H^f -SPACES FOR MAPS AND THEIR DUALS

YEON SOO YOON

ABSTRACT. We define and study a concept of H^f -space for a map, which is a generalized concept of an H-space, in terms of the Gottlieb set for a map. For a principal fibration $E_k \to X$ induced by $k: X \to X'$ from $\epsilon: PX' \to X'$, we can obtain a sufficient condition to having an $H^{\bar{f}}$ -structure on E_k , which is a generalization of Stasheff's result [17]. Also, we define and study a concept of co- H^g -space for a map, which is a dual concept of H^f -space for a map. Also, we get a dual result which is a generalization of Hilton, Mislin and Roitberg's result [6].

1. Introduction

A map $f:A\to X$ is cyclic [18] if there is a map $F:X\times A\to X$ such that $F|_X\sim 1_X$ and $F|_A\sim f$. It is clear that a space X is an H-space if and only if the identity map of X is cyclic. We call a space X as an H^f -space if there is a cyclic map $f:A\to X$. We show that if a space X is an H-space, then for any space A and any map $f:A\to X$, X is an H^f -space for a map $f:A\to X$, but the converse does not hold. Let $p_k:E_k\to X$ be a principal fibration induced by $k:X\to X'$ from $\epsilon:PX'\to X'$. Stasheff [17] showed that if X and X' are H-spaces, and $k:X\to X'$ is an H-map, then there is an H-structure on E_k such that $p_k:E_k\to X$ is an H-map. We can generalize the above result as follows. If X is an H^f -space with H^f -structure $F:X\times A\to X$ and X' is an $H^{f'}$ -space with $H^{f'}$ -structure $F':X'\times A'\to X'$ such that $kF\sim F'(k\times l):X\times A\to X'$, then there exists an $H^{\bar{f}}$ -structure $\bar{F}:E_k\times E_l\to E_k$ on E_k such that $p_k\bar{F}\sim F(p_k\times p_l):E_k\times E_l\to X$. Also, we can show that if X is an H^f -space with H^f -structure $F:X\times A\to X$, then there exists an H^{f_n} -structure $F_n:X_n\times A_n\to X_n$ for each Postnikov stage X_n of X such that $p_nF_n\sim F_{n-1}(p_n\times p'_n):X_n\times A_n\to X_{n-1}$, where f_n is an induced map from

Received by the editors April 30, 2007 and, in revised form, July 18, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 55P45, 55P35.

Key words and phrases. H^f -spaces for maps, co- H^g -spaces for maps.

This work was supported by Hannam University Research Fund, 2006.

f, and all the pair of k-invariants $(k_X^{n+2}, k_A^{n+2}): f_n \to \tilde{f}_\#$ are H^{f_n} -primitive with respect to F_n , where $\tilde{f}_{\#}: K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ is the induced map by $f: A \to X$. On the other hand, we define and study a concept of co- H^g -space of a map, which is a dual concept of H^f -space for a map. In 1978, Hilton, Mislin and Roitberg [6] showed that if X and X' are co-H-spaces, and $r: X' \to X$ is a co-H-map, then there is a co-H-structure on C_r such that $i_r: X \to C_r$ is a co-H-map. Then we can obtain a generalization of the above result to showing that if X is a co- H^g -space with co- H^g -structure $\theta: X \to X \vee A$ and X' is a co- $H^{g'}$ -space with co- $H^{g'}$ structure $\theta': X' \to X' \vee A'$ such that $(r \vee s)\theta' \sim \theta r: X' \to X \vee A$, then there exists a co- $H^{ar{g}}$ -structure $\bar{\theta}: C_r \to C_r \vee C_s$ on C_r satisfying $(i_r \vee i_s)\theta \sim \bar{\theta}i_r: X \to C_r \vee C_s$. In 1998, Golansinski and Klein [5] obtained some sufficient conditions for a map $r: X' \to X$ is a co-H-map as follows. Let $r: X' \to X$ be a map with X' and X1-connected co-H-spaces. If the mapping cone C_r is a co-H-space, $i_r: X \to C_r$ a $\operatorname{co-}H\operatorname{-map}$ and $\dim X' < \operatorname{conn} X' + \min \{\operatorname{conn} X, \operatorname{conn} C_r\}$, then $r: X' \to X$ is a $\operatorname{co-}$ H-map. We can generalize the above result as follows; Let X be a simply connected co- H^g -space with co- H^g -structure $\theta: X \to X \vee A$. Let X' be a simply connected co-H-space and $(s,r):g'\to g$ a map, where $g':X'\to A'$ is a map. If there is a $\operatorname{co-}H^{\bar{g}}$ -structure $\bar{\theta}:C_r o C_r\vee C_s$ on C_r satisfying $(i_r\vee i_s)\theta\sim \bar{\theta}i_r:X o C_r\vee C_s$ and $\dim X' < \min\{conn\ (X') + conn\ (C_s), conn\ (A') + conn\ (X)\}, \text{ then } (s,r): g' \to g \text{ is } (x,r) = 0$ a co- H^g -primitive with respect to θ .

