GENERAL LOCAL COHOMOLOGY MODULES AND COMPLEXES OF MODULES OF GENERALIZED FRACTIONS

SANG-CHO CHUNG

0. Introduction

Throughout this paper, R will be a commutative ring (with non-zero identity) and M will denote an R-module.

The modules of generalized fractions were introduced by Sharp and Zakeri [16] and in [17, 3.5] they gave a relationship between modules of generalized fractions and local cohomology modules, that is,

$$U_d[1]^{-d-1}M \cong H^d_{\mathfrak{m}}(M),$$

where (R, \mathfrak{m}) is a Noetherian local ring of dimension d, $U_d[1]$ is the expansion (see [16, 3.2]) of $\{(a_1, \ldots, a_d, 1) \in \mathbb{R}^{d+1} : a_1, \ldots, a_d \text{ forms a system of parameters for } R\}$ and $H^d_{\mathfrak{m}}(M)$ is the local cohomology module of M.

In [5, 2.4], under the same ring as above, when $U_{d'}[1]$ is the expansion of $\{(a_1, \ldots, a_{d'}, 1) \in R^{d'+1} : a_1, \ldots, a_{d'} \text{ forms a system of parameters for } M\}$ where M is a finitely generated R-module of $d' = \dim M$, we had a similar result

$$U_{d'}[1]^{-d'-1}M \cong H_{\mathfrak{m}}^{d'}(M).$$

In [3], Bijan-Zadeh studied a generalization of results of Sharp and Zakeri. He proved that, for a fixed sequence of elements x_1, \ldots, x_n of a ring R,

$$U(x)[1]^{-n-1}M \cong H_{\mathfrak{a}}^{n}(M),$$

Received April 18, 1995.

¹⁹⁹¹ AMS Subject Classification: 13C05, 13D45.

Key words: Generalized fraction, complex, general local cohomology module generalized ideal transform.

This research was supported by the Basic Science Research Institute Program, Ministry of Education of Korea, Project No. BSRI-95-1427.

where $\mathfrak{a} = (x_1, \ldots, x_n)R$ and $U(x)[1] = \{(x_1^{\alpha_1}, \ldots, x_n^{\alpha_n}, 1) \in R^{n+1} : \alpha_i \in N\}$. Moreover, in [3, Theorem], for a given triangular subset U_n of R^n , he obtained

$$U_n[1]^{-n-1}M \cong H^n_{\Phi(U_n)}(M) \cong \varinjlim_{\mathfrak{a} \in \Phi(U_n)} H^n_{\mathfrak{a}}(M),$$

where $\Phi(U_n) = \{(a_1, \ldots, a_n)R : (a_1, \ldots, a_n) \in U_n\}$ and $H^n_{\Phi(U_n)}$ is the *n*-th right derived functor of the general local cohomology functor $L_{\Phi(U_n)}$ (see Definition 1.4 and Example 1.5(2)).

In [19, 5.2.3 and 15, 3.3], Sharp and Yassi established a relationship between the modules of generalized fractions and the generalized ideal transforms (see Definition 1.4), *i.e.*,

$$U_n^{-n}M \cong \varinjlim_{\mathfrak{a} \in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a}, \operatorname{Im} e^{n-1})$$

where $e^{n-1}:U_{n-1}^{-n+1}M\to U_n^{-n}M$ is the R-homomorphism for which $e^{n-1}\left(\frac{m}{(a_1,\ldots,a_{n-1})}\right)=\frac{m}{(a_1,\ldots,a_{n-1},1)}$ for $m\in M$ and $(a_1,\ldots,a_{n-1})\in U_{n-1}$; and

$$U_n^{-n}M \cong \varinjlim_{\mathfrak{a} \in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a}, U_{n-1}[1]^{-n}M)$$

where R is Noetherian and $U_{n-1}[1] = \{(a_1, \ldots, a_{n-1}, 1) \in \mathbb{R}^n : \text{there is } a_n \in \mathbb{R} \text{ such that } (a_1, \ldots, a_n) \in U_n\}.$

Under an arbitrary ring, consider the complex $C(\mathcal{U}, M)$ (see Definition 1.3). In our main results (Theorem 2.2 and 2.4), we investigate the relationship between the modules of generalized fractions $(U_n^{-n}M, U_{n-1}[1]^{-n}M, \text{Im } e^{n-1}, \text{Ker } e^n \text{ and Ker } e^{n-1}/\text{Im } e^{n-2})$ and the general local cohomology modules of such modules.

That is, we have

Ker
$$e^{n-1}/\text{Im } e^{n-2} \cong \bigcup_{(a_1, \dots, a_n) \in U_n} \text{Ann}_{U_{n-1}[1]^{-n}M}(a_1, \dots, a_n)R$$

and

$$U_n[1]^{-n-1}M \cong H^1_{\Phi(U_n)}(\text{Im } e^{n-1}).$$

In particular, under a Noetherian ring, we have for
$$n \geq 1$$

$$U_n[1]^{-n-1}M \cong H^1_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong H^1_{\Phi(U_n)}(\operatorname{Im} e^{n-1});$$

$$U_n^{-n}M \cong \varinjlim_{\mathfrak{a}\in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a},U_n^{-n}M) \cong \varinjlim_{\mathfrak{a}\in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a},\operatorname{Ker} e^n)$$

$$\cong \varinjlim_{\mathfrak{a}\in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a},\operatorname{Im} e^{n-1}) \cong \varinjlim_{\mathfrak{a}\in \Phi(U_n)} \operatorname{Hom}_R(\mathfrak{a},U_{n-1}[1]^{-n}M);$$

and

$$\begin{split} H^{i}_{\Phi(U_n)}(U_n^{-n}M) &\cong H^{i}_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong H^{i}_{\Phi(U_n)}(\operatorname{Im}\,e^{n-1}) \\ &\cong H^{i}_{\Phi(U_n)}(\operatorname{Ker}\,e^n) \text{ for all } i \geq 2. \end{split}$$

The notation and terminology about the modules of generalized fractions follow [16].

