laskerian R-module, then rad(N) is a quasi 2-
absorbing submodule of M .

Proof. (a) Let I be an ideal of R with I ̸⊆ (N :R M). Then ((N :M I) :R M) is a
proper ideal of R. Now let a, b, c ∈ R and abcM ⊆ (N :M I). Then abcIM ⊆ N .
Thus either acM ⊆ N or cbIM ⊆ N or abIM ⊆ N . If cbIM ⊆ N or abIM ⊆ N ,
then we are done. If acM ⊆ N , then acM ⊆ (N :M I), as needed.

(b) It is enough to show that (N :R I2M) = (N :R I3M). It is clear that (N :R
I2M) ⊆ (N :R I3M). Since N is quasi 2-absorbing submodule, (N :R I3M)I3M ⊆
N implies that (N :R I3M)I2M ⊆ N or I2M ⊆ N . If (N :R I3M)I2M ⊆ N , then
(N :R I3M) ⊆ (N :R I2M). If I2M ⊆ N , then (N :R I2M) = R = (N :R I3M).

(c) Let M be a finitely generated Laskerian R-module. Then
√
(N :R M) =

(rad(N) :R M) by [9, Theorem 5]. Now the result follows from the fact that√
(N :R M) is a 2-absorbing ideal of R by [3, Theorem 2.1]. 2
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An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :M I), equivalently, for each
submodule N of M , we have N = (0 :M AnnR(N)) [1].

Corollary 2.6. Let M be a comultiplication R-module such that the zero submodule
of M is a quasi 2-absorbing submodule. Then every proper submodule of M is a
quasi 2-absorbing submodule of M .

Proof. This follows from Theorem 2.5 (a). 2

Proposition 2.7. Let M be an R-module and {Ki}i∈I be a chain of quasi 2-
absorbing submodules of M . Then ∩i∈IKi is a quasi 2-absorbing submodule of M .

Proof. Clearly, (∩i∈IKi :R M) ̸= R. Let a, b, c ∈ R and abc ∈ (∩i∈IKi :R M) =
∩i∈I(Ki :R M). Assume to the contrary that ab ̸∈ ∩i∈I(Ki :R M), bc ̸∈ ∩i∈I(Ki :R
M), and ac ̸∈ ∩i∈I(Ki :R M). Then exist m,n, t ∈ I such that ab ̸∈ (Kn :R M),
bc ̸∈ (Km :R M), and ac ̸∈ (Kt :R M). Since {Ki}i∈I is a chain, we can assume
without loss of generality that Km ⊆ Kn ⊆ Kt. Then

(Km :R M) ⊆ (Kn :R M) ⊆ (Kt :R M).

As abc ∈ (Km :R M), we have either ab ∈ (Km :R M) or ac ∈ (Km :R M) or
bc ∈ (Km :R M). In any case, we have a contradiction. 2

Definition 2.8. We say that a quasi 2-absorbing submodule N of an R-module M
is a minimal quasi 2-absorbing submodule of a submodule K of M , if K ⊆ N and
there does not exist a quasi 2-absorbing submodule T of M such that K ⊂ T ⊂ N .

It should be noted that a minimal quasi 2-absorbing submodule of M means
that a minimal quasi 2-absorbing submodule of the submodule 0 of M .

Lemma 2.9. Let M be an R-module. Then every quasi 2-absorbing submodule of
M contains a minimal quasi 2-absorbing submodule of M .

Proof. This is proved easily by using Zorn’s Lemma and Proposition 2.7. 2

Theorem 2.10. Let M be a Noetherian R-module. Then M contains a finite
number of minimal quasi 2-absorbing submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of all proper
submodules N of M such that the module M/N has an infinite number of minimal
quasi 2-absorbing submodules. Since 0 ∈ Σ, we have Σ ̸= ∅. Therefore Σ has a
maximal member T , since M is a Noetherian R-module. Clearly, T is not a quasi
2-absorbing submodule. Therefore, there exist a, b, c ∈ R such that abc(M/T ) =
0 but ab(M/T ) ̸= 0, ac(M/T ) ̸= 0, and bc(M/T ) ̸= 0. The maximality of T
implies that M/(T + abM), M/(T + acM), and M/(T + bcM) have only finitely
many minimal quasi 2-absorbing submodules. Suppose P/T is a minimal quasi
2-absorbing submodule of M/T . So abcM ⊆ T ⊆ P , which implies that either
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abM ⊆ P or acM ⊆ P or bcM ⊆ P . Thus either P/(T + abM) is a minimal
quasi 2-absorbing submodule of M/(T + abM) or P/(T + bcM) is a minimal quasi
2-absorbing submodule of M/(T + bcM) or P/(T + acM) is a minimal quasi 2-
absorbing submodule of M/(T + acM). Therefore, there are only a finite number
of possibilities for the submodule P . This is a contradiction. 2

Recall that Z(R) denotes the set of zero divisors of R.

