
KYUNGPOOK Math. J. 52(2012), 149-153

http://dx.doi.org/10.5666/KMJ.2012.52.2.149

The Prime Avoidance Lemma Revisited

Omid Ali Shahny Karamzadeh
Department of Mathematics, Chamran University, Ahvaz, Iran
e-mail : karamzadeh@ipm.ir

Abstract. We show that the above lemma and its well-known refinement are valid,

in a general setting, in non-commutative rings. Some interesting consequences are also

observed.

The above lemma is in every single text book on commutative algebra, but
not even a single book on non-commutative algebra, as yet (except [12, Proposition
2.12.7], where the validity of a special variant of this lemma is shown), proves it for
non-commutative rings. We recall that, in the proof of [7, Proposition 2], which is
in fact the proof of the converse of the Generalized Principal Ideal Theorem of Krull
for non-commutative rings, see also [5, Theorem 153], we invoked the lemma for the
non-commutative case, even without mentioning it, and gave no proof for it ( note,
it seems (at least to us) that the lemma for non-commutative rings was overlooked
in the literature, at that time, and although I knew of a proof for a generalization
of this lemma then, but did not present it in [7], on purpose, for the reason that
we will see, shortly). Let R be a ring with identity, if S is a subring of R without
containing the identity of R, we say that S is a subring−1 (see [4, Chapter 16]).
The above lemma states that, if P1, P2, . . . , Pn are ideals of a commutative ring R
with identity such that at most two of the Pi’s are not prime and S is a subring−1
of R contained in P1 ∪ P2 ∪ . . . ∪ Pn, then S ⊆ Pk for some Pk (note, in most cases
S is an ideal ). Without any doubt, as it is rightly mentioned in [13], the Prime
Avoidance Lemma is one of the fundamental cornerstones of commutative algebra.
Its numerous applications in the field, makes one surely claim that no one working in
the commutative algebra can do without it. The lemma for commutative rings goes
back to a 1957 paper by McCoy, and Kaplansky generalized it in his 1974 book on
commutative rings, see [4], [5], respectively. The reader might consult ([4, Chapter
16]), [9] and [11]) for a short history and some variations of this lemma. There is
also a very useful refinement of the lemma, which says that whenever P1, P2, . . . , Pn

are prime ideals of the commutative ring R and I is an ideal of R, a ∈ R with

aR + I ⊈
n∪

i=1

Pi, then a + c /∈
n∪

i=1

Pi for some c ∈ I (equivalently, a + I ⊆
n∪

i=1

Pi
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implies that I ∪ {a} ⊆ Pi for some i ≥ 1), see ([11], Theorem 3.64). There are also
the Sharp-Vamos prime avoidance theorems for noetherian complete local rings for
countable prime ideals, stated as 16.7 A and 16.7 B in [4], see also [13], [10]. We
have extended the latter result to complete noetherian semi-local rings in [8], for
some purpose. Our aim, in this short note, is to generalize the Prime Avoidance
Lemma and its refinement to non-commutative rings and obtain some new and
interesting consequences. Let us, without further ado, make some definitions. If

S, P1, P2, . . . , Pn are subsets of a ring R such that S ⊆
n∪

i=1

Pi implies that S is

contained in the union of a smaller number of Pi’s, we shall say that S ⊆
n∪

i=1

Pi

is reducible. Let S be a subring−1 of a ring R, then S is called prime preserving

with respect to
n∪

i=1

Pi, where each Pi is an ideal in R, if S ∩ Pi is a prime ideal in

S whenever Pi is prime in R (e.g., any subring−1 of a commutative ring, or even
of a right (left) duo ring (i.e., each right (left) ideal is two sided)). Finally, if S is a
subring−1 of a ring R, then S is said to be a right (left) ideal with respect to a subset
T of R if ST ⊆ S (TS ⊆ S) (e.g., any right (left) ideal of R). Before stating our
results, we should remind the reader that there have also been some generalizations
of this lemma to prime submodules, see [3], [1] and [2]. Noting that the prime
submodules are more general than the prime ideals and, in particular, the latter
article deals with the prime submodules over non-commutative rings, however, non
of our results can be deduced from these prime submodule versions of the lemma,
in any way.

We should remind the reader that the following proof, which is given for a
general form of the above lemma, is nothing but the trivial proof of the fact that
no union of two noncomparable subgroups in any group can be a subgroup.

Theorem A(Prime Avoidance Lemma). Suppose that P1, P2, . . . , Pn are ideals of

a ring R and S is a subring−1 of R with S ⊆
n∪

i=1

Pi. If at most two of the Pi’s

are not prime and S is either prime preserving or a right (left) ideal with respect

to
n∪

i=1

Pi, then S ⊆
n∪

i=1

Pi is reducible. In particular, S ⊆ Pi for some Pi.