1. Preliminaries

We use T to denote matrix transpose and $D_n(R)$ to denote the set of all $n \times n$ lower triangular matrices over R. For $H \in D_n(R)$, |H| denotes the determinant of H. Let N denote the set of positive integers.

DEFINITION 1.1. [16, 2.1]. Let n be a positive integer. A non-empty subset U_n of \mathbb{R}^n is said to be triangular if

- (i) whenever $(a_1, \ldots, a_n) \in U_n$, then $(a_1^{\alpha_1}, \ldots, a_n^{\alpha_n}) \in U_n$ for all choices of positive integers $\alpha_1, \ldots, \alpha_n$; and
- (ii) whenever (a_1, \ldots, a_n) and $(b_1, \ldots, b_n) \in U_n$, then there exist $(c_1, \ldots, c_n) \in U_n$ and $H, K \in D_n(R)$ such that $H[a_1 \ldots a_n]^T = [c_1 \ldots c_n]^T = K[b_1 \ldots b_n]^T$.

LEMMA 1.2. Let R be a ring and M an R-module. Let U_n be a triangular subset of R^n . Suppose (a_1, \ldots, a_n) and (b_1, \ldots, b_n) are elements of U_n such that $H[a_1 \ldots a_n]^T = [b_1 \ldots b_n]^T$ for some $H \in D_n(R)$. Then we have

(1)
$$[16, 2.8] \frac{m}{(a_1, \ldots, a_n)} = \frac{|H|m}{(b_1, \ldots, b_n)} \text{ in } U_n^{-n}M.$$

(2) [16, 3.3(ii) and 15, 2.2] If $m \in (a_1, \ldots, a_{n-1})M$ then $\frac{m}{(a_1, \ldots, a_n)}$ = 0 in $U_n^{-n}M$. In particular, if each element of U_n is a poor M-sequence, then the converse holds.

DEFINITION 1.3. [13, p. 52]. Let R be a ring and M an R-module. A family $\mathcal{U} = (U_i)_{i \geq 1}$ is called a *chain of triangular subsets* on R if the following conditions are satisfied:

- (i) U_i is a triangular subset of R^i for all $i \in N$;
- (ii) $(1) \in U_1$;
- (iii) whenever $(a_1, \ldots, a_i) \in U_i$ with $i \in N$, then $(a_1, \ldots, a_i, 1) \in U_{i+1}$; and
- (iv) whenever $(a_1, \ldots, a_i) \in U_i$ with $1 < i \in N$, then $(a_1, \ldots, a_{i-1}) \in U_{i-1}$.

Each U_i leads to a module of generalized fractions $U_i^{-i}M$ and we can obtain a complex by Lemma 1.2(2);

$$0 \xrightarrow{e^{-1}} M \xrightarrow{e^{0}} U_{1}^{-1}M \xrightarrow{e^{1}} U_{2}^{-2}M \longrightarrow \cdots$$
$$\longrightarrow U_{i}^{-i}M \xrightarrow{e^{i}} U_{i+1}^{-i-1}M \longrightarrow \cdots$$

for which $e^0(m) = \frac{m}{(1)}$ for all $m \in M$ and

$$e^{i}\left(\frac{x}{(a_1,\ldots,a_i)}\right) = \frac{x}{(a_1,\ldots,a_i,1)}$$

for all $i \in N$, $x \in M$ and $(a_1, \ldots, a_i) \in U_i$.

Let $C(\mathcal{U}, M)$ denote the above complex and $H_U^i(M)$ the *i*-th cohomology module of this complex. That is $H_U^i(M) = \operatorname{Ker} e^i/\operatorname{Im} e^{i-1}$.

For a given triangular subset U_n of \mathbb{R}^n , let

 $U_n[1] = \{(a_1, \dots, a_n, 1) \in \mathbb{R}^{n+1} \mid (a_1, \dots, a_n) \in U_n\}$ and

 $U_{n-1}[1] = \{(a_1, \dots, a_{n-1}, 1) \in \mathbb{R}^n : \text{there is } a_n \in \mathbb{R} \text{ such that } (a_1, \dots, a_n) \in U_n\}.$

Then clearly $U_n[1]$ and $U_{n-1}[1]$ are triangular subsets of \mathbb{R}^{n+1} and \mathbb{R}^n respectively. We interpret $U_0[1]^{-1}M=M$ and $U_0^0M=M$.

DEFINITION 1.4. [1, 2.1 and 15, 1.2]. A non-empty set Φ of ideals of R is called a *system of ideals of* R if whenever \mathfrak{a} , $\mathfrak{b} \in \Phi$ there is $\mathfrak{c} \in \Phi$ such that $\mathfrak{c} \subset \mathfrak{ab}$.