Proposition 2.11. Let N be a submodule of a finitely generated R-module M and
S be a multiplicatively closed subset of R. If N is a quasi 2-absorbing submodule and
(N :R M) ∩ S = ∅, then S−1N is a quasi 2-absorbing S−1R-submodule of S−1M .
Furthermore, if S−1N is a quasi 2-absorbing S−1R-submodule and S ∩Z(R/(N :R
M)) = ∅, then N is a quasi 2-absorbing submodule of M .

Proof. As M is a finitely generated R-module,

(S−1N :S−1R S−1M) = S−1((N :R M))

by [13, Lemma 9.12]. Now the result follows from [11, Theorem 1.3]. 2

Lemma 2.12. Let f : M → Ḿ be a monomorphism of R-modules. Then N is
a quasi 2-absorbing submodule of M if and only if f(N) is a quasi 2-absorbing
submodule of f(M).

Proof. This follows from the fact that (N :R M) = (f(N) :R f(M)). 2

Lemma 2.13.([7, Corollary 2.11]) Let N be a submodule of a multiplication R-
module M . Then N is a prime submodule of M if and only if (N :R M) is a prime
ideal of R.

Let Ri be a commutative ring with identity andMi be an Ri-module for i = 1, 2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module and each submodule of M
is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2.

Theorem 2.14. Let R = R1×R2 be a decomposable ring and let M = M1×M2 be
an R-module, where M1 is a multiplication R1-module and M2 is a multiplication
R2-module. Suppose that N = N1 × N2 is a proper submodule of M . Then the
following conditions are equivalent:

(a) N is a quasi 2-absorbing submodule of M ;

(b) Either N1 = M1 and N2 is a quasi 2-absorbing submodule of M2 or N2 =
M2 and N1 is a quasi 2-absorbing submodule of M1 or N1, N2 are prime
submodules of M1, M2, respectively.

Proof. Since (N1 ×N2 :R1×R2 M1 ×M2) = (N1 :R1 M1) × (N2 :R2 M2), the result
follows from [11, Theorem 1.2] and Lemma 2.13. 2

Theorem 2.15. Let R = R1 ×R2 × · · · ×Rn (2 ≤ n < ∞) be a decomposable ring
and M = M1 × M2 · · · × Mn be an R-module, where for every 1 ≤ i ≤ n, Mi is
a multiplication Ri-module, respectively. Then for a proper submodule N of M the
following conditions are equivalent:
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(a) N is a quasi 2-absorbing submodule of M ;

(b) Either N = ×n
i=1Ni such that for some k ∈ {1, 2, ..., n}, Nk is a quasi 2-

absorbing submodule of Mk and Ni = Mi for every i ∈ {1, 2, ..., n} \ {k}
or N = ×n

i=1Ni such that for some k,m ∈ {1, 2, ..., n}, Nk is a prime sub-
module of Mk, Nm is a prime submodule of Mm, and Ni = Mi for every
i ∈ {1, 2, ..., n} \ {k,m}.

Proof. We use induction on n. For n = 2 the result holds by Theorem 2.14. Now
let 3 ≤ n < ∞ and suppose that the result is valid when K = M1 × · · · × Mn−1.
We show that the result holds when M = K × Mn. By Theorem ??, N is a
quasi 2-absorbing submodule of M if and only if either N = L × Mn for some
quasi 2-absorbing submodule L of K or N = K × Ln for some quasi 2-absorbing
submodule Ln of Mn or N = L× Ln for some prime submodule L of K and some
prime submodule Ln of Mn. Notice that a proper submodule L of K is a prime
submodule of K if and only if L = ×n−1

i=1 Ni such that for some k ∈ {1, 2, ..., n− 1},
Nk is a prime submodule of Mk, and Ni = Mi for every i ∈ {1, 2, ..., n − 1} \ {k}.
Consequently we reach the claim. 2
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