The Prime Avoidance Lemma Revisited

Omid Ali Shahny Karamzadeh
Department of Mathematics, Chamran University, Ahvaz, Iran
e-mail: karamzadeh@ipm.ir

Abstract. We show that the above lemma and its well-known refinement are valid, in a general setting, in non-commutative rings. Some interesting consequences are also observed.

The above lemma is in every single text book on commutative algebra, but not even a single book on non-commutative algebra, as yet (except [12, Proposition 2.12.7], where the validity of a special variant of this lemma is shown), proves it for non-commutative rings. We recall that, in the proof of [7, Proposition 2], which is in fact the proof of the converse of the Generalized Principal Ideal Theorem of Krull for non-commutative rings, see also [5, Theorem 153], we invoked the lemma for the non-commutative case, even without mentioning it, and gave no proof for it (note, it seems (at least to us) that the lemma for non-commutative rings was overlooked in the literature, at that time, and although I knew of a proof for a generalization of this lemma then, but did not present it in [7], on purpose, for the reason that we will see, shortly). Let R be a ring with identity, if S is a subring of R without containing the identity of R, we say that S is a subring-1 (see [4, Chapter 16]). The above lemma states that, if $P_{1}, P_{2}, \ldots, P_{n}$ are ideals of a commutative ring R with identity such that at most two of the P_{i} 's are not prime and S is a subring-1 of R contained in $P_{1} \cup P_{2} \cup \ldots \cup P_{n}$, then $S \subseteq P_{k}$ for some P_{k} (note, in most cases S is an ideal). Without any doubt, as it is rightly mentioned in [13], the Prime Avoidance Lemma is one of the fundamental cornerstones of commutative algebra. Its numerous applications in the field, makes one surely claim that no one working in the commutative algebra can do without it. The lemma for commutative rings goes back to a 1957 paper by McCoy, and Kaplansky generalized it in his 1974 book on commutative rings, see [4], [5], respectively. The reader might consult ([4, Chapter 16]), [9] and [11]) for a short history and some variations of this lemma. There is also a very useful refinement of the lemma, which says that whenever $P_{1}, P_{2}, \ldots, P_{n}$ are prime ideals of the commutative ring R and I is an ideal of $R, a \in R$ with $a R+I \nsubseteq \bigcup_{i=1}^{n} P_{i}$, then $a+c \notin \bigcup_{i=1}^{n} P_{i}$ for some $c \in I$ (equivalently, $a+I \subseteq \bigcup_{i=1}^{n} P_{i}$
implies that $I \cup\{a\} \subseteq P_{i}$ for some $i \geq 1$), see ([11], Theorem 3.64). There are also the Sharp-Vamos prime avoidance theorems for noetherian complete local rings for countable prime ideals, stated as 16.7 A and 16.7 B in [4], see also [13], [10]. We have extended the latter result to complete noetherian semi-local rings in [8], for some purpose. Our aim, in this short note, is to generalize the Prime Avoidance Lemma and its refinement to non-commutative rings and obtain some new and interesting consequences. Let us, without further ado, make some definitions. If $S, P_{1}, P_{2}, \ldots, P_{n}$ are subsets of a ring R such that $S \subseteq \bigcup_{i=1}^{n} P_{i}$ implies that S is contained in the union of a smaller number of P_{i} 's, we shall say that $S \subseteq \bigcup_{i=1}^{n} P_{i}$ is reducible. Let S be a subring-1 of a ring R, then S is called prime preserving with respect to $\bigcup_{i=1}^{n} P_{i}$, where each P_{i} is an ideal in R, if $S \cap P_{i}$ is a prime ideal in S whenever P_{i} is prime in R (e.g., any subring-1 of a commutative ring, or even of a right (left) duo ring (i.e., each right (left) ideal is two sided)). Finally, if S is a subring - 1 of a ring R, then S is said to be a right (left) ideal with respect to a subset T of R if $S T \subseteq S(T S \subseteq S$) (e.g., any right (left) ideal of R). Before stating our results, we should remind the reader that there have also been some generalizations of this lemma to prime submodules, see [3], [1] and [2]. Noting that the prime submodules are more general than the prime ideals and, in particular, the latter article deals with the prime submodules over non-commutative rings, however, non of our results can be deduced from these prime submodule versions of the lemma, in any way.

We should remind the reader that the following proof, which is given for a general form of the above lemma, is nothing but the trivial proof of the fact that no union of two noncomparable subgroups in any group can be a subgroup.