Given such a system of ideals Φ , for every R-module M, we define

$$L_{\Phi}(M) = \{ m \in M : m\mathfrak{a} = 0 \text{ for some } \mathfrak{a} \in \Phi \} = \bigcup_{\mathfrak{a} \in \Phi} (0 :_M \mathfrak{a})$$

and

$$G_{\Phi}(M) = \varinjlim_{\mathfrak{a} \in \Phi} \operatorname{Hom}_{R}(\mathfrak{a}, M).$$

Then L_{Φ} and G_{Φ} are additive, left exact functors from the category of all R-modules and R-homomorphisms to itself. The functor L_{Φ} is called the general local cohomology functor with respect to Φ and G_{Φ} the generalized ideal transform determined by Φ , or, more briefly, the Φ -transform.

For any R-module M, the modules $H^i_{\Phi}(M)$ are called general local cohomology modules of M, where H^i_{Φ} is the *i*-th right derived functor of L_{Φ} . That is, by [1, 2.3 and 2, 2.1] we have

$$H^i_\Phi(\)=\varinjlim_{\mathfrak{a}\in\Phi}\operatorname{Ext}^i_R(R/\mathfrak{a},\)=\varinjlim_{\mathfrak{a}\in\Phi}H^i_{\mathfrak{a}}(\).$$

We say that an R-module M is a Φ -torsion module if $L_{\Phi}(M) = M$ [14, 1.4(i)].

EXAMPLE 1.5. (1) $\Phi = \{\mathfrak{a}^i : \mathfrak{a} \text{ is an ideal of } R \text{ and } i \in N\}$ is a system of ideals of R.

(2) [3, Theorem] $\Phi(U_n) = \{(a_1, \ldots, a_n)R : (a_1, \ldots, a_n) \in U_n\}$ is a system of ideals of R, where U_n is a triangular subset of R^n .

Lemma 1.6. Let R be Noetherian and M an R-module. Then we have the following.

- (1) [19, 3.1.6 and 14, 1.4] If M is a Φ -torsion module, then $H^i_\Phi(M)=0$ for all i>0.
- (2) [1, 2.7] If dim M = d, then $H^{i}_{\Phi}(M) = 0$ for all i > d.

PROPOSITION 1.7. Let R be Noetherian and M an R-module. Then we have the following.

- (1) $\operatorname{Supp}(H^i_{\Phi}(M)) \subset \bigcup_{\mathfrak{a} \in \Phi} V(\mathfrak{a}).$
- (2) If $\operatorname{Supp}(M) \subset \bigcup_{\mathfrak{a} \in \Phi} V(\mathfrak{a})$, then $H^i_{\Phi}(M) = 0$ for all i > 0.

Proof. (1) By $[12, p.85 \ 3.13]$ and [9, 35.5] we have

$$\operatorname{Supp}(H^i_\Phi(M)) = \operatorname{Supp}(\varinjlim_{\mathfrak{a} \in \Phi} H^i_{\mathfrak{a}}(M)) \subset \bigcup_{\mathfrak{a} \in \Phi} \operatorname{Supp}(H^i_{\mathfrak{a}}(M)) \subset \bigcup_{\mathfrak{a} \in \Phi} V(\mathfrak{a}).$$

(2) Since M is Φ -torsion module, this follows from Lemma 1.6(1).

LEMMA 1.8. Let R be a ring and M an R-module. Then, in the complex $C(\mathcal{U}, M)$, for $n \geq 0$ we have the following.

- (1) $[\mathbf{6}, 2.4] \operatorname{Supp}(U_{n+1}^{-n-1}M) \subset \operatorname{Supp}(U_n[1]^{-n-1}M) \subset \{\mathfrak{p} \in \operatorname{Supp}(M) : ht_M \mathfrak{p} \geq n\}.$
- (2) $[6, 2.8] \operatorname{Ass}(U_{n+1}^{-n-1}M) = \operatorname{Ass}(\operatorname{Im} e^n) = \operatorname{Ass}(\operatorname{Ker} e^{n+1}).$
- (3) [6, 2.7] For each $\frac{m}{(a_1, \ldots, a_n)} + \text{Im } e^{n-1} \in H_U^n(M)$, there are $(b_1, \ldots, b_{n+1}) \in U_{n+1}$ and $H \in D_n(R)$ such that $H[a_1 \ldots a_n]^T = [b_1 \ldots b_n]^T$ and

$$(b_1,\ldots,b_{n+1})R\subset\left(\operatorname{Im}\,e^{n-1}:\frac{m}{(a_1,\ldots,a_n)}\right).$$

PROPOSITION 1.9. Let R be Noetherian and M an R-module. Let Φ be a system of ideals of R and $d = \dim M$. Then, in the complex $C(\mathcal{U}, M)$, for $n \geq 0$ we have the following.

- (1) $H^{i}_{\Phi}(\text{Ker }e^{n}/\text{Im }e^{n-1}) = 0$ for all i > d-n.
- (2) $H_{\Phi}^{\hat{i}}(U_{n+1}^{-n-1}M) = H_{\Phi}^{\hat{i}}(U_n[1]^{-n-1}M) = H_{\Phi}^{\hat{i}}(\operatorname{Ker} e^{n+1})$ = $H_{\Phi}^{\hat{i}}(\operatorname{Im} e^n) = 0$ for all i > d - n.

Proof. By Lemma 1.8 we have Supp(Im e^n) = Supp(Ker e^{n+1}) = Supp($U_{n+1}^{-n-1}M$) \subset Supp($U_n[1]^{-n-1}M$) \subset { $\mathfrak{p} \in$ Supp(M) : $ht_M\mathfrak{p} \geq n$ } and Supp(Ker $e^n/\text{Im }e^{n-1}$) \subset Supp($U_n[1]^{-n-1}M$) by [6, 2.8(5)]. Therefore the results follow from Lemma 1.6(2). \square

REMARK. Let R be Noetherian and M a finitely generated R-module. In the complex $C(\mathcal{U}, M)$, assume that $\mathcal{U} = ((U_s)_i)_{i \geq 1}$, $((U_h)_i)_{i \geq 1}$, $((U_r)_i)_{i \geq 1}$ or $((U_f)_i)_{i \geq 1}$ where R is local in the case $((U_f)_i)_{i \geq 1}$ (see [6, Example 1.3]). Then we have

$$H^i_{\Phi}(\operatorname{Ker} e^n/\operatorname{Im} e^{n-1})=0$$
 for all $i\geq d-n$.