2. H^f -spaces for Maps

Let $f:A\to X$ be a map. A based map $g:B\to X$ is called f-cyclic [15] if there is a map $\phi:B\times A\to X$ such that the diagram

$$\begin{array}{ccc} A \times B & \stackrel{\phi}{\longrightarrow} & X \\ \downarrow \uparrow & & \nabla \uparrow \\ A \vee B & \stackrel{(f \vee g)}{\longrightarrow} & X \vee X \end{array}$$

is homotopy commute, where $j:A\vee B\to A\times B$ is the inclusion and $\nabla:X\vee X\to X$ is the folding map. We call such a map ϕ an associated map of a f-cyclic map g. Clearly, g is f-cyclic iff f is g-cyclic. In the case, $f=1_X:X\to X,\ g:B\to X$ is called cyclic [18]. We denote the set of all homotopy classes of f-cyclic maps from g to g by g by g by g which is called the g to g by g by g by g is the inclusion and g i

the Gottlieb set denoted G(B;X). In particular, $G(S^n;A,f,X)$ will be denoted by $G_n(A,f,X)$. Gottlieb [3, 4] introduced and studied the evaluation subgroups $G_n(X) = G_n(X,1,X)$ of $\pi_n(X)$.

In general, $G(B;X) \subset G(B;A,f,X) \subset [B,X]$ for any map $f:A \to X$ and any space B. However, there is an example [23] such that $G(B,X) \neq G(B;A,f,X) \neq [B,X]$.

The next proposition is an immediate consequence from the definition.

Proposition 2.1.

- (1) For any maps $f: A \to X$, $\theta: C \to A$ and any space $B, G(B; A, f, X) \subset G(B; C, f\theta, X)$.
- (2) $G(B,X) = G(B;X,1_X,X) \subset G(B;A,f,X) \subset G(B;A,*,X) = [B,X]$ for any spaces X, A and B.
- (3) $G(B,X) = \bigcap \{G(B;A,f,X)| f:A \to X \text{ is a map and } A \text{ is a space}\}.$
- (4) If $h: C \to A$ is a homotopy equivalence, then G(B; A, f, X) = G(B; C, fh, X).
- (5) For any map $k: X \to Y$, $k_{\#}(G(B; A, f, X)) \subset G(B; A, kf, Y)$.
- (6) For any map $k: X \to Y$, $k_{\#}(G(B,X)) \subset G(B;X,k,Y)$.
- (7) For any map $s: C \to B$, $s^{\#}(G(B; A, f, X)) \subset G(C; A, f, X)$.

From Proposition 2.1(1), we have the following corollary.

Corollary 2.2. If $f: A \to X$ has a right homotopy inverse, then G(B; A, f, X) = G(B, X) for any space B. In that case, $G_n(A, f, X) = G_n(X)$.

