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Gf -SPACES FOR MAPS AND POSTNIKOV SYSTEMS

Yeon Soo Yoon*

Abstract. For a map f : A → X, we define and study a concept
of Gf -space for a map, which is a generalized one of a G-space.
Any G-space is a Gf -space, but the converse does not hold. In fact,
S2 is a Gη-space, but not G-space. We show that X is a Gf -space
if and only if Gn(A, f, X) = πn(X) for all n. It is clear that any
Hf -space is a Gf -space and any Gf -space is a W f -space. We can
also obtain some results about Gf -spaces in Postnikov systems for
spaces, which are generalization of Haslam’s results about G-spaces.

1. Introduction

The Goottlieb groups Gn(X) of a space X have been defined by
Gottlieb in [3,4]. A space X is called G-space if Gn(X) = πn(X) for all
n. It is well known [4] that any H-space is a G-space, but the converse
does not hold. A space X is called [14] W -space if every Whitehead
product [α, β] = 0 in πm+n−1(X) for any α ∈ πm(X), β ∈ πn(X) and
any m, n ≥ 1. It is known [14] that any G-space is a W -space, but the
converse does not hold. In [5], Haslam showed that if X is a G-space,
then each Xn is G-space and all the k invariants kn+2

X are G-primitive,
and if Xn−1 is a G-space and the k-invariants kn+1

X is G-primitive, then
Xn is a G-space, where fn is an induced map from f .

For a map f : A → X, the Gottlieb groups Gn(A, f, X) of a map
f : A → X, which are generalizations of Gottlieb groups Gn(X), are
defined in [15]. In general, Gn(X) ⊂ Gn(A, f, X) ⊂ πn(X) for any
map f : A → X. In this paper, for a map f : A → X, we define a
Gf -space X for a map f : A → X , and show that X is a Gf -space
if and only if Gn(A, f, X) = πn(X) for all n. Any G-space is a Gf -
space, but the converse does not hold. In fact, S2 is a Gη-space, but not
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G-space. It is well known [7] that if A and X are spaces having the ho-
motopy type of 1-connected countable CW -complexes and f ;A → X is
a map, then there exist Postnikov systems {An, i′n, p′n} and {Xn, in, pn}
for A and X respectively and induced maps {fn : An → Xn} satisfying
(1) for each n, the following diagram is homotopy commutative

An
fn−−−−→ Xn

kn+2
A

y kn+2
X

y
K(πn+1(A), n + 2)

f̃#−−−−→ K(πn+1(X), n + 2)

, that is, (kn+2
X , kn+2

A ) : fn → f̃#. (2) fn+1 : An+1 → Xn+1 given by
fn+1 = (fn, P f̃#) satisfying commute diagram

An+1(= Ekn+2
A

)
fn+1=(fn,P f̃#)
−−−−−−−−−−→ Xn+1(= Ekn+2

X
)

p′n(=p
kn+2
A

)
y pn(=p

kn+2
X

)
y

An
fn−−−−→ Xn.

(3) for each n, the following diagram is homotopy commutative

A
f−−−−→ X

i′n

y in

y
An

fn−−−−→ Xn.

Thus we know that the pair of k invariants (kn+2
X , kn+2

A ) : fn → f̃# is a
map from fn to f̃#. So, we can consider a concept of Gf -primitive for the
map (kn+2

X , kn+2
A ) : fn → f̃#. Then we can obtain the following results

which are generalizations of Haslam’s results [5]; Let A and X be spaces
having the homotopy type of 1-connected countable CW -complexes and
f ;A → X a map, and {An, i′n, p′n} and {Xn, in, pn} Postnikov systems for
A and X respectively. If X is a Gf -space for a map f : A → X, then each
Xn is Gfn-space and the all pair of k invariants (kn+2

X , kn+2
A ) : fn → f̃#

are Gfn-primitive. Moreover, if Xn−1 is a Gfn−1-space and the pair of
k-invariants (kn+1