For, from Lemma 1.8(3) we have easily $dim(\operatorname{Ker} e^{n}/\operatorname{Im} e^{n-1}) < d-n$.

PROPOSITION 1.10. Let R be a ring and M an R-module. For a fixed positive integer n, assume U_n is a triangular subsets of R^n . Let $\mathrm{Ass}_f(U_n^{-n}M) = \{\mathfrak{q} \in \mathrm{Supp}(M) : \mathfrak{q} \text{ is a weakly associated prime ideal of } U_n^{-n}M \text{ in the sense of } [4, p.289 \text{ Exercise 17}] \}$ and $\mathfrak{p} \in \mathrm{Ass}_f(U_n^{-n}M)$,

that is, \mathfrak{p} is a minimal prime over (0:x) for some $0 \neq x \in U_n^{-n}M$. Then we have, for all $(a_1, \ldots, a_n) \in U_n$,

$$(a_1,\ldots,a_n)R\not\subset\mathfrak{p}.$$

In particular, for all $0 \neq y \in U_n^{-n}M$, we have $(a_1, \ldots, a_n)R \not\subset (0:y)$.

Proof. By assumption there is $\frac{m}{(b_1,\ldots,b_n)}\in U_n^{-n}M$ such that

$$\left(0:\frac{m}{(b_1,\ldots,b_n)}\right)\subset \mathfrak{p}\quad \text{ and }\quad \sqrt{\left(0:\frac{m}{(b_1,\ldots,b_n)}\right)_{\mathfrak{p}}}=\mathfrak{p}R_{\mathfrak{p}}.$$

Suppose that $(a_1, \ldots, a_n)R \subset \mathfrak{p}$ for some $(a_1, \ldots, a_n) \in U_n$. Then by the definition of the triangular subsets, there is $(c_1, \ldots, c_n) \in U_n$ and $H, K \in D_n(R)$ such that $H[a_1 \ldots a_n]^T = [c_1 \ldots c_n]^T = K[b_1 \ldots b_n]^T$. Hence we obtain $(c_1, \ldots, c_n)R \subset \mathfrak{p}$. By Lemma 1.2(1) we have

$$\sqrt{\left(0:_{R_{\mathfrak{p}}}\frac{m}{(b_1,\ldots,b_n)}\right)}=\sqrt{\left(0:_{R_{\mathfrak{p}}}\frac{|\mathcal{K}|m}{(c_1,\ldots,c_n)}\right)}=\mathfrak{p}R_{\mathfrak{p}},$$

where $\frac{m}{(b_1,\ldots,b_n)} = \frac{|\mathbf{K}|m}{(c_1,\ldots,c_n)}$ is regarded as the canonical image in the $R_{\mathfrak{p}}$ -module. Since $c_n \in \mathfrak{p}$, there are $r \in R \setminus \mathfrak{p}$ and $t \in N$ such that

$$\frac{c_n{}^t r |\mathbf{K}| m}{(c_1, \dots, c_n)} = 0.$$

Then by [17, 2.1] we get $\frac{r|\mathbf{K}|m}{(c_1,\ldots,c_n)} = 0$. That is, we have the following contradiction.

$$r \in \left(0: \frac{|\mathcal{K}|m}{(c_1, \ldots, c_n)}\right) = \left(0: \frac{m}{(b_1, \ldots, b_n)}\right) \subset \mathfrak{p}. \ \Box$$

From now on, let $\Phi_U = (\Phi(U_i))_{i \geq 1}$ be the family of systems of ideals of R induced by a chain $\mathcal{U} = (U_i)_{i \geq 1}$ of triangular subsets on R as in Example 1.5(2).

REMARK. In [6, 2.8], using Proposition 1.10, we have the same results with $\operatorname{Ass}_f(U_{n+1}^{-n-1}M)$ instead of $\operatorname{Ass}(U_{n+1}^{-n-1}M)$.

LEMMA 1.11. Let R be a ring and M an R-module. Let $\Phi_U = (\Phi(U_i))_{i\geq 1}$ be as above. Then, in the complex $C(\mathcal{U}, M)$, we have the following.

- (1) For $1 \le n \le i$, we have $H^0_{\Phi(U_i)}(U_n^{-n}M) = H^0_{\Phi(U_i)}(\text{Ker } e^n) = H^0_{\Phi(U_i)}(\text{Im } e^{n-1}) = 0.$
- (2) For $1 \le i < n$, we have $U_n^{-n}M$, $\text{Im } e^{n-1}$, $\text{Ker } e^n, U_{n-1}[1]^{-n}M$ and $H_U^{n-2}(M)$ are $\Phi(U_i)$ -torsion modules.

Proof. (1) Since Im $e^{n-1} \subset \text{Ker } e^n \subset U_n^{-n}M$, the results follow immediately from Proposition 1.10.

