
Commun. Korean Math. Soc. 39 (2024), No. 1, pp. 93–104

https://doi.org/10.4134/CKMS.c230134

pISSN: 1225-1763 / eISSN: 2234-3024

ON STRONGLY QUASI J-IDEALS OF

COMMUTATIVE RINGS

El Mehdi Bouba, Yassine EL-Khabchi, and Mohammed Tamekkante

Abstract. Let R be a commutative ring with identity. In this paper, we

introduce a new class of ideals called the class of strongly quasi J-ideals
lying properly between the class of J-ideals and the class of quasi J-ideals.

A proper ideal I of R is called a strongly quasi J-ideal if, whenever a,
b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R). Firstly, we investigate some

basic properties of strongly quasi J-ideals. Hence, we give the necessary

and sufficient conditions for a ring R to contain a strongly quasi J-ideals.
Many other results are given to disclose the relations between this new

concept and others that already exist. Namely, the primary ideals, the

prime ideals and the maximal ideals. Finally, we give an idea about some
strongly quasi J-ideals of the quotient rings, the localization of rings, the

polynomial rings and the trivial rings extensions.

1. Introduction

Throughout this paper all rings are commutative with 1 ̸= 0. Let R be a
ring and I be an ideal of R. Then, Nil(R) :=

√
0 denotes the nil-radical of R,

Jac(R) denotes the Jacobson radical of R, Z(R) denotes the set of zero divisors

of R, and
√
I denotes the radical of I.

In [16], Tekir et al. introduced the concept of n-ideals. A proper ideal I of
a ring R (i.e., I ̸= R) is called an n-ideal if, whenever a, b ∈ R with ab ∈ I,
then a ∈ I or b ∈ Nil(R). Recently, Khashan and Bani-Ata in [10] introduced
the concept of J-ideals as a generalization of n-ideals. A proper ideal I of a
ring R is called a J-ideal if, whenever a, b ∈ R with ab ∈ I, then a ∈ I or
b ∈ Jac(R). The concept of J-ideals is generalized many different ways (see
[11, 12, 17]). One of the most recent generalizations of J-ideals is the concept
of quasi J-ideals introduced by Khashan and Yetkin in [12]. A proper ideal I

of a ring R is called a quasi J-ideal if
√
I is a J-ideal.

In this paper, we investigate a new class of ideals called the class of strongly
quasi J-ideals which is a sub-class of quasi-J-ideals and an over-class of J-ideals

{J-ideals} ⊆ {strongly quasi J-ideals} ⊆ {quasi J-ideals}.

Received June 5, 2023; Accepted August 8, 2023.
2020 Mathematics Subject Classification. Primary 13A15, 13A99.

Key words and phrases. J-ideals, quasi J-ideals, strongly quasi J-ideals.

©2024 Korean Mathematical Society

93



94 E. M. BOUBA, Y. EL-KHABCHI, AND M. TAMEKKANTE

The first goal of this paper is to show that these inclusion may be strict (see
Example 2.1 and Example 2.2). Among other results, it is proved that a ring R
has a strongly quasi J-ideal if and only if there exits a prime ideal P such that
P ⊆ Jac(R) (Theorem 2.8). In Theorem 2.11, we show that every proper ideal
(resp. (nonzero) principal ideal, primary ideal, prime ideal, maximal ideal) of
a ring R is a strongly quasi J-ideal if and only if R is a quasi-local ring. After
that, we characterize the (Noetherian) rings over which every strongly quasi
J-ideal is primary (resp. prime, maximal) ideal (Theorems 2.14, 2.16, 2.17). In
the last part of this paper, we give an idea about some strongly quasi J-ideals
of the quotient rings, the localization of rings, the polynomial rings and the
trivial rings extensions.

Let M be a unitary R-module. Recall that the trivial ring extension of R
by M is the ring R := R ∝ M , where the underlying group is R ×M and the
multiplication is defined by (a,m)(b,m′) = (ab, am′ + bm). It is also called the
(Nagata) idealization ofM over R and is denoted by R(+)M . This construction
was first introduced, in 1962, by Nagata [15] with the objective to emphasize
the interaction between rings and their modules and, more importantly, to
provide numerous families of examples of rings with zero-divisors (for more
details see [3]).