Let Map(A,X) be the space of continuous maps from A to X with compact open topology. For a based map $f:A\to X$, let Map(A,X;f) be the path component of Map(A,X) containing f. Let $Map_*(A,X)$ and $Map_*(A,X;f)$ be the spaces of base point preserving maps in Map(A,X) and Map(A,X;f) respectively. Clearly, the evaluation map $\omega: Map(A,X)\to X$ is a fibration. Moreover, the restriction to path component $\omega_f=\omega_{|Map(A,X;f)}:Map(A,X;f)\to X$ is a fibration with fiber $Map_*(A,X;f)$.

Proposition 2.3 ([24]). For the evaluation map $\omega : Map(A, X; f) \to X$, $w_{\#}([B, Map(A, X; f)]) = G(B; A, f, X)$.

Thus we have the following corollary.

Corollary 2.4. Let B be a co-H-group. Then G(B; A, f, X) is a subgroup of [B, X] for any $f: A \to X$.

Clearly, a space X is an H-space means the identity map $1_X: X \to X$ is cyclic. Then the following proposition says that H-spaces are completely characterized by the Gottlieb sets.

Proposition 2.5 ([11]). X is an H-space if and only if G(B,X) = [B,X] for any space B.

Now, for a map $f: A \to X$, we would like to introduce new spaces which can be characterized by the Gottlieb sets for a map $f: A \to X$.

Definition 2.6. A space X is called an H^f -space for a map $f: A \to X$ if there is a map, H^f -structure on X, $F: X \times A \to X$ such that $Fj \sim \nabla(1 \vee f)$, where $j: X \vee A \to X \times A$ is the inclusion.

For the dual Puppe sequence of a fibration $\cdots \to \Omega E \to \Omega B \xrightarrow{\partial} F \xrightarrow{i} E \xrightarrow{p} B$, we have an operation [8, p. 97] $\rho: F \times \Omega B \to F$ of ΩB on F such that $\partial \sim \rho|_{\Omega B}$, that is, $\partial: \Omega B \to F$ is cyclic. Thus the space F is an H^{∂} -space for $\partial: \Omega B \to F$. Cyclicity can be used to characterize properties of the co-domain of a map.

Theorem 2.7. X is an H^f -space for a map $f: A \to X$ if and only if G(B; A, f, X) = [B, X] for any space B.

Proof. Suppose that X is an H^f -space for a map $f:A\to X$. Then $f:A\to X$ is a cyclic map, and there is a map $F:X\times A\to X$ such that $Fj\sim \nabla(1\vee f)$, where $j:X\vee A\to X\times A$ is the inclusion. Let $g\in [B,X]$. Consider the map $G=F(g\times 1):B\times A\to X$. Then $Gj\sim \nabla(g\vee f)$ and $g\in G(B;A,f,X)$. On the other hand, suppose that G(B;A,f,X)=[B,X] for any space B. Take B=X and consider the identity map $1_X:X\to X$. Since $1_X\in G(X;A,f,X)$, we know that the identity map 1_X is f-cyclic and X is an H^f -space for a map $f:A\to X$.

It is well known fact that if X dominates A and X is an H-space, then A is an H-space. This fact can be generalized as the following corollary.

Corollary 2.8. Let X be an H^i -space for a map $i: A \to X$.

(1) If $i: A \to X$ has a left homotopy inverse $r: X \to A$, then A is an H-space.

(2) If $i: A \to X$ has a right homotopy inverse $r: X \to A$, then X is an H-space.

Proof. (1) Let B be any space. It is sufficient to show that $[B,A] \subset G(B,A)$ for any space B. Since X is an H^i -space for $i:A \to X$, we know, from Theorem 2.7, that G(B;A,i,X) = [B,X]. Thus we have, from Proposition 2.1(5), that $[B,A] = r_*[B,X] = r_*(G(B;A,i,X)) \subset G(B;A,ri,A) = G(B,A,1,A) = G(B,A)$. Thus A is an B-space. (2) We show that $[B,X] \subset G(B,X)$ for any space B. By Theorem 2.7 and Proposition 2.1(1), we can obtain that $[B,X] = G(B;A,i,X) \subset G(B;X,ir,X) = G(B;X,1,X) = G(B,X)$. Thus we know, from Proposition 2.5, that X is an B-space.