(2) Since by Lemma 1.2(2) for all $\frac{m}{(a_1, \ldots, a_n)} \in U_n^{-n} M$

$$(a_1,\ldots,a_i)R\cdot\frac{m}{(a_1,\ldots,a_i,\ldots,a_n)}=0$$

where the ideal $(a_1, \ldots, a_i)R \in \Phi(U_i)$ is induced from $(a_1, \ldots, a_n) \in U_n$, we get $U_n^{-n}M$, Im e^{n-1} and Ker e^n are $\Phi(U_i)$ -torsion modules.

Next, using the same method, we have $U_{n-1}[1]^{-n}M$ is a $\Phi(U_i)$ -torsion module.

For $H_U^{n-2}(M)$, by Lemma 1.8(3) for all $x \in H_U^{n-2}(M)$ we have

$$(a_1,\ldots,a_{n-1})R\subset(0:x)$$

for some $(a_1, \ldots, a_{n-1})R \in \Phi(U_{n-1})$. Hence $H_U^{n-2}(M)$ is a $\Phi(U_i)$ -torsion module for i < n. \square

COROLLARY 1.12. Let R be Noetherian and M an R-module. Let $\Phi_U = (\Phi(U_i))_{i \geq 1}$ be as above. Then, in the complex $C(\mathcal{U}, M)$, we have the following.

- (1) If M is a $\Phi(U_i)$ -torsion module, then $G_{\Phi(U_i)}(M) = 0$.
- (2) For $1 \leq i < n$, we have $G_{\Phi(U_i)}(U_n^{-n}M) = G_{\Phi(U_i)}(\operatorname{Ker} e^n) = G_{\Phi(U_i)}(\operatorname{Im} e^{n-1}) = G_{\Phi(U_i)}(U_{n-1}[1]^{-n}M) = G_{\Phi(U_i)}(H_U^{n-2}(M)) = 0.$

Proof. (1) By [19, 3.1.10] we have the following exact sequence;

$$0 \longrightarrow M/L_{\Phi(U_i)}(M) \longrightarrow G_{\Phi(U_i)}(M) \longrightarrow H^1_{\Phi(U_i)}(M) \longrightarrow 0.$$

Hence the assertion follows from Lemma 1.6(1).

(2) These immediately follow from (1) and Lemma 1.11(2). \Box

2. Main results

LEMMA 2.1. Let R be a ring and M an R-module. Let $\Phi_U =$ $(\Phi(U_i))_{i\geq 1}$ be the family of systems of ideals of R induced by a chain $\mathcal{U} = (U_i)_{i \geq 1}$ of triangular subsets on R. Then, in the complex $C(\mathcal{U}, M)$, for $n \geq 1$ we have the following.

- (1) [3, Theorem] $U_n[1]^{-n-1}M \cong H^n_{\Phi(U_n)}(M)$.
- (2) $[7, 3.3] U_n[1]^{-n-1}M \cong U_n^{-n}M/\text{Im } e^{n-1}$.
- (3) [19, 3.3.8] $U_n^{-n}M \cong G_{\Phi(U_n)}(\operatorname{Im} e^{n-1})$

THEOREM 2.2. Let R be a ring and M an R-module. Let $\Phi_U =$ $(\Phi(U_i))_{i\geq 1}$ be the family of systems of ideals of R induced by a chain $\mathcal{U} = (U_i)_{i>1}$ of triangular subsets on R. Then, in the complex $C(\mathcal{U}, M)$, for $n \geq 1$ we have the following.

- (1) $H_U^{n-1}(M) \cong \bigcup_{(a_1,\dots,a_n)\in U_n} \operatorname{Ann}_{U_{n-1}[1]^{-n}M}(a_1,\dots,a_n)R.$ (2) $U_n[1]^{-n-1}M \cong H^1_{\Phi(U_n)}(\operatorname{Im} e^{n-1}).$

Proof. (1) Consider the following exact sequence

$$0 \longrightarrow \operatorname{Ker} e^{n-1}/\operatorname{Im} e^{n-2} \longrightarrow U_{n-1}^{-n+1}M/\operatorname{Im} e^{n-2}$$
$$\longrightarrow U_{n-1}^{-n+1}M/\operatorname{Ker} e^{n-1} \longrightarrow 0.$$

Since Ker $e^{n-1}/\text{Im }e^{n-2}\cong H^{n-1}_U(M), U^{-n+1}_{n-1}M/\text{Im }e^{n-2}\cong U_{n-1}[1]^{-n}M$ by Lemma 2.1(2) and $U_{n-1}^{-n+1}M/\mathrm{Ker}\ e^{n-1}\cong\mathrm{Im}\ e^{n-1},$ we have the following long exact sequence

$$(*) \\ 0 \longrightarrow H^{0}_{\Phi(U_{n})}(H^{n-1}_{U}(M)) \longrightarrow H^{0}_{\Phi(U_{n})}(U_{n-1}[1]^{-n}M) \\ \longrightarrow H^{0}_{\Phi(U_{n})}(\operatorname{Im} e^{n-1}) \longrightarrow H^{1}_{\Phi(U_{n})}(H^{n-1}_{U}(M)) \\ \longrightarrow H^{1}_{\Phi(U_{n})}(U_{n-1}[1]^{-n}M) \longrightarrow H^{1}_{\Phi(U_{n})}(\operatorname{Im} e^{n-1}) \longrightarrow \cdots.$$

Since $H_U^{n-1}(M)$ is a $\Phi(U_n)$ -torsion module and $H_{\Phi(U_n)}^0(\operatorname{Im} e^{n-1}) = 0$ by Lemma 1.11, we easily have the conclusion.