2. Strongly quasi J-ideals

Definition. Let R be a ring. A proper ideal I of R is called a strongly quasi
J-ideal if, whenever a, b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R).

Clearly, every J-ideal is a strongly quasi J-ideal, and every strongly quasi
J-ideal is a quasi J-ideal. However, the next examples show that the converse
implications are not true in general.

Example 2.1. Consider the ideal I = 0 ∝ 0 of the ring R = Z ∝ Z/2Z. It is
clear that I is a strongly quasi J-ideal of R. However, I is not a J-ideal of R.
Indeed, (2, 0)(0, 1) = (0, 0) ∈ I, but (0, 1) /∈ I and (2, 0) /∈ Jac(R) = 0 ∝ Z/2Z.

Example 2.2. Consider the ring R = Z + 3XZ[[X]]. By [8, Proposition
1.3] and [8, Proposition 1.7], Jac(R) = 3XZ[[X]] is a prime ideal of R. Set
I := Jac(R)3. It is clear I is a quasi J-ideal of R. However, 27X3 ∈ I, but
neither (3X3)2 ∈ I nor 9 ∈ Jac(R). Thus, I is not a strongly quasi J-ideal of
R.

Recall from [13] that a proper ideal I of a ring R is strongly quasi-primary

if, whenever a, b ∈ R with ab ∈ I, then a2 ∈ I or b ∈
√
I.

Proposition 2.3. Let R be a ring and I be a proper ideal of R. If I is a
strongly quasi J-ideal, then I ⊆ Jac(R). The equivalence holds if I is strongly
quasi primary.

Proof. Since every strongly quasi J-ideal is a quasi J-ideal, by [12, Proposition
1], we get I ⊆ Jac(R).
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Let I be a strongly quasi primary ideal with I ⊆ Jac(R). Let a, b ∈ R with

ab ∈ I and b /∈ Jac(R). Then, a2 ∈ I since b /∈
√
I and I is a strongly quasi

primary ideal. Thus, I is a strongly quasi J-ideal. □

Recall from [7,14] that a ring R is called a Hilbert ring or a Jacobson ring if
every prime ideal of R is an intersection of maximal ideals of R (i.e., in every
homomorphic image of R, the Jacobson radical and the nilradical coincide).

Proposition 2.4. Let R be a Hilbert ring and I be a proper ideal of R. Then,
I is a strongly quasi J-ideal of R if and only if I ⊆ Nil(R) and I is a strongly
quasi primary ideal of R.

Proof. Suppose that I is a strongly quasi J-ideal of R. Then, by Proposition
2.3 I ⊆ Jac(R). Since R is a Hilbert ring, Jac(R) = Nil(R) and so I ⊆ Nil(R)

(equivalent to
√
I = Nil(R)). On the other hand, let a, b ∈ R such that ab ∈ I

and b /∈
√
I. As I is a strongly quasi J-ideal and b /∈

√
I = Jac(R), we conclude

that a2 ∈ I. Consequently, I is a strongly quasi primary ideal with I ⊆ Nil(R).
The converse follows directly from Proposition 2.3. □

Recall that, for a proper ideal I of a ring R, the ideal generated by squares
of elements of I (i.e., {x2 |x ∈ I}) is denoted by I2 [2]. If 2 is a unit in R, then
I2 = I2 (see [2, Theorem 5]). Next, we give some characterizations of strongly
quasi J-ideals in terms of ideals.

Proposition 2.5. Let I be a proper ideal of a ring R. Then, the following are
equivalent:

(1) I is a strongly quasi J-ideal of R.
(2) For every a ∈ R, either (a) ⊆ (I : a) or (I : a) ⊆ Jac(R).
(3) For any ideals A and B of R with AB ⊆ I either A2 ⊆ I or B ⊆

Jac(R).
(4) For every b /∈ Jac(R), (I : b)2 ⊆ I.