X , kn+1
A ) : fn−1 → f̃# is Gfn−1-primitive, then Xn is a

Gfn-space, where fn is an induced map from f .
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2. Gf -spaces for maps

Let f : A → X be a map. A based map g : B → X is called f-cyclic
[12] if there is a map φ : B ×A → X such that the diagram

A×B
φ−−−−→ X

j

x ∇
x

A ∨B
(f∨g)−−−−→ X ∨X

is homotopy commute, where j : A ∨ B → A × B is the inclusion and
∇ : X ∨X → X is the folding map. We call such a map φ an associated
map of a f -cyclic map g. Clearly, g is f -cyclic iff f is g-cyclic. In the
case f = 1X : X → X, a map g : B → X is called cyclic [15]. We
denote the set of all homotopy classes of f -cyclic maps from B to X
by G(B;A, f, X) which is called the Gottlieb set for a map f : A → X.
In the case f = 1X : X → X, we called such a set G(B;X, 1, X)
as the Gottlieb set, denoted by G(B;X). In particular, G(Sn;A, f, X)
will be denoted by Gn(A, f, X) which is called the Gottlieb Group for a
map f : A → X. Gottlieb [3,4] introduced and studied the evaluation
subgroups Gn(X) = Gn(X, 1, X) of πn(X).

The next proposition is an immediate consequence from the defini-
tion.

Proposition 2.1.
(1) For any maps f : A → X, θ : C → A, Gn(A, f, X) ⊂ Gn(C, fθ,X)
for all n.

(2) Gn(X) = Gn(X, 1X , X) ⊂ Gn(A, f, X) ⊂ πn(X) for any space A and
any map f : A → X.

(3) Gn(X) = ∩{Gn(A, f, X)|f : A → X is a map and A is a space}.
(4) If h : C → A is a homotopy equivalence, then Gn(A, f, X) = Gn(C,
fh, X).

(5) For any map k : X → Y , k#(Gn(A, f, X)) ⊂ Gn(A, kf, Y ).
(6) For any map k : X → Y , k#(Gn(X)) ⊂ Gn(X, k, Y ).

However, it is known [18] that G5(S5×S5) ∼= 2Z⊕2Z 6= G5(S5, i1, S
5×

S5) ∼= 2Z⊕ Z 6= π5(S5 × S5) ∼= Z⊕ Z.
Let Map(A,X) be the space of continuous maps from A to X with

compact open topology. For a based map f : A → X, let Map(A,X; f)
be the path component of Map(A,X) containing f . Let Map∗(A,X)
and Map∗(A,X; f) be the spaces of base point preserving maps in
Map(A,X) and Map(A,X; f) respectively. Clearly, the evaluation map
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ω : Map(A,X) → X is a fibration. Moreover, the restriction to path
component ωf = ω|Map(A,X;f) : Map(A,X; f) → X is a fibration with
fiber Map∗(A,X; f).

Proposition 2.2. [15] For the evaluation map ω : Map(A,X; f) →
X,w#(πn(Map(A,X; f))) = Gn(A, f, X).

Aguade showed [1] that X is a T -space if and only if e : ΣΩX → X
is cyclic. For a map f : A → X, a space X is called [21] T f -space for a
map f : A → X if e : ΣΩX → X is f -cyclic. Clearly any T -space is a
T f -space for a map f : A → X, but the converse does not hold.

A based map g : B → X is called weakly cyclic [16] if g#(πn(B)) ⊂
Gn(X) for all n. It is known[16] that any cyclic map is a weakly cyclic
map, but the converse does not hold.

We showed [16] that X is a G-space if and only if e : ΣΩX → X is
weakly cyclic.

Definition 2.3. Let f : A → X be a based map. A based map
g : B → X is called an weakly f -cyclic if g#(πn(B)) ⊂ Gn(A, f, X) for
all n.

The next proposition is an immediate consequence from the defini-
tion.

Proposition 2.4.
(1) If g : B → X is a weakly cyclic map and θ : C → B is an arbitrary
map, then gθ : C → X is weakly cyclic.