(2) From [19, 3.1.10], we have the following exact sequence

$$0 \longrightarrow \operatorname{Im} e^{n-1}/H^0_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) \longrightarrow G_{\Phi(U_n)}(\operatorname{Im} e^{n-1})$$
$$\longrightarrow H^1_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) \longrightarrow 0.$$

Since $H^0_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) = 0$ by Lemma 1.11(1) and $G_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) \cong U_n^{-n}M$ by Lemma 2.1(3), we have

$$H^1_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) \cong U_n^{-n}M/\operatorname{Im} e^{n-1} \cong U_n[1]^{-n-1}M.$$

by Lemma 2.1(2). \Box

The next Exactness theorem was proved by Sharp and Zakeri [18, 3.3] under the condition of a Noetherian ring and O'carroll [11, 3.1] gave a simple proof for an arbitrary ring. We had shown a refinement of the result of O'carroll [6, 2.13]. We describe another proof of this Exactness theorem using Theorem 2.2(1).

COROLLARY 2.3. Let R be a ring and M an R-module. Let $\mathcal{U} = (U_i)_{i\geq 1}$ be a chain of triangular subsets on R. Then $C(\mathcal{U}, M)$ is exact if and only if for all $i\geq 1$ each element of U_i is a poor M-sequence.

Proof. (\Rightarrow) We prove by induction on i. In case i=1, by the hypothesis and Theorem 2.2(1), we have $H_U^0(M) \cong \bigcup_{(a_1) \in U_1} \operatorname{Ann}_{U_0[1]^{-1}M}(a_1) = \bigcup_{(a_1) \in U_1} \operatorname{Ann}_M(a_1) = 0$. Hence each element of U_1 is a poor M-sequence.

Suppose that each element of U_{i-1} is a poor M-sequence and hence each element of $U_{i-1}[1]$ is a poor M-sequence. Note that by Lemma 1.2(2) for all $(b_1, \ldots, b_{i-1}) \in U_{i-1}$

$$\frac{m}{(b_1,\ldots,b_{i-1},1)}\neq 0 \text{ in } U_{i-1}[1]^{-i}M \iff m\notin (b_1,\ldots,b_{i-1})M.$$

Let $(a_1, \ldots, a_i) \in U_i$. Then we may assume that $\{a_1, \ldots, a_{i-1}\}$ is an M-sequence. Therefore it is sufficient to show that if $m \notin (a_1, \ldots, a_{i-1})M$, then $a_i m \notin (a_1, \ldots, a_{i-1})M$.

Assume that $m \notin (a_1, \ldots, a_{i-1})M$. Hence by the above note we have $\frac{m}{(a_1, \ldots, a_{i-1}, 1)} \neq 0$ in $U_{i-1}[1]^{-i}M$.

On the other hand, by the hypothesis and Theorem 2.2(1) we have

$$H_U^{i-1}(M) \cong \bigcup_{(b_1,\dots,b_i)\in U_i} \operatorname{Ann}_{U_{i-1}[1]^{-i}M}(b_1,\dots,b_i)R = 0.$$

Hence we have $(a_1, \ldots, a_i)R \cdot \frac{m}{(b_1, \ldots, b_{i-1}, 1)} \neq 0$ for all non-zero element $\frac{m}{(b_1, \ldots, b_{i-1}, 1)}$ of $U_{i-1}[1]^{-i}M$. In particular, we have

$$\frac{a_i m}{(a_1, \dots, a_{i-1}, 1)} \neq 0$$
 for $\frac{m}{(a_1, \dots, a_{i-1}, 1)} \in U_{i-1}[1]^{-i}M$,

since $(a_1,\ldots,a_{i-1})R \cdot \frac{m}{(a_1,\ldots,a_{i-1},1)} = 0$ by Lemma 1.2(2). Hence we obtain $a_i m \notin (a_1,\ldots,a_{i-1})M$ by the above note.

 (\Leftarrow) By Theorem 2.2(1), it is enough to show that

$$\bigcup_{(a_1,\ldots,a_i)\in U_i} \operatorname{Ann}_{U_{i-1}[1]^{-i}M}(a_1,\ldots,a_i)R = 0 \quad \text{ for all } i\geq 1.$$

Assume that, for some $0 \neq \frac{m}{(b_1,\ldots,b_{i-1},1)} \in U_{i-1}[1]^{-i}M$ and $(a_1,\ldots,a_i) \in U_i$,

$$(a_1,\ldots,a_i)R \cdot \frac{m}{(b_1,\ldots,b_{i-1},1)} = 0$$
 in $U_{i-1}[1]^{-i}M$.

Then from Lemma 1.2(2) we have, in $U_i^{-i}M$,

$$\frac{m}{(b_1,\ldots,b_{i-1},1)} \neq 0$$
 and $(a_1,\ldots,a_i)R$ $\frac{m}{(b_1,\ldots,b_{i-1},1)} = 0.$

On the other hand, by the definition of triangular subset there are $(c_1, \ldots, c_i) \in U_i$ and H, K $\in D_i(R)$ such that $H[a_1 \ldots a_i]^T = [c_1 \ldots c_i]^T = K[b_1 \ldots b_{i-1} 1]^T$, since $(b_1, \ldots, b_{i-1}, 1) \in U_i$. Hence we have $(c_1, \ldots, c_i)R \subset (a_1, \ldots, a_i)R$ and then

$$(c_1, \ldots, c_i)R \cdot \frac{m}{(b_1, \ldots, b_{i-1}, 1)} = 0$$
 in $U_i^{-i}M$.