Proof. (1) ⇒ (2) Suppose that I is a strongly quasi J-ideal and (a) ̸⊆ (I : a).
Let b ∈ (I : a). Then ab ∈ I. Since a2 /∈ I and I is a strongly J-ideal, we
conclude that b ∈ Jac(R), and so (I : a) ⊆ Jac(R).

(2) ⇒ (3) Let A and B be two ideals of R such that AB ⊆ I and B ̸⊆ Jac(R).
Let b ∈ B \ Jac(R). For any a ∈ A, we have b ∈ (I : a) \ Jac(R). Then,
(a) ⊆ (I : a), and so a2 ∈ I. Thus, A2 ⊆ I.

(3) ⇒ (4) Let b /∈ Jac(R) and set A = (I : b) and B = (b). Then, we have
AB ⊆ I. Since B ̸⊆ Jac(R), we get A2 = (I : b)2 ⊆ I.

(4) ⇒ (1) Let a, b ∈ R with ab ∈ I and b /∈ Jac(R). Since a ∈ (I : b), we get
that a2 ∈ (I : b)2 ⊆ I. Thus, I is a strongly quasi J-ideal. □

Corollary 2.6. Let R be a ring in which 2 is a unit and let I be a proper ideal
of R. Then, the following are equivalent:

(1) I is a strongly quasi J-ideal of R.
(2) For every a ∈ R, either (a) ⊆ (I : a) or (I : a) ⊆ Jac(R).
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(3) For any ideals A and B of R with AB ⊆ I either A2 ⊆ I or B ⊆
Jac(R).

(4) For every b /∈ Jac(R), (I : b)2 ⊆ I.

Next, we give some useful facts concerning strongly quasi J-ideals. These
will be used frequently in the sequel without explicit mentions.

Proposition 2.7. Let R be a ring. Then, the following hold:

(1) If I and I ′ are two J-ideals of R, then II ′ is a strongly quasi J-ideal
of R. In particular, the square of a J-ideal of R is a strongly quasi
J-ideal.

(2) If I is a J-ideal of R and I ′ is an ideal of R containing I, then II ′ is
a strongly quasi J-ideal of R.

(3) Every maximal strongly quasi J-ideal of R is prime.
(4) If I is a strongly quasi J-ideal of R and P is a minimal prime ideal

over I, then P is a J-ideal.

Proof. (1) Let a, b ∈ R with ab ∈ II ′ and b /∈ Jac(R). By hypothesis, we have
a ∈ I ∩ I ′. Hence, a2 ∈ II ′, and so II ′ is a strongly quasi J-ideal.

(2) Let a, b ∈ R such that ab ∈ II ′ and b /∈ Jac(R). Since ab ∈ I and I is a
J-ideal, we conclude that a ∈ I, and so a2 ∈ II ′. Thus, II ′ is a strongly quasi
J-ideal of R.

(3) Let I is a maximal strongly quasi J-ideal of R and let a, b ∈ R such

that ab ∈ I and b /∈ I. Since
√
I is a J-ideal of R, by maximality of I, we

have I =
√
I and so I is a J-ideal. Moreover, by [10, Lemma 2.11] (I : b) is

a J-ideal of R which contains of I. Again, by the maximality of I, we obtain
that I = (I : b). Hence, a ∈ I and so I is a prime ideal, as asserted.

(4) Let x ∈ P . Then, by [9, Theorem 2.1] there exist y /∈ P and a positive
integer n such that xny ∈ I. As I is a strongly quasi J-ideal and y2 /∈ I, we con-
clude that xn ∈ Jac(R). Thus, x ∈ Jac(R) and so P ⊆ Jac(R). Consequently,
P is a J-ideal. □

The next result characterizes rings admitting strongly quasi J-ideals.

Theorem 2.8. A ring R has a strongly quasi J-ideal if and only if there exists
a prime ideal P of R such that P ⊆ Jac(R).

