• Title/Summary/Keyword: $G^f$-spaces for maps

Search Result 10, Processing Time 0.023 seconds

Gf-SPACES FOR MAPS AND POSTNIKOV SYSTEMS

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.831-841
    • /
    • 2009
  • For a map f : A $\rightarrow$ X, we define and study a concept of $G^f$-space for a map, which is a generalized one of a G-space. Any G-space is a $G^f$-space, but the converse does not hold. In fact, $S^2$ is a $G^{\eta}$-space, but not G-space. We show that X is a $G^f$-space if and only if $G_n$(A, f,X) = $\pi_n(X)$ for all n. It is clear that any $H^f$-space is a $G^f$-space and any $G^f$-space is a $W^f$-space. We can also obtain some results about $G^f$-spaces in Postnikov systems for spaces, which are generalization of Haslam's results about G-spaces.

  • PDF

LIFTING T-STRUCTURES AND THEIR DUALS

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.245-259
    • /
    • 2007
  • We define and study a concept of $T^f$-space for a map, which is a generalized one of a T-space, in terms of the Gottlieb set for a map. We show that X is a $T_f$-space if and only if $G({\Sigma}B;A,f,X)=[{\Sigma}B,X]$ for any space B. For a principal fibration $E_k{\rightarrow}X$ induced by $k:X{\rightarrow}X^{\prime}$ from ${\epsilon}:PX^{\prime}{\rightarrow}X^{\prime}$, we obtain a sufficient condition to having a lifting $T^{\bar{f}}$-structure on $E_k$ of a $T^f$-structure on X. Also, we define and study a concept of co-$T^g$-space for a map, which is a dual one of $T^f$-space for a map. We obtain a dual result for a principal cofibration $i_r:X{\rightarrow}C_r$ induced by $r:X^{\prime}{\rightarrow}X$ from ${\iota}:X^{\prime}{\rightarrow}cX^{\prime}$.

  • PDF

G'p-SPACES FOR MAPS AND HOMOLOGY DECOMPOSITIONS

  • Yoon, Yeon Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.603-614
    • /
    • 2015
  • For a map $p:X{\rightarrow}A$, we define and study a concept of $G^{\prime}_p$-space for a map, which is a generalized one of a G'-space. Any G'-space is a $G^{\prime}_p$-space, but the converse does not hold. In fact, $CP^2$ is a $G^{\prime}_{\delta}$-space, but not a G'-space. It is shown that X is a $G^{\prime}_p$-space if and only if $G^n(X,p,A)=H^n(X)$ for all n. We also obtain some results about $G^{\prime}_p$-spaces and homology decompositions for spaces. As a corollary, we can obtain a dual result of Haslam's result about G-spaces and Postnikov systems.

GENERALIZED ISOMETRY IN NORMED SPACES

  • Zivari-Kazempour, Abbas
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.105-112
    • /
    • 2022
  • Let g : X ⟶ Y and f : Y ⟶ Z be two maps between real normed linear spaces. Then f is called generalized isometry or g-isometry if for each x, y ∈ X, ║f(g(x)) - f(g(y))║ = ║g(x) - g(y)║. In this paper, under special hypotheses, we prove that each generalized isometry is affine. Some examples of generalized isometry are given as well.

[ $H^f-SPACES$ ] FOR MAPS AND THEIR DUALS

  • Yoon, Yeon-Soo
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.289-306
    • /
    • 2007
  • We define and study a concept of $H^f-space$ for a map, which is a generalized concept of an H-space, in terms of the Gottlieb set for a map. For a principal fibration $E_{\kappa}{\rightarrow}X$ induced by ${\kappa}:X{\rightarrow}X'\;from\;{\epsilon}:\;PX'{\rightarrow}X'$, we can obtain a sufficient condition to having an $H^{\bar{f}}-structure\;on\;E_{\kappa}$, which is a generalization of Stasheff's result [17]. Also, we define and study a concept of $co-H^g-space$ for a map, which is a dual concept of $H^f-space$ for a map. Also, we get a dual result which is a generalization of Hilton, Mislin and Roitberg's result [6].

  • PDF

REMARKS ON THE REIDEMEISTER NUMBERS FOR COINCIDENCE

  • Seoung Ho Lee;Sung Do Baek
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.109-121
    • /
    • 1998
  • Let X,Y be connected, locally connected, semilocally simply connected and $f,g : X \to Y$ be a pair of maps. We find an upper bound of the Reidemeister number R(f,g) by using the regular coverig spaces.

  • PDF

V-SEMICYCLIC MAPS AND FUNCTION SPACES

  • Yoon, Yeon Soo;Yu, Jung Ok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.77-87
    • /
    • 1996
  • For any map $v:X{\rightarrow}Y$, the generalized Gottlieb set $G({\Sigma}A;X,v,Y)$ with respect to v is a subgroup of $[{\Sigma}A,Y]$. If $v:X{\rightarrow}Y$ has a left homotopy inverse $u:X{\rightarrow}Y$, then for any $f{\in}G({\Sigma}A;X,v,Y)$, $g{\in}G({\Sigma}A;X,u,Y)$, the function spaces $L({\Sigma}A,X;uf)$ and $L({\Sigma}A,X;g)$ have the same homotopy type.

  • PDF

THE MINIMUM THEOREM FOR THE RELATIVE ROOT NIELSEN NUMBER

  • Yang, Ki-Yeol
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.701-707
    • /
    • 1997
  • In [8], we introduce the relative root Nielsen number N(f;X, A, c) for maps of pairs of spaces $f : (X, A) \to (Y, B)$. From it, we obtain some immediate consequences of the definition and illustrate it by some examples. We consider the question whether there exists a map $g : (X, A) \to (Y, B)$ homotopic to a given map $f : (X, A) \to (Y, B)$ which has precisely N(f;X, A, c) roots, that is, the minimum theorem for N(f;X, A, c).

  • PDF

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF