Browse > Article
http://dx.doi.org/10.5666/KMJ.2015.55.4.817

Some Analogues of a Result of Vasconcelos  

DOBBS, DAVID EARL (Department of Mathematics, University of Tennessee)
SHAPIRO, JAY ALLEN (Department of Mathematics, George Mason University)
Publication Information
Kyungpook Mathematical Journal / v.55, no.4, 2015 , pp. 817-826 More about this Journal
Abstract
Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.
Keywords
Commutative ring; cyclic module; monomorphism; Krull dimension; monoid ring; integral domain; pullback; treed domain; pseudo-valuation domain; total quotient ring; localization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. D. Anderson, J. Coykendall, L. Hill and M. Zafrullah, Monoid domain constructions of antimatter domains, Comm. Algebra, 35(2007), 3236-3241.   DOI
2 D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. Math. J., 2(1980), 363-384.
3 J. Coykendall, D. E. Dobbs and B. Mullins, On integral domains with no atoms, Comm. Algebra, 27(1999), 5813-5831.   DOI
4 I. S. Cohen and A. Seidenberg, Prime ideals and integral dependence, Bull. Amer. Math. Soc., 52(1946), 252-261.   DOI
5 D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra, 1(1974), 439-458.   DOI
6 D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains, Houston J. Math., 4(1978), 551-567.
7 D. E. Dobbs, Treed domains have grade 1, Internat. J. Commut. Rings, 2(2003), 43-46.
8 M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123(1980), 331-355.   DOI
9 R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
10 R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago/London, 1984.
11 J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1978), 137-147.   DOI
12 J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
13 I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago/London, 1974.
14 W. V. Vasconcelos, Injective endomorphisms of finitley generated modules, Proc. Amer. Math. Soc., 25(1970), 900-901.