Proof. If R contains a strongly quasi J-ideal, then R contains a maximal
strongly quasi J-ideal P which is a prime ideal. Moreover, P ⊆ Jac(R) by
Proposition 2.3. The converse part is clear. □

Recall that a ring R is said to be semiprimitive if Jac(R) = (0).
As a consequence of the previous theorem, we have the following result.

Corollary 2.9. (1) Let R1 and R2 be two rings. Then, R1 × R2 has no
strongly quasi J-ideal.

(2) Any semiprimitive ring R, which is not a domain, has no strongly quasi
J-ideal.
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Proof. (1) Jac(R1×R2) = Jac(R1)×Jac(R2) does not contain any prime ideal
of R1 ×R2 since every prime ideal P of R1 ×R2 has the form P = P1 ×R2 or
P = R1 × P2, where P1 is a prime ideal of R1 and P2 is a prime ideal of R2.
Hence, by Theorem 2.8, R1 ×R2 has no strongly quasi J-ideal.

(2) Let R be a semiprimitive ring which is not a domain. If R admits a
strongly quasi J-ideal, then by Theorem 2.8, there exists a prime ideal P ⊆
Jac(R) = (0). Hence, P = (0) which is a contradiction. □

Proposition 2.10. Let R be a semiprimitive ring. Then, R is a domain if
and only if (0) is the only strongly quasi J-ideal of R.

Proof. (⇒) Suppose that R is a domain. It is clear that (0) is a strongly quasi
J-ideal of R. Let I be a strongly quasi J-ideal of R. Then I ⊆ Jac(R) = 0.
Hence, I = (0) and so we conclude that (0) is the only strongly quasi J-ideal
of the domain R.

(⇐) Let a, b ∈ R such that ab = 0 and b ̸= 0. Since b /∈ Jac(R) and (0) is a
strongly quasi J-ideal, we conclude that a2 = 0. Thus, a ∈ Nil(R) = (0) and
so R is a domain. □

The next theorem characterizes rings over which every proper ideal (resp.
(nonzero) principal ideal, primary ideal, prime ideal, maximal ideal) is a strong-
ly quasi J-ideal.

Theorem 2.11. Let R be a ring. The following are equivalent:

(1) R is a quasi-local ring.
(2) Every proper principal ideal of R is a strongly quasi J-ideal.
(3) Every nonzero proper principal ideal of R is a strongly quasi J-ideal.
(4) Every proper ideal of R is a strongly quasi J-ideal.
(5) Every primary ideal of R is a strongly quasi J-ideal.
(6) Every prime ideal of R is a strongly quasi J-ideal.
(7) Every maximal ideal of R is a strongly quasi J-ideal.

Proof. (1) ⇒ (2) Let x be a nonunit element of R and consider a, b ∈ R such
that ab ∈ (x) and b /∈ Jac(R). Since R is quasi-local, b is a unit. Hence, a ∈ (x)
and so a2 ∈ (x). Thus, (x) is a strongly quasi J-ideal.

(2) ⇒ (3) Trivial.
(3) ⇒ (4) Let I be a proper ideal of R and consider a, b ∈ R such that

ab ∈ I and b /∈ Jac(R). Suppose that b is a nonunit. Then, the nonzero proper
ideal (b) is a strongly quasi J-ideal. So, by Proposition 2.3, b ∈ (b) ⊆ Jac(R), a
contradiction. Hence, b is a unit and then a2 ∈ I. Consequently, I is a strongly
quasi J-ideal of R.

(4) ⇒ (5) ⇒ (6) ⇒ (7) Trivial.
(7) ⇒ (1) Let M be a maximal ideal of R. Then, M is a strongly quasi

J-ideal. Hence, by Proposition 2.3, M ⊆ Jac(R), and so M = Jac(R). Thus,
R is a quasi-local ring. □
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Corollary 2.12. Let P be a prime ideal of a ring R. Then, every proper ideal
of the ring RP is a strongly quasi J-ideal.

Recall from [5], that a ring R is said to be a UN -ring if every nonunit
element a of R is a product of a unit and a nilpotent element, or equivalently
every element of R is either nilpotent or unit. That is, R is quasi-local with
a maximal ideal Nil(R), or equivalently R is quasi-local with Krull dimension
zero. A simple example of UN -rings is Z/9Z.