In particular,

$$rac{c_i m}{(b_1, \dots, b_{i-1}, 1)} = rac{c_i |\mathbf{K}| m}{(c_1, \dots, c_{i-1}, c_i)} = 0$$
 in $U_i^{-i} M$

by Lemma 1.2(1). Therefore we get $c_i|\mathbf{K}|m \in (c_1,\ldots,c_{i-1})M$ by Lemma 1.2(2). Hence we obtain $|\mathbf{K}|m \in (c_1,\ldots,c_{i-1})M$, since $\{c_1,\ldots,c_i\}$ is a poor M-sequence. This leads to the following contradiction;

$$\frac{m}{(b_1, \dots, b_{i-1}, 1)} = \frac{|\mathbf{K}|m}{(c_1, \dots, c_{i-1}, c_i)} = 0 \text{ in } U_i^{-i}M$$

by Lemma 1.2(2). \square

THEOREM 2.4. Let R be Noetherian and M an R-module. Let $\Phi_U = (\Phi(U_i))_{i\geq 1}$ be the family of systems of ideals of R induced by a chain $\mathcal{U} = (U_i)_{i\geq 1}$ of triangular subsets on R. Then, in the complex $C(\mathcal{U}, M)$, for $n \geq 1$ we have the following.

- (1) $U_n[1]^{-n-1}M \cong H^1_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong H^1_{\Phi(U_n)}(\operatorname{Im} e^{n-1}).$
- (2) $H^1_{\Phi(U_n)}(U_n^{-n}M) = 0.$
- (3) Im $e^n \cong H^1_{\Phi(U_n)}(\operatorname{Ker} e^n)$.
- (4) $U_n^{-n}M \cong G_{\Phi(U_n)}(U_n^{-n}M) \cong G_{\Phi(U_n)}(\operatorname{Ker} e^n)$ $\cong G_{\Phi(U_n)}(\operatorname{Im} e^{n-1}) \cong G_{\Phi(U_n)}(U_{n-1}[1]^{-n}M).$
- (5) $H^{i}_{\Phi(U_{n})}(U_{n-1}[1]^{-n}M) \cong H^{i}_{\Phi(U_{n})}(\operatorname{Im} e^{n-1}) \cong H^{i}_{\Phi(U_{n})}(U_{n}^{-n}M)$ $\cong H^{i}_{\Phi(U_{n})}(\operatorname{Ker} e^{n}), \text{ for all } i \geq 2.$
- (6) $0 \longrightarrow H_U^n(M) \longrightarrow H_{\Phi(U_{n+1})}^1(\operatorname{Im} e^{n-1}) \longrightarrow H_{\Phi(U_{n+1})}^1(\operatorname{Ker} e^n) \longrightarrow 0$ is a short exact sequence.
- (7) $H^{i}_{\Phi(U_{n+1})}(\operatorname{Im} e^{n-1}) \cong H^{i}_{\Phi(U_{n+1})}(\operatorname{Ker} e^{n}), \text{ for all } i \geq 2.$

Proof. ((1) and the first isomorphism of (5)) For (1), by Theorem 2.2(2), it is enough to show that

$$H^1_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong H^1_{\Phi(U_n)}(\text{Im } e^{n-1}).$$

But this and the first isomorphism of (5) follow from the above long exact sequence (*) and Lemma 1.6(1), since $H_U^{n-1}(M)$ is a $\Phi(U_n)$ -torsion module.

((2) and the second isomorphism of (5)) Consider the following short exact sequence

where the isomorphism follows from Lemma 2.1(2) again. Then, since $U_n[1]^{-n-1}M$ is a $\Phi(U_n)$ -torsion module and $H^0_{\Phi(U_n)}(U_n^{-n}M)=0$ by Lemma 1.11, using the long exact sequence induced from the above short exact sequence, we have the second isomorphism of (5) and the following short exact sequence

$$0 \longrightarrow U_n[1]^{-n-1}M \longrightarrow H^1_{\Phi(U_n)}(\operatorname{Im}\, e^{n-1}) \longrightarrow H^1_{\Phi(U_n)}(U_n^{-n}M) \longrightarrow 0.$$

Then, from (1) and the above short exact sequence, we have $H^1_{\Phi(U_n)}(U_n^{-n}M)=0$.

((3) and the third isomorphism of (5)) From (2) and the following short exact sequence

$$0 \longrightarrow \operatorname{Ker} e^{n} \longrightarrow U_{n}^{-n}M \longrightarrow \operatorname{Im} e^{n} \longrightarrow 0,$$

we have the results by means of the long exact sequence induced by this short exact sequence, since Im e^n is a $\Phi(U_n)$ -torsion module (Lemma 1.11(2)) and $H^0_{\Phi(U_n)}(U_n^{-n}M) = 0$ (Lemma 1.11(1)).

(4) By [15, p. 176], we have the following exact sequence

$$(**) \qquad 0 \longrightarrow L_{\Phi(U_n)}(U_n^{-n}M) \longrightarrow U_n^{-n}M$$
$$\longrightarrow G_{\Phi(U_n)}(U_n^{-n}M) \longrightarrow H^1_{\Phi(U_n)}(U_n^{-n}M) \longrightarrow 0.$$

From the above sequence, we have

$$U_n^{-n}M \cong G_{\Phi(U_n)}(U_n^{-n}M),$$

since $L_{\Phi(U_n)}(U_n^{-n}M) = H^1_{\Phi(U_n)}(U_n^{-n}M) = 0$ by (2) and Lemma 1.11(1).