(2) For a map f : A → X, any weakly cyclic map g : B → X is weakly
f -cyclic.

(3) For a map f : A → X, if g : B → X is a weakly f -cyclic map and
θ : C → B is an arbitrary map, then gθ : C → X is weakly f -cyclic.

Definition 2.5. A space X is called a Gf -space for a map f : A → X
if e : ΣΩX → X is weakly f -cyclic.

The following theorem says that a Gf -space can be characterized by
the Gottlieb groups for a map f : A → X.

Theorem 2.6. X is a Gf -space for a map f : A → X if and only if
Gn(A, f, X) = πn(X) for all n.

Proof. Suppose that X is a Gf -space for a map f : A → X. Let
g : Sn → X be any map. Since g = eΣτ(g) : ΣSn−1 → X and e :
ΣΩX → X is weakly f -cyclic, g : Sn → X is weakly f -cyclic. On
the other hand, suppose that Gn(A, f, X) = πn(X) for all n. Since
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1X : X → X is weakly f -cyclic, we know that the map e = 1Xe is
weakly f -cyclic and X is a Gf -space for a map f : A → X.

It is introduced [20] that a space is called Hf -space for a map f :
A → X if there is a map F : X × A → X such that Fj ∼ ∇(1 ∨ f),
where j : X ∨ A → X × A is the inclusion. It is known [20] that X is
an Hf -space for a map f : A → X if and only if G(B;A, f, X) = [B,X]
for any space B. Also, it is known [21] that X is an T f -space for a map
f : A → X if and only if G(ΣB;A, f, X) = [ΣB,X] for any space B.
Thus we have the following corollary.

Corollary 2.7. Any Hf -space is a T f -space and any T f -space is a
Gf -space.

It is known [4] that if X dominates A and X is a G-space, then A is
a G-space. This fact can be generalized as the following corollary.

Corollary 2.8. Let X be a Gi-space for a map i : A → X.
(1) If i : A → X has a left homotopy inverse r : X → A, then A is a
G-space.

(2) If i : A → X has a right homotopy inverse r : X → A, then X is a
G-space.

Proof. (1) It is sufficient to show that πn(A) ⊂ Gn(A) for all n.
Since X is a Gi-space for i : A → X, we know, from Theorem 2.6,
that Gn(A, i,X) = πn(X). Thus we have, from Proposition 2.1(5), that
πn(A) = r#πn(X) = r#(Gn(A, i,X)) ⊂ Gn(A, ri, A) = Gn(A, 1, A) =
Gn(A). Thus A is a G-space. (2) We show that πn(X) ⊂ Gn(X) for all
n. By Theorem 2.6 and Proposition 2.1(1), we can obtain that πn(X) =
Gn(A, i,X) ⊂ Gn(X, ir,X) = Gn(X, 1, X) = Gn(X). Thus we know
that X is a G-space.

From Proposition 2.1(2),(3) and Theorem 2.6, we have the following
corollary.

Corollary 2.9. X is a G-space if and only if for any space A and
any map f : A → X, X is a Gf -space for a map f : A → X.

A space X is called [14] W -space if every Whitehead product [α, β] =
0 in πm+n−1(X) for any α ∈ πm(X), β ∈ πn(X) and any m,n ≥ 1. It
is known [14] that any G-space is a W -space, but the converse does not
hold.

Definition 2.10. For a map f : A → X, Pn(A, f, X) = {α ∈
πn(X)| [f#(β), α] = 0 for any map β ∈ πm(A)} and any m ≥ 1. A space
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X is called a W f -space for a map f : A → X if Pn(A, f, X) = πn(X)
for all n.

Proposition 2.11. Gn(A, f, X) ⊂ Pn(A, f, X) for all n.