Corollary 2.13. Let R be a zero-dimensional ring. The following are equival-
ent:

(1) R is a UN -ring.
(2) Every proper ideal of R is a strongly quasi J-ideal.
(3) R has a strongly quasi J-ideal.

Proof. (1) ⇒ (2) Follows from Theorem 2.11 since R is a quasi-local ring.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Suppose that R admits a strongly quasi J-ideal. Then, by Theo-

rem 2.8 there exists a maximal ideal M of R such that M ⊆ Jac(R) = Nil(R)
(since R is a zero-dimensional ring). Thus, R is a quasi-local ring and so R is
a UN -ring, as asserted. □

Note that the set of primary ideals (resp. prime ideals, maximal ideals) in
any ring is never empty. However, by Theorem 2.8, strongly quasi J-ideals
exist in a ring R only when the Jacobson radical Jac(R) contains a prime ideal.
For that, in the next three theorems we consider this condition, otherwise they
have no meaning.

Theorem 2.14. Let R be a Noetherian ring with the nonzero prime nil-radical
Nil(R). The following are equivalent:

(1) Every strongly quasi J-ideal of R is primary.
(2) R is a UN -ring.

Proof. (1) ⇒ (2) First we will show that (0) is a primary ideal. The ideal
Nil(R)2 is a strongly quasi J-ideal (by Proposition 2.7(1)). Hence, it is a
primary, and so a J-ideal. Again by Proposition 2.7(1), Nil(R)3 is a strongly
quasi J-ideal, and so it is primary. So, by induction Nil(R)n is primary for all
integer n ≥ 1. Since R is Noetherian, there exits an integer m ≥ 1 such that
Nil(R)m = (0). Thus, (0) is primary (i.e., Nil(R) = Z(R)).

Assume that R is not a quasi-local ring. Then, by hypothesis Nil(R) is a
non-maximal prime ideal, and so 0 ̸= Nil(R) ⊆ Jac(R). Set Nil(R) = P . Let
M be a maximal ideal of R. Then, by Proposition 2.7, PM is a strongly quasi
J-ideal and so it is primary with

√
PM = P . Let x ∈ P and y ∈ M \P . Then,

xy ∈ PM . Since PM is primary and y /∈
√
PM , we conclude that x ∈ PM .

Hence, P ⊆ PM and so PM = P . On the other hand, P is finitely generated
since R is Noetherian, and so M + ann(P ) = R (by [6, Lemma 1.7]). Hence,
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1 = x + y for some x ∈ M and y ∈ ann(P ). Let 0 ̸= p ∈ P . Then p = px.
Hence, p(1 − x) = 0 and so 1 − x ∈ Z(R) ⊆ M , a contradiction. Thus, R is a
quasi-local ring. So, by hypothesis and Theorem 2.11, every proper ideal of R
is primary. Hence, by [1, Corollary 2.15] R is a UN -ring or R is a domain with
a unique nonzero prime ideal. Since R is not a domain, R must be a UN -ring.

(2) ⇒ (1) Clear. □

Remark 2.15. Consider the ring R = k[[x,y]]
(x)(x,y) where k is a field. Then, R is

Noetherian with the nonzero prime nil-radical Nil(R) = (x) over which the
ideal I = (0) is a strongly quasi J-ideal which is not primary.

Theorem 2.16. Let R be a Noetherian ring which admits a strongly quasi
J-ideal. The following are equivalent:

(1) Every strongly quasi J-ideal of R is prime.
(2) R is a domain with the unique strongly quasi J-ideal (0) of R.

Proof. (1) ⇒ (2) Let I be a strongly quasi J-ideal of R. Then, by hypothesis
I is a prime ideal. As I ⊆ Jac(R), then it is clear that I2 is also a strongly
quasi J-ideal of R and so it is prime. Thus, I2 = I. Since R is Noetherian, by
the Nakayama’s lemma, we get I = (0). Hence, R is a domain and (0) is the
unique strongly quasi J-ideal of R.