Clearly, any H-space is an H^f -space for any map $f:A\to X$, but the converse does not hold.

Example 2.9. Consider the natural pairing $\mu: S^3/S^1 \times S^3 \to S^3/S^1$. Then we know that the Hopf map $\eta: S^3 \to S^2$ is cyclic. Thus S^2 is an H^{η} -space for $\eta: S^3 \to S^2$, but S^2 is not an H-space.

From Proposition 2.1(2) and (3), Proposition 2.5 and Theorem 2.7, we have the following corollary.

Corollary 2.10. X is an H-space if and only if for any space A and any map $f: A \to X$, X is an H^f -space for a map $f: A \to X$.

From some properties of cyclic maps [11], we have the following proposition.

Proposition 2.11.

- (1) If X is an H^f -space for a map $f: A \to X$, then for any map $\theta: B \to A$, X is an $H^{f\theta}$ -space for a map $v\theta: B \to X$.
- (2) If $r: X \to Y$ has a right homotopy inverse and X is an H^f -space for a map $f: A \to X$, then Y is an H^{rf} -space for a map $rf: A \to Y$.
- (3) If X is an H^f -space for a map $f: A \to X$ and Y is an H^g -space for a map $g: B \to Y$, then $X \times Y$ is an $H^{f \times g}$ -space for a map $f \times g: A \times B \to X \times Y$.
- (4) If X is an H^f -space for a map $f: A \to X$ and X is an H^g -space for a map $g: B \to X$, then X is an $H^{\nabla(f \vee g)}$ -space for a map $\nabla(f \vee g): A \vee B \to X$.

Let $f: A \to X$, $f': A' \to X'$, $l: A \to A'$, $k: X \to X'$ be maps. Then a pair of maps $(k, l): (X, A) \to (X', A')$ is called a map from f to f' if the following diagram

is commutative;

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
\iota \downarrow & & \downarrow \downarrow \\
A' & \xrightarrow{f'} & X'.
\end{array}$$

It will be denoted by $(k,l): f \to f'$.

Given maps $f:A\to X$, $f':A'\to X'$, let $(k,l):f\to f'$ be a map from f to f'. Let PX' and PA' be the spaces of paths in X' and A' which begin at * respectively. Let $\epsilon_{X'}:PX'\to X'$ and $\epsilon_{A'}:PA'\to A'$ be the fibrations given by evaluating a path at its end point. Let $p_k:E_k\to X$ be the fibration induced by $k:X\to X'$ from $\epsilon_{X'}$. Let $p_l:E_l\to A$ induced by $l:A\to A'$ from $\epsilon_{A'}$. Then there is a map $\bar f:E_l\to E_k$ such that the following diagram is commutative

$$E_{l} \xrightarrow{\widehat{f}} E_{k}$$

$$p_{l} \downarrow \qquad p_{k} \downarrow$$

$$A \xrightarrow{f} X,$$

where $E_l = \{(a, \xi) \in A \times PA' | l(a) = \epsilon(\xi) \}$, $E_k = \{(x, \eta) \in X \times PX' | k(x) = \epsilon(\eta) \}$, $\bar{f}(a, \xi) = (f(a), f' \circ \xi), p_k(x, \eta) = x, p_l(a, \xi) = a$.

Definition 2.12. Let X be an H^f -space with H^f -structure $F: X \times A \to X$. A map $(k,l): f \to f'$ is called an H^f -primitive with respect to F if there is an associate map $F': X' \times A' \to X'$ of f' such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X \times A & \stackrel{F}{\longrightarrow} & X \\ k \times l \downarrow & & k \downarrow \\ X' \times A' & \stackrel{F'}{\longrightarrow} & X'. \end{array}$$

The following lemmas are standard.