Proof. Let [h] ∈ Gn(A, f, X). Then there is a map H : A× Sn → X
such that Hj ∼ ∇(f ∨ h), where j : A ∨ Sn → A × Sn is the inclusion.
Let m ≥ 1 and β = [g] ∈ πm(A). Then consider the map F = H(g ×
1) : Sm × Sn (g×1)→ A × Sn H→ X. Then Fj′ ∼ ∇(fg ∨ h), where
j′ : Sm ∨ Sn → Sm × Sn is the inclusion. Thus we have [f#(β), [h]] = 0
and [h] ∈ Pn(A, f, X).

Corollary 2.12. If X is a Gf -space for a map f : A → X, then X
is a W f -space for f : A → X.

Consider the natural pairing µ : S3/S1(= S2)× S3 → S3/S1(= S2).
Thus we know that the Hopf map η : S3 → S2 is cyclic. Thus S2 is
an Hη-space and a T η-space. Thus we know that S2 is a W η-space
for η : S3 → S2. On the other hand, it is known [16] that H-spaces
and T -spaces and G-spaces are equivalent in the category of spheres.
Thus we know that S2 is not a G-space. Moreover, it is known [14] that
η# : πn(S3) → πn(S2), η#(β) = η ◦ β, is an isomorphism for n ≥ 3.
Thus we have the following example.

Example 2.13.
(1) S2 is a Gη-space, but not G-space.
(2) For any x ∈ πn(S2), α ∈ πk(S2) (n ≥ 3, k ≥ 1), [x, α] = 0.

3. Gf -spaces for maps and Postnikov systems

Let f : A → X, f ′ : A′ → X ′, l : A → A′, k : X → X ′ be maps.
Then a pair of maps (k, l) : (X, A) → (X ′, A′) is called a map from f to
f ′ if the following diagram is homotopy commutative;

A
f−−−−→ X

l

y k

y
A′ f ′−−−−→ X ′.

It will be denoted by (k, l) : f → f ′.
Given maps f : A → X, f ′ : A′ → X ′, let (k, l) : f → f ′ be a map

from f to f ′. Let PX ′ and PA′ be the spaces of paths in X ′ and A′ which
begin at ∗ respectively. Let εX′ : PX ′ → X ′ and εA′ : PA′ → A′ be the
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fibrations given by evaluating a path at its end point. Let pk : Ek → X
be the fibration induced by k : X → X ′ from εX′ . Let pl : El → A
induced by l : A → A′ from εA′ . Then there is a map (f, Pf ′) : El → Ek

such that the following diagram is commutative

El
(f,Pf ′)−−−−→ Ek

pl

y pk

y
A

f ′−−−−→ X,

where El = {(a, ξ) ∈ A × PA′|l(a) = ε(ξ)} , Ek = {(x, η) ∈ X ×
PX ′|k(x) = ε(η)}, (f, Pf ′)(a, ξ) = (f(a), f ′ ◦ ξ), pk(x, η) = x, pl(a, ξ) =
a.

Definition 3.1. Let X be a Gf -space for a map f : A → X. A map
(k, l) : f → f ′ is called a Gf -primitive if for each map g : Sm → ΣΩX,m
arbitrary, there is a map F : A × Sm → X such that Fj ∼ ∇(f ∨ e ◦
g), kF (pl × 1) ∼ ∗ : El × Sm → X ′, where j : A ∨ Sm → A× Sm is the
inclusion.

The following lemmas are standard.

Lemma 3.2. A map g : B → X can be lifted to a map B → Ek if
and only if kg ∼ ∗.

Lemma 3.3. [5] Given maps gi : Ai → Ek, i = 1, 2 and g : A1×A2 →
Ek satisfying pkg|Ai ∼ pkgi, i = 1, 2, then there is a map h : A1×A2 →
Ek such that pkh = pkg and h|Ai ∼ gi, i = 1, 2.

Theorem 3.4. If X is a Gf -space for a map f : A → X and (k, l) :
f → f ′ is a Gf -primitive, then Ek is a G(f,Pf ′)-space a map (f, Pf ′) :
El → Ek.

Proof. Clearly we have the following commutative diagram;

ΣΩEk

eEk−−−−→ Ek

ΣΩpk

y pk

y
ΣΩX

eX−−−−→ X.