(2) ⇒ (1) Clear. □

Theorem 2.17. Let R be a ring which admits a strongly quasi J-ideal. Then,
every strongly quasi J-ideal of R is maximal if and only if R is a field.

Proof. Let I be a strongly quasi J-ideal of R. Since I ⊆ Jac(R) and I is a
maximal ideal, R is a quasi-local ring. Hence, by Theorem 2.11, every proper
ideal of R is maximal. Therefore, R is a field. The converse part is clear. □

Proposition 2.18. Let R be a ring. If {Ii}i∈Ω is a family of strongly quasi
J-ideals, then I := ∩i∈ΩIi is a strongly quasi J-ideal.

Proof. Let a, b ∈ R such that ab ∈ I and b /∈ Jac(R). Since all Ii are strongly
quasi J-ideals of R, we get a2 ∈ Ii (for all i ∈ Ω), and so a2 ∈ I. Thus, I is a
strongly quasi J-ideal. □

3. Change of rings theorems for the strongly quasi J-ideals

Proposition 3.1. Let f : R1 → R2 be a ring epimorphism. Then, the following
hold:

(1) If I1 is a strongly quasi J-ideal of R1 containing Ker(f), then f(I1) is
a strongly quasi J-ideal of R2.

(2) If I2 is a strongly quasi J-ideal of R2 and Ker(f) ⊆ Jac(R1), then
f−1(I2) is a strongly quasi J-ideal of R1.
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Proof. (1) Let x, y ∈ R2 such that xy ∈ f(I1). Then, x = f(a), y = f(b) for
some a, b ∈ R1 (f is an epimorphism). Since Ker(f) ⊆ I1, ab ∈ I1. Moreover, as
I1 is a strongly quasi J-ideal, we get a2 ∈ I1 or b ∈ Jac(R1). Hence, x2 ∈ f(I1)
or y ∈ f(Jac(R1)) ⊆ Jac(R2). Consequently, f(I1) is a strongly quasi J-ideal
of R2.

(2) Let a, b ∈ R1 such that ab ∈ f−1(I2) and b /∈ Jac(R1). First we prove
that f(b) ∈ Jac(R2). By contradiction we assume that f(b) ∈ Jac(R2). Let
c ∈ R1. Then 1R2

− f(b)f(c) is a unit of R2, and so there exits u ∈ R1

such that (1R2 − f(b)f(c))f(u) = 1R2 (since f is an epimorphism). Then,
(1R1

− bc)u−1R1
∈ Ker(f) ⊆ Jac(R1). Hence, (1R1

− bc) is a unit of R1 (which
is true for all c ∈ R1). So, b ∈ Jac(R1), a contradiction. Thus, f(b) ∈ Jac(R2).
On the other hand, since f(ab) = f(a)f(b) ∈ I2 and I2 is a strongly quasi
J-ideal of R2, we conclude that f(a)2 = f(a2) ∈ I2. Hence, a2 ∈ f−1(I2), and
so f−1(I2) is a strongly quasi J-ideal of R1. □

Remark 3.2. The assertion (2) of the previous proposition is not valid if one
drop the hypothesis that the ring homomorphism f : R1 → R2 is surjective or
that Ker(f) ⊆ Jac(R1).

• For the first hypothesis, take for example the monomorphism ι : Z →
Z5; a → a

1 which is not surjective, then (5)5 is a strongly quasi J-ideal

of Z5. However, ι−1(5)5 = (5) is not a strongly quasi J-ideal of Z.
• For the second hypothesis, take for example the epimorphism p : k ×

k → k; (x, y) → x, where k is a field with Ker(p) ̸⊆ Jac(R1). Then, (0)
is a strongly quasi J-ideal of k. However, p−1((0)) = (0)× k = Ker(p)
is not a strongly quasi J-ideal of the ring k × k.

Corollary 3.3. Let K ⊆ I be two ideals of a ring R. Then, I is a strongly
quasi J-ideal of R if and only if K ⊆ Jac(R) and I/K is a strongly quasi
J-ideal of R/K.