Lemma 2.13. A map $l: C \to X$ can be lifted to a map $C \to E_k$ if and only if $kl \sim *$.

Lemma 2.14 ([7]). Given maps $g_i: A_i \to E_k$, i = 1, 2 and $g: A_1 \times A_2 \to E_k$ satisfying $p_k g|_{A_i} \sim p_k g_i$, i = 1, 2, then there is a map $h: A_1 \times A_2 \to E_k$ such that $p_k h = p_k g$ and $h|_{A_i} \sim g_i, i = 1, 2$.

Theorem 2.15. If X is an H^f -space with H^f -structure $F: X \times A \to X$ and $(k,l): f \to f'$ is an H^f -primitive with respective to F, then there exists an $H^{\bar{f}}$ -structure $\bar{F}: E_k \times E_l \to E_k$ on E_k such that the following diagram is homotopy commutative;

$$E_{k} \times E_{l} \xrightarrow{\bar{F}} E_{k}$$

$$p_{k} \times p_{l} \downarrow \qquad p_{k} \downarrow$$

$$X \times A \xrightarrow{F} X.$$

Proof. Since $(k,l): f \to f'$ is an H^f -primitive with respect to F, there is a map $F': X' \times A' \to X'$ such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X \times A & \stackrel{F}{\longrightarrow} & X \\ \downarrow & & \downarrow \\ X' \times A' & \stackrel{F'}{\longrightarrow} & X'. \end{array}$$

Then $kF(p_k \times p_l) \sim F'(k \times l)(p_k \times p_l) = F'(k \circ p_k \times l \circ p_l) \sim F'(* \times *) \sim *:$ $E_k \times E_l \to X'.$ From Lemma 2.13, there is a lifting $\tilde{F}: E_k \times E_l \to E_k$ of $F(p_k \times p_l):$ $E_k \times E_l \to X$, that is, $p_k \tilde{F} = F(p_k \times p_l).$ Then $p_k \circ \tilde{F}|_{E_k} \sim F|_X \circ p_k \sim p_k \circ 1$ and $p_k \circ \tilde{F}|_{E_l} \sim F|_A \circ p_l \sim f \circ p_l = p_k \circ \bar{f}.$ Thus we have, from Lemma 2.14, that there is a map $\bar{F}: E_k \times E_l \to E_k$ such that $p_k \bar{F} = p_k \tilde{F} = F(p_k \times p_l)$ and $\bar{F}|_{E_k} \sim 1$, $\bar{F}|_{E_l} \sim \bar{f}.$ This proves the theorem.

Taking $f = 1_X$ and l = k, we can obtain the following corollary.

Corollary 2.16 ([17]). If X and X' are H-spaces and $k: X \to X'$ is an H-map, then there is an H-structure on E_k such that $p_k: E_k \to X$ is an H-map.

In 1951, Postnikov [16] introduced the notion of the Postnikov system as follows; A Postnikov system for X (or homotopy decomposition of X) $\{X_n, i_n, p_n\}$ consists of a sequence of spaces and maps satisfying (1) $i_n: X \to X_n$ induces an isomorphism $(i_n)_{\#}: \pi_i(X) \to \pi_i(X_n)$ for $i \leq n$. (2) $p_n: X_n \to X_{n-1}$ is a fibration with fiber $K(\pi_n(X), n)$. (3) $p_n i_n \sim i_{n+1}$. It is well known fact [13] that if X is a 1-connected space having a homotopy type of CW-complex, then there is a Postnikov system $\{X_n, i_n, p_n\}$ for X such that $p_{n+1}: X_{n+1} \to X_n$ is the fibration induced from the path space fibration over $K(\pi_{n+1}(X), n+2)$ by a map $k^{n+2}: X_n \to K(\pi_{n+1}(X), n+2)$.