Since (k, l) : f → f ′ is a Gf -primitive, for each map g : Sm → ΣΩEk,m
arbitrary, there is a map F : A × Sm → X such that Fj ∼ ∇(f ∨ e ◦
(ΣΩpk ◦g)), kF (pl×1) ∼ ∗ : El×Sm → X ′, where j : A∨Sm → A×Sm

is the inclusion. From Lemma 3.2, there is a lifting F ′ : El × Sm → Ek

of F (pl × 1) : El × Sm → X, that is, pk ◦ F ′ = F (pl × 1). Then
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pk◦F ′|El
∼ F (pl×1)|El

= f ◦pl = pk◦(f, Pf ′) : El → X and pk◦F ′|Sm =
F |Sm = eX ◦ ΣΩpk ◦ g = pk ◦ eEk

◦ g : Sm → X. Thus we have,
from Lemma 3.3, that there is a map F̄ : El × Sm → Ek such that
pkF̄ = pkF

′ = F (pl × 1) and F̄ |El
∼ (f, Pf ′), F̄ |Sm ∼ eEk

◦ g. Thus
eEk

: ΣΩEk → Ek is weakly (f, Pf ′)-cyclic. That is Ek is a G(f,Pf ′)-
space a map (f, Pf ′) : El → Ek. This proves the theorem.

In 1951, Postnikov [13] introduced the notion of the Postnikov system
as follows; A Postnikov system for X( or homotopy decomposition of
X) {Xn, in, pn} consists of a sequence of spaces and maps satisfying
(1) in : X → Xn induces an isomorphism (in)# : πi(X) → πi(Xn) for
i ≤ n. (2) pn : Xn → Xn−1 is a fibration with fiber K(πn(X), n).
(3) pnin ∼ in+1. It is well known fact [11] that if X is a 1-connected
space having a homotopy type of CW-complex, then there is a Postnikov
system {Xn, in, pn} for X such that pn+1 : Xn+1 → Xn is the fibration
induced from the path space fibration over K(πn+1(X), n+2) by a map
kn+2 : Xn → K(πn+1(X), n + 2). It is well known [7] that if A and
X are spaces having the homotopy type of 1-connected countable CW -
complexes and f ;A → X is a map, then there exist Postnikov systems
{An, i′n, p′n} and {Xn, in, pn} for A and X respectively and induced maps
{fn : An → Xn} satisfying (1) for each n, the following diagram is
homotopy commutative

An
fn−−−−→ Xn

kn+2
A

y kn+2
X

y
K(πn+1(A), n + 2)

f̃#−−−−→ K(πn+1(X), n + 2)

, that is, (kn+2
X , kn+2

A ) : fn → f̃#. (2) fn+1 : An+1 → Xn+1 given by
fn+1 = (fn, P f̃#) satisfying commute diagram

An+1(= Ekn+2
A

)
fn+1=(fn,P f̃#)
−−−−−−−−−−→ Xn+1(= Ekn+2

X
)

p′n(=p
kn+2
A

)
y pn(=p

kn+2
X

)
y

An
fn−−−−→ Xn.
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(3) for each n, the following diagram is homotopy commutative

A
f−−−−→ X

i′n

y in

y
An

fn−−−−→ Xn.

Theorem 3.5. Let A and X be spaces having the homotopy type
of 1-connected countable CW -complexes and f ;A → X a map, and
{An, i′n, p′n} and {Xn, in, pn} Postnikov systems for A and X respec-
tively.

(1) If X is a Gf -space for a map f : A → X, then each Xn is Gfn-space

and the all pair of k invariants (kn+2
X , kn+2

A ) : fn → f̃# are Gfn-primitive.

(2) If Xn−1 is a Gfn−1-space and the pair of k-invariants (kn+1
X , kn+1

A ) :
fn−1 → f̃# is Gfn−1-primitive, then Xn is a Gfn-space, where fn is an
induced map from f .