Proof. (⇒) Using Proposition 2.3 and applying Proposition 3.1 to the canonical
surjection π : R → R/K, we conclude that K ⊆ I ⊆ Jac(R) and I/K is a
strongly quasi J-ideal of R/K.

(⇐) Applying Proposition 3.1 to the canonical surjection π : R → R/K, we
conclude that I is a strongly quasi J-ideal of R. □

Proposition 3.4. Let S be a multiplicative closed subset of a ring R such that
Jac(S−1R) = S−1Jac(R). If I is a strongly quasi J-ideal of R with S ∩ I = ∅,
then S−1I is a strongly quasi J-ideal of S−1R.

Proof. As S ∩ I = ∅, we have that S−1I ̸= S−1R. Let a
s ,

b
t ∈ S−1R such that

a
s
b
t ∈ S−1I and b

t /∈ Jac(S−1R). Then, uab ∈ I for some u ∈ S and b /∈ Jac(R)

since b
t /∈ S−1Jac(R) = Jac(S−1R). Since I is a strongly quasi J-ideal, we get

u2a2 ∈ I and this yields a2

s2 = a2u2

s2u2 ∈ S−1I. Therefore, S−1I is a strongly quasi

J-ideal of S−1R. □



ON STRONGLY QUASI J-IDEALS OF COMMUTATIVE RINGS 101

Proposition 3.5. Let R be a ring and I be an ideal of R. Then, the following
hold:

(1) R[X] admits a strongly quasi J-ideal if and only if Nil(R) is a prime
ideal of R.

(2) If I[X] is a strongly quasi J-ideal of R[X], then I is a strongly quasi
J-ideal of R.

(3) The ideal (I,X) is never be a strongly quasi J-ideal of R[X].

Proof. (1) It is well known that Jac(R[X]) = Nil(R[X]) = Nil(R)[X]. Hence
by Theorem 2.8, R[X] admits a strongly quasi J-ideal if and only if the exists
a prime ideal P of R[X] contained in Jac(R[X]) if and only if Nil(R)[X] is a
prime ideal of R[X] if and only if Nil(R) is a prime ideal of R.

(2) Suppose that I[X] is a strongly quasi J-ideal of R[X] and let a, b ∈ R
such that ab ∈ I and b /∈ Jac(R). Then, ab ∈ I[X] and b /∈ Jac(R[X]) =
Nil(R)[X]. Hence, a2 ∈ I[X] and so a2 ∈ I. Thus, I is a strongly quasi J-ideal
of R.

(3) Since X /∈ Jac(R[X]), (I,X) ̸⊆ Jac(R[X]), and so (I,X) cannot be a
strongly quasi J-ideal of R[X]. □

Theorem 3.6. Let R be a ring and I be a proper ideal of R. Then, the
following are equivalent:

(1) I[X] is a strongly quasi J-ideal of R[X].

(2) I is a strongly quasi primary ideal of R with
√
I = Nil(R).

(3) For each ideals A and B of R, AB ⊆ I implies that A2 ⊆ I or B ⊆
Nil(R).

(4) For each finitely generated ideals A and B of R, AB ⊆ I implies that
A2 ⊆ I or B ⊆ Nil(R).

Proof. (1) ⇒ (2) Suppose that I[X] is a strongly quasi J-ideal of R[X]. Since

I[X] ⊆ Jac(R[X]) = Nil(R[X]) = Nil(R)[X], we get I ⊆ Nil(R), and so
√
I =

Nil(R). Let a, b ∈ R such that ab ∈ I and b /∈
√
I. Then, ab ∈ I[X] and

b /∈ Nil(R)[X] = Jac(R[X]). Hence, a2 ∈ I[X], and so a2 ∈ I. Thus, I is a

strongly quasi primary ideal of R with
√
I = Nil(R).