Theorem A(Prime Avoidance Lemma). Suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are ideals of a ring R and S is a subring-1 of R with $S \subseteq \bigcup_{i=1}^{n} P_{i}$. If at most two of the P_{i} 's are not prime and S is either prime preserving or a right (left) ideal with respect to $\bigcup_{i=1}^{n} P_{i}$, then $S \subseteq \bigcup_{i=1}^{n} P_{i}$ is reducible. In particular, $S \subseteq P_{i}$ for some P_{i}.
Proof. Let $S \subseteq \bigcup_{i=1}^{n} P_{i}$ be irreducible and obtain a contradiction. Clearly, $S=\bigcup_{i=1}^{n} Q_{i}$, where $Q_{i}=S \cap P_{i}$, is irreducible. Hence, we can infer that there exist $x \in Q_{1} \backslash \bigcup_{i=2}^{n} Q_{i}$ and $y \in Q_{2} Q_{3} \ldots Q_{n} \backslash Q_{1}$ (note, if $n=2, x, y$ exist even if P_{1}, P_{2} are not prime and if $n \geq 3$, then we may assume that P_{1} is prime and hence, in this case, x, y exist too). But $x+y \in S \backslash Q_{i}$ for all $i \geq 1$, which is absurd. The final part is now evident.

Next, we should emphasize that, our statement of the refinement of the lemma,
which follows, is stronger than the one in the commutative case. We note that our proof of this refinement, in contrast to the usual proof in the commutative case, makes no use of the Prime Avoidance Lemma (cf. [11, Theorem 3.64], or [9]). Finally, we should also admit that we found this proof a very long time ago (see [6, p. 87]), but did not publish it (because we could not get rid of of this constant nagging feeling that this cannot be new). However my searches, after all these years, turned up nothing.

We should also emphasis that in the next result, which is the refinement of the lemma, usually in the commutative case, all P_{i} 's are taken to be prime.

Theorem B. Let S be a subring-1 of a ring R which is a right (left) ideal with respect to $\bigcup_{i=1}^{n} P_{i}$, where each P_{i} is an ideal of R such that at most one of P_{i} 's is not prime. If T is a subset of R with $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$, then there exists $t \in T$ such that $S \cup\{t\} \subseteq P_{i}$ for some P_{i}.
Proof. For $n=1$, we note that $S \cup\{t\} \subseteq P_{1}$ for all $t \in T$, even if P_{1} is not prime. Hence, let $n \geq 2$ and we may assume that P_{1} is prime and $P_{i} \nsubseteq P_{j}$ for $i \neq j$. Now by induction we may suppose that $S+T \nsubseteq \bigcup_{i=2}^{n} P_{i}$. Hence there are $x \in S, t \in T$ with $x+t \in P_{1} \backslash \bigcup_{i=2}^{n} P_{i}$. We claim that $S \cup\{t\} \subseteq P_{1}$ and we are done. To see this, it suffices to show that $S \subseteq P_{1}$. Let us put $J=\bigcap_{i=2}^{n} P_{i}$ and note that for each $y \in S \cap J$ we have $x+t+y \notin P_{i}$ for all $i \geq 2$, hence $x+t+y \in P_{1}$ which means $y \in P_{1}$ and therefore $S \cap J \subseteq P_{1}$. Since P_{1} is a prime ideal and $J \nsubseteq P_{1}$, we infer that $S \subseteq P_{1}$ (note, if S is a right ideal with respect to $\bigcup_{i=1}^{n} P_{i}$, then $S J \subseteq S \cap J \subseteq P_{1}$, otherwise $\left.J S \subseteq P_{1}\right)$.