Proof. Let g : Sm → Xn be any map. Since (in)# : πi(X) → πi(Xn)
for i ≤ n and πi(Xn) = 0 for i > n, there is a map g′ : Sm → X such that
ing′ ∼ g. Since X is a Gf -space for a map f : A → X, there is a map
G : A×Sm → X such that Gj ∼ ∇(f ∨ g′), where j : A∨Sm → A×Sm

is the inclusion. Let {Bn, i′′n, p′′n} be a Postnikov system for Sm. Then
{An ×Bn, i′n × i′′n, p′n × p′′n} is a Postnikov system for A× Sm. Then we
have, by Kahn’s result [7,Theorem 2.2], that there are families of maps
fn : An → Xn and Gn : An × Bn → Xn such that pnfn = fn−1p

′
n and

inf ∼ fni′n, and pnGn = Gn−1(p′n × p′′n) and inG ∼ Gn(i′n × i′′n) for n =
2, 3, · · · respectively, and kn+2

X fn ∼ f̃#kn+2
A : An → K(πn+1(X), n + 2)

and kn+2
X Gn ∼ G̃#(kn+2

A × kn+2
Sm ) : An × Bn → K(πn+1(X), n + 2),

where kn+2
A : An → K(πn+1(A), n + 2), kn+2

X : Xn → K(πn+1(X), n + 2)
and kn+2

Sm : Bn → K(πn+1(Sm), n + 2) are k-invariants of A, X and
Sm respectively, f̃# : K(πn+1(A), n + 2) → K(πn+1(X), n + 2) and
G̃# : K(πn+1(A), n + 2)×K(πn+1(Sm), n + 2) ≈ K(πn+1(A× Sm), n +
2) → K(πn+1(X), n + 2) are the induced maps by f : A → X and
G : A×Sm → X respectively. Consider the composition G′ : Gn(1×i′′n) :
An × Sm → Xn. Since G|A ∼ f , we know, from Kahn’s another result
[8, Theorem 1.2], that G′

|An
= Gn|An

= (G|A)n ∼ fn and it is clear
that G′

|Sm = Gn|Bn
i′′n ∼ inG|Sm = ing′ ∼ g. Thus [g] ∈ Gm(An, fn, Xn)

and Xn is a Gfn-space for a map fn : An → Xn. Moreover, to show
that (kn+2

X , kn+2
A ) : fn → f̃# is Gfn-primitive, let g′′ : Sm → ΣΩXn be

any map and m arbitrary. Since eXng′′ : Sm → Xn, by the above fact,
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there is a map G′ : An × Sm → Xn such that G′j ∼ ∇(fn ∨ eXng′′) :
An ∨ Sm → Xn, where j : An ∨ Sm → An × Sm is the inclusion. Since
G′(pkn+2

A
× 1) = G′(p′n+1 × 1) = Gn(1 × i′′n)(p′n+1 × 1) = Gn(p′n+1 ×

i′′n) ∼ Gn(p′n+1 × p′′n+1)(1× i′′n+1) ∼ pn+1Gn+1(1× i′′n+1) : An+1 × Sm →
Xn, G′(pkn+2

A
× 1) = G′(p′n+1 × 1) : An+1 × Sm → Xn has an lifting

Gn+1(1× i′′n+1) : An+1 × Sm → Xn+1 and kn+2
X G′(pkn+2

A
× 1) ∼ ∗. Thus

(kn+2
X , kn+2

A ) : fn → f̃# is Gfn-primitive. (2) It follows from Theorem
3.4.

Taking f = 1X , f ′ = 1X′ , l = k, we can obtain the following corollary
given by Haslam [5].

Corollary 3.6. [5] Let X be space having the homotopy type of 1-
connected countable CW -complexes and {Xn, in, pn} Postnikov systems
for X.

(1) If X is a G-space, then each Xn is G-space and all the k invariants
kn+2

X are G-primitive.

(2) If Xn−1 is a G-space and the k-invariants kn+1
X is G-primitive, then

Xn is a G-space, where fn is an induced map from f .
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