(2) ⇒ (3) Follows from [13, Proposition 2.2].
(3) ⇒ (4) Clear.
(4) ⇒ (1) Let f , g ∈ R[X] with fg ∈ I[X] and g ̸∈ Jac(R[X]). We claim

that f2 ∈ I[X]. Assume that f ̸= 0. Following [4, Theorem 1], we have
c(f)c(g)n+1 = c(g)nc(fg), where n = deg(f). Hence, c(f)c(g)n+1 ⊆ I since
c(fg) ⊆ I. Moreover, c(g) ̸⊆ Nil(R) since g /∈ Jac(R[X]) = Nil(R[X]) =
Nil(R)[X]. By Proposition 3.5, Nil(R) is a prime ideal of R, hence c(g)n+1 ̸⊆
Nil(R), and so (c(f))2 ⊆ I. Set f =

∑n
i=0 aiX

i. We have:

f2 =

n∑
k=0

(ak)
2
X2k +

∑
0≤i<j≤n

2aiajX
i+j
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=

n∑
k=0

(ak)
2
X2k +

∑
0≤i<j≤n

[
(ai + aj)

2 − a2i − a2j
]
Xi+j .

Thus, f2 ∈ (c(f))2[X] ⊆ I[X]. Consequently, I[X] is a strongly quasi J-ideal
of R[X]. □

Corollary 3.7. Let R be a Hilbert ring and I be an ideal of R. Then, I[X] is
a strongly quasi J-ideal of R[X] if and only if I is a strongly quasi J-ideal of
R.

Proof. It follows from Theorem 3.6 and Proposition 2.4. □

Proposition 3.8. Let R be a ring, I be an ideal of R, and N ⊆ M be R-
modules. Then, the following hold:

(1) R ∝ M admits a strongly quasi J-ideal if and only if R admits a
strongly quasi J-ideal.

(2) If I ∝ N is a strongly quasi J-ideal of R ∝ M , then I is a strongly
quasi J-ideal of R.

(3) If I is a strongly quasi J-ideal of R such that Jac(R)M ⊆ N , then
I ∝ N is a strongly quasi J-ideal of R ∝ M .

Proof. (1) Note that Jac(R ∝ M) = Jac(R) ∝ M and that the prime ideals of
R ∝ M have the form P ∝ M , where P is a prime ideal of R (by [3, Theorem
3.2]). So, Jac(R ∝ M) contains a prime ideal if and only if Jac(R) contains
a prime ideal. Thus, R ∝ M admits a strongly quasi J-ideal if and only if R
admits a strongly quasi J-ideal (by Theorem 2.8).

(2) Suppose that I ∝ N is a strongly quasi J-ideal of R ∝ M . Let a, b ∈ R
such that ab ∈ I. Then, (a, 0)(b, 0) ∈ I ∝ M . Thus, (a, 0)2 = (a2, 0) ∈ I ∝ M
or (b, 0) ∈ Jac(R ∝ M) = Jac(R) ∝ M . Then, a2 ∈ I or b ∈ Jac(R), and so I
is a strongly quasi J-ideal of R.

(3) Suppose that I is a strongly quasi J-ideal of R such that Jac(R)M ⊆ N .
By [3, Theorem 3.1], I ∝ N is an ideal of R ∝ M since IM ⊆ Jac(R)M ⊆ N .
Now, let (a,m), (b,m′) ∈ R ∝ M such that (a,m)(b,m′) = (ab, am′ + bm) ∈
I ∝ N . Then, ab ∈ I and so a2 ∈ I or b ∈ Jac(R). If b ∈ Jac(R), then
(b,m′) ∈ Jac(R) ∝ M = Jac(R ∝ M). If a2 ∈ I, then a ∈ Jac(R). Hence,
am ∈ N , and so (a,m)2 = (a2, 2am) ∈ I ∝ N . Consequently, I ∝ N is a
strongly quasi J-ideal of R ∝ M . □

Corollary 3.9. Let R be a ring, I be an ideal of R, and M be an R-module.
Then,

(1) I ∝ M is a strongly quasi J-ideal of R ∝ M if and only if I is a
strongly quasi J-ideal of R.

(2) I ∝ Jac(R)M is a strongly quasi J-ideal of R ∝ M if and only if I is
a strongly quasi J-ideal of R.
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