The following interesting corollary is new, even in the commutative case.
Corollary. Let S be a subring -1 of a ring R which is a right (left) ideal with respect to $\bigcup_{i=1}^{n} P_{i}$, where each P_{i} is an ideal such that at most one of P_{i} 's is not prime. If $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$ with $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$ (resp. $\left.T \subseteq \bigcup_{i=1}^{n} P_{i}\right)$ irreducible, then $S \subseteq \bigcap_{i=1}^{n} P_{i}$.
Proof. For $n=1$, it is evident. Hence let $n \geq 2$. We also note that whenever $T \subseteq \bigcup_{i=1}^{n} P_{i}$ is irreducible, so too is $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$. Hence we may only assume that $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$ is irreducible. By Theorem B, there exists $t_{1} \in T$ with $S \cup\left\{t_{1}\right\} \subseteq P_{i}$
for some $i \geq 1$. Since $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$ is irreducible, there exists $t_{2} \in T$ with $S+\left\{t_{2}\right\} \nsubseteq P_{i}$. But $S+\left\{t_{2}\right\} \subseteq \bigcup_{i=1}^{n} P_{i}$, hence by Theorem B, there exists $P_{j} \neq P_{i}$ with $S \cup\left\{t_{2}\right\} \subseteq P_{j}$. Now if $n \geq 3$, then $S \subseteq P_{i} \cap P_{j}$ and $S+T \nsubseteq P_{i} \cup P_{j}$ imply that there exists $t_{3} \in T$ such that $S+\left\{t_{3}\right\} \nsubseteq P_{i}, S+\left\{t_{3}\right\} \nsubseteq P_{j}$. But $S+\left\{t_{3}\right\} \subseteq \bigcup_{i=1}^{n} P_{i}$ implies that $S \cup\left\{t_{3}\right\} \subseteq P_{k}$ for some $k \neq i, j$, hence $S \subseteq P_{i} \cap P_{j} \cap P_{k}$. If we repeat this process n times, we are done.

Remark. We observe that in the previous corollary, if $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$, then $S+T \subseteq \bigcup_{i=1}^{n} P_{i}$ is irreducible if and only if $T \subseteq \bigcup_{i=1}^{n} P_{i}$ is irreducible.

Finally, we apply the previous corollary to give a solution to the following number theory exercise and it would be interesting if one could find a solution to this exercise without using the above corollary or its proof.
Exercise. Let $p_{1}, p_{2}, \ldots p_{n+1}$ be distinct positive integers such that all p_{i} 's, except possibly p_{n+1}, are prime and $\left(p_{i}, p_{n+1}\right)=1$ for all $i \leq n$. Show that there exists the largest abelian subgroup G of the integer numbers such that for each $g \in G$ and each p_{i} there exists some p_{j} such that p_{j} divides $g+p_{i}$.
Solution. If there exists such a subgroup G we must have $G+T \subseteq \bigcup_{i=1}^{n+1}\left(p_{i}\right)$, where $T=\left\{p_{1}, p_{2}, \ldots p_{n+1}\right\}$. Clearly, $T \subseteq \bigcup_{i=1}^{n+1}\left(p_{i}\right)$ is irreducible. Consequently, in view of the above corollary, we must have $G \subseteq \bigcap_{i=1}^{n+1}\left(p_{i}\right)=\left(p_{1} p_{2} \ldots p_{n+1}\right)$. But clearly $G=\left(p_{1} p_{2} \ldots p_{n+1}\right)$ satisfies the property mentioned in the statement of the exercise and therefore this G is the largest subgroup with this property.

Acknowledgements The author would like to thank the referee for reading the article carefully.

References

[1] M. Alkan and Y. Tiras, Projective modules and prime submodules, Czechoslovak Math. J., 56(2)(2006), 601-611.
[2] F. Callialp and U. Tekir, On Finite Union of Prime Submodules, Pakistan Journal of Applied Sciences, 2(11)(2002), 1016-1017.
[3] C. P. Lu, Unions of prime submodules, Houston J. Math, 23(2)(1997), 203-213.
[4] C. Faith, Rings and Things and a Fine Array of Twentieth Century Associative Algebra, Second Edition, American Mathematical Society, 2004.
[5] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, MA, Revised Edition, The University of Chicago Press, 1970.
[6] O. A. S. Karamzadeh, Noetherian dimension, Ph. D. Thesis, Exeter, 1974.
[7] O. A. S. Karamzadeh, On the classical Krull dimension of rings, Fund Math, 117(1983), 103-108.
[8] O. A. S. Karamzadeh and B. Moslemi, On G-Type Domains, J. Algebra and its Applications, 5(2)(2012), 1-18.
[9] S. McAdam, Finite covering by ideals, Proceeding of the Oklahoma Conference (ring theory), Marcel-Dekker, INC. New York, 1974, 163-170.
[10] M. R. Pournaki and M. Tousi, A note on the countable union of prime submodules, Int. J. Math. Math. Sci., 27(2001), 641-643.
[11] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Second Edition, 2000.
[12] L. H. Rowen, Ring Theory, Vol I, Academic Press, New York, 1988.
[13] R. Y. Sharp, and P. Vamos, Baire's category theorem and prime avoidance in complete local rings, Arch. Math., 44(1985), 243-248.