Next, since $L_{\Phi(U_n)}(\text{Ker }e^n)=0$ and $H^1_{\Phi(U_n)}(\text{Ker }e^n)\cong \text{Im }e^n$ by (3), from the above sequence (**) with $U_n^{-n}M$ replaced by Ker e^n we have the following exact sequence

$$0 \longrightarrow \operatorname{Ker} e^n \longrightarrow G_{\Phi(U_n)}(\operatorname{Ker} e^n) \longrightarrow \operatorname{Im} e^n \longrightarrow 0.$$

Hence we get

$$G_{\Phi(U_n)}(\operatorname{Ker} e^n)/\operatorname{Ker} e^n \cong \operatorname{Im} e^n \cong U_n^{-n}M/\operatorname{Ker} e^n.$$

That is $U_n^{-n}M \cong G_{\Phi(U_n)}(\operatorname{Ker} e^n)$.

The third isomorphism is Lemma 2.1(3).

For the last isomorphism, using [19, 3.1.10] again, we have the following exact sequence

$$0 \longrightarrow U_{n-1}[1]^{-n}M/L_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \longrightarrow G_{\Phi(U_n)}(U_{n-1}[1]^{-n}M)$$
$$- \longrightarrow H^1_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \longrightarrow 0.$$

On the other hand, we have

$$U_{n-1}[1]^{-n}M/L_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong \text{Im } e^{n-1}$$

by Lemma 2.1(2) and Theorem 2.2(1). We also get

$$H^1_{\Phi(U_n)}(U_{n-1}[1]^{-n}M) \cong U_n[1]^{-n-1}M \cong U_n^{-n}M/\text{Im }e^{n-1}$$

by (1) and Lemma 2.1(2). Hence by the five lemma we have

$$U_n^{-n}M \cong G_{\Phi(U_n)}(U_{n-1}[1]^{-n}M).$$

((6) and (7)) From the following short exact sequence

$$0 \longrightarrow \operatorname{Im} e^{n-1} \longrightarrow \operatorname{Ker} e^n \longrightarrow H_U^n(M) \longrightarrow 0$$

we have the results, since $H_U^n(M)$ is a $\Phi(U_{n+1})$ -torsion module and $H_{\Phi(U_{n+1})}^0(\text{Ker }e^n)=0$ by Lemma 1.11. \square

REMARK. The last proof of Theorem 2.4(4) is another simple proof of [19, 5.2.3] and [15, 3.3].

COROLLARY 2.5. Let R and M be as above. Then for $n \geq 1$ we have the following.

$$\begin{split} H^n_U(M) &= 0 \Leftrightarrow H^1_{\Phi(U_{n+1})}(\operatorname{Im} \, e^{n-1}) \hookrightarrow H^1_{\Phi(U_{n+1})}(\operatorname{Ker} \, e^n) \\ &\Leftrightarrow H^1_{\Phi(U_{n+1})}(\operatorname{Im} \, e^{n-1}) \cong H^1_{\Phi(U_{n+1})}(\operatorname{Ker} \, e^n) \end{split}$$

Proof. These immediately follow from Theorem 2.4(6). \Box

References

- 1. M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc. (2) 19 (1979), 402-410.
- M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), 173 – 181.
- 3. M. H. Bijan-Zadeh, Modules of generalized fractions and general local cohomology modules, Arch. Math., 48 (1987), 58-62.
- 4. N. Bourbaki, Commutative algebra, Addison-Wesley publishing company, 1972.
- 5. S. C. Chung, Associated prime ideals and isomorphisms of modules of generalized fractions, Math. J. Toyama Univ., 17 (1994), 175-205.
- S. C. Chung, Complexes of Cousin type and modules of generalized fractions, Nagoya Math. J., 136 (1994), 17-34.
- G. J. Gibson and L. O'carroll, Direct limit systems, generalized fractions and complexes of Cousin type, J. Pure Appl. Algebra, 54 (1988), 249-259.
- 8. M. A. Hamieh and R. Y. Sharp, Krull dimension and generalized fractions, Proc. Edinburgh Math. Soc., 28 (1985), 349-353.
- 9. M. Herrmann, S. Ikeda and U. Orbanz, Equimultiplicity and blowing up, Springer, 1988.
- 10. H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
- L. O'carroll, On the generalized fractions of Sharp and Zakeri, J. London Math. Soc. (2) 28 (1983), 417-427.
- 12. A. M. Riley, Cousin complexes of modules of generalized fractions, Ph. D. Thesis, University of Sheffield (1983).
- A. M. Riley, R. Y. Sharp and H. Zakeri, Cousin complexes and generalized fractions, Glasgow Math. J., 26 (1985), 51-67.
- R. Y. Sharp and P. Schenzel, Cousin complexes and generalized Hughes complexes, Proc. London Math. Soc. (3), 68 (1994), 499-517.
- 15. R. Y. Sharp and M. Yassi, Generalized fractions and Hughes' grade-theoretic analogue of the Cousin complex, Glasgow Math. J, 32 (1990), 173-188.
- R. Y. Sharp and H. Zakeri, Modules of generalized fractions, Mathematika, 29 (1982), 32-41.
- 17. R. Y. Sharp and H. Zakeri, Local cohomology and modules of generalized fractions, Mathematika, 29 (1982), 296-306.
- 18. R. Y. Sharp and H. Zakeri, Modules of generalized fractions and balanced big Cohen-Macaulay modules, Commutative Algebra: Durham 1981, London Math. Soc. Lecture Note Ser., 72 (Cambridge University Press, 1982), 61-82.
- 19. M. Yassi, The generalized Hughes complex and modules of generalized fractions, Ph. D. Thesis, University of Sheffield (1989).

Department of Mathematics Chungnam National University Taejon 305-764, Korea