Proof. Let S ⊆
n∪

i=1

Pi be irreducible and obtain a contradiction. Clearly, S =
n∪

i=1

Qi,

where Qi = S∩Pi, is irreducible. Hence, we can infer that there exist x ∈ Q1\
n∪

i=2

Qi

and y ∈ Q2Q3 . . . Qn \ Q1 (note, if n = 2, x, y exist even if P1, P2 are not prime
and if n ≥ 3, then we may assume that P1 is prime and hence, in this case, x, y
exist too). But x+ y ∈ S \Qi for all i ≥ 1, which is absurd. The final part is now
evident. 2

Next, we should emphasize that, our statement of the refinement of the lemma,
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which follows, is stronger than the one in the commutative case. We note that
our proof of this refinement, in contrast to the usual proof in the commutative
case, makes no use of the Prime Avoidance Lemma (cf. [11, Theorem 3.64], or [9]).
Finally, we should also admit that we found this proof a very long time ago (see
[6, p. 87]), but did not publish it (because we could not get rid of of this constant
nagging feeling that this cannot be new). However my searches, after all these years,
turned up nothing.

We should also emphasis that in the next result, which is the refinement of the
lemma, usually in the commutative case, all Pi’s are taken to be prime.

Theorem B. Let S be a subring−1 of a ring R which is a right (left) ideal with

respect to
n∪

i=1

Pi, where each Pi is an ideal of R such that at most one of Pi’s is not

prime. If T is a subset of R with S + T ⊆
n∪

i=1

Pi , then there exists t ∈ T such that

S ∪ {t} ⊆ Pi for some Pi.

Proof. For n = 1, we note that S ∪ {t} ⊆ P1 for all t ∈ T , even if P1 is not prime.
Hence, let n ≥ 2 and we may assume that P1 is prime and Pi ⊈ Pj for i ̸= j. Now

by induction we may suppose that S + T ⊈
n∪

i=2

Pi. Hence there are x ∈ S, t ∈ T

with x+ t ∈ P1 \
n∪

i=2

Pi. We claim that S∪{t} ⊆ P1 and we are done. To see this, it

suffices to show that S ⊆ P1. Let us put J =
n∩

i=2

Pi and note that for each y ∈ S∩J

we have x+ t+ y /∈ Pi for all i ≥ 2, hence x+ t+ y ∈ P1 which means y ∈ P1 and
therefore S ∩ J ⊆ P1. Since P1 is a prime ideal and J ⊈ P1, we infer that S ⊆ P1

(note, if S is a right ideal with respect to
n∪

i=1

Pi, then SJ ⊆ S ∩ J ⊆ P1, otherwise

JS ⊆ P1). 2

The following interesting corollary is new, even in the commutative case.

Corollary. Let S be a subring−1 of a ring R which is a right (left) ideal with

respect to
n∪

i=1

Pi, where each Pi is an ideal such that at most one of Pi’s is not

prime. If S + T ⊆
n∪

i=1

Pi with S + T ⊆
n∪

i=1

Pi (resp. T ⊆
n∪

i=1

Pi) irreducible, then

S ⊆
n∩

i=1

Pi.

Proof. For n = 1, it is evident. Hence let n ≥ 2. We also note that whenever

T ⊆
n∪

i=1

Pi is irreducible, so too is S + T ⊆
n∪

i=1

Pi. Hence we may only assume that

S+T ⊆
n∪

i=1

Pi is irreducible. By Theorem B, there exists t1 ∈ T with S ∪{t1} ⊆ Pi
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for some i ≥ 1. Since S + T ⊆
n∪

i=1

Pi is irreducible, there exists t2 ∈ T with

S + {t2} ⊈ Pi. But S + {t2} ⊆
n∪

i=1

Pi, hence by Theorem B, there exists Pj ̸= Pi

with S ∪{t2} ⊆ Pj . Now if n ≥ 3, then S ⊆ Pi ∩Pj and S+T ⊈ Pi ∪Pj imply that

there exists t3 ∈ T such that S + {t3} ⊈ Pi, S + {t3} ⊈ Pj . But S + {t3} ⊆
n∪

i=1

Pi

implies that S ∪ {t3} ⊆ Pk for some k ̸= i, j, hence S ⊆ Pi ∩ Pj ∩ Pk. If we repeat
this process n times, we are done. 2

Remark. We observe that in the previous corollary, if S + T ⊆
n∪

i=1

Pi, then

S + T ⊆
n∪

i=1

Pi is irreducible if and only if T ⊆
n∪

i=1

Pi is irreducible.

Finally, we apply the previous corollary to give a solution to the following num-
ber theory exercise and it would be interesting if one could find a solution to this
exercise without using the above corollary or its proof.

Exercise. Let p1, p2, . . . pn+1 be distinct positive integers such that all pi’s, except
possibly pn+1, are prime and (pi, pn+1) = 1 for all i≤ n. Show that there exists
the largest abelian subgroup G of the integer numbers such that for each g∈ G and
each pi there exists some pj such that pj divides g + pi.

Solution. If there exists such a subgroup G we must have G + T ⊆
n+1∪
i=1

(pi), where

T = {p1, p2, . . . pn+1}. Clearly, T ⊆
n+1∪
i=1

(pi) is irreducible. Consequently, in view

of the above corollary, we must have G ⊆
n+1∩
i=1

(pi) = (p1p2 . . . pn+1). But clearly

G = (p1p2 . . . pn+1) satisfies the property mentioned in the statement of the exercise
and therefore this G is the largest subgroup with this property.
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