Theorem 2.17. Let A and X be spaces having the homotopy type of 1-connected countable CW-complexes, and $\{A_n, i'_n, p'_n\}$ and $\{X_n, i_n, p_n\}$ be Postnikov systems

for A and X respectively. If X is an H^f -space with H^f -structure $F: X \times A \to X$, then there exists an H^{f_n} -structure $F_n: X_n \times A_n \to X_n$ for each stage X_n such that

$$X_n \times A_n \xrightarrow{F_n} X_n$$

$$p_n \times p'_n \downarrow \qquad p_n \downarrow$$

$$X_{n-1} \times A_{n-1} \xrightarrow{F_{n-1}} X_{n-1},$$

where f_n is an induced map from f, and all the pair of k-invariants (k_X^{n+2}, k_A^{n+2}) : $f_n \to \tilde{f}_\#$ are H^{f_n} -primitive with respect to F_n , where $\tilde{f}_\#$: $K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ is the induced map by $f: A \to X$.

Proof. Clearly $\{X_n \times A_n, i_n \times i'_n, p_n \times p'_n\}$ is a Postnikov system for $X \times A$. Then we have, by Kahn's result [9, Theorem 2.2], that there are families of maps $f_n: A_n \to X_n$ and $F_n: X_n \times A_n \to X_n$ such that $p_n f_n = f_{n-1} p'_n$ and $i_n f \sim f_n i'_n$, and $p_n F_n = F_{n-1}(p_n \times p'_n)$ and $i_n F \sim F_n(i_n \times i'_n)$ for $n = 2, 3, \cdots$ respectively, and there are homotopy commutative diagrams

$$\begin{array}{cccc} A_n & \xrightarrow{f_n} & X_n \\ k_A^{n+2} \Big\downarrow & & k_X^{n+2} \Big\downarrow \\ K(\pi_{n+1}(A), n+2) & \xrightarrow{\tilde{f}_\#} & K(\pi_{n+1}(X), n+2), \\ X_n \times A_n & \xrightarrow{F_n} & X_n \\ k_X^{n+2} \times k_A^{n+2} \Big\downarrow & k_X^{n+2} \Big\downarrow \end{array}$$

$$K(\pi_{n+1}(X), n+2) \times K(\pi_{n+1}(A), n+2) \xrightarrow{\tilde{F}_{\#}} K(\pi_{n+1}(X), n+2),$$

where $k_A^{n+2}: A_n \to K(\pi_{n+1}(A), n+2)$ and $k_X^{n+2}: X_n \to K(\pi_{n+1}(X), n+2)$ are k-invariants of A and X respectively, $\tilde{f}_\#: K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ and $\tilde{F}_\#: K(\pi_{n+1}(X), n+2) \times K(\pi_{n+1}(A), n+2) \approx K(\pi_{n+1}(X \times A), n+2) \to K(\pi_{n+1}(X), n+2)$ are the induced maps by $f: A \to X$ and $F: X \times A \to X$ respectively. Since $F|_X \sim 1$ and $F_n|_{A_n} \sim f_n$, we know, from Kahn's another result [10, Theorem 1.2], that $F_{n|X_n} = (F|_X)_n \sim 1$ and $F_{n|A_n} = (F|_A)_n \sim f_n$. Thus there exists an H^{f_n} -structure $F_n: X_n \times A_n \to X_n$ for each stage X_n such that

$$X_n \times A_n \xrightarrow{F_n} X_n$$

$$p_n \times p'_n \downarrow \qquad p_n \downarrow$$

$$X_{n-1} \times A_{n-1} \xrightarrow{F_{n-1}} X_{n-1},$$

where f_n is an induced map from f, and all the pair of k-invariants (k_X^{n+2}, k_A^{n+2}) : $f_n \to \tilde{f}_\#$ are H^{f_n} -primitive with respect to F_n , where $\tilde{f}_\#$: $K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ is the induced map by $f: A \to X$.

In fact, the above theorem follows from Theorem 2.15 if we can show that all the pair of k-invariants $(k_X^{n+2}, k_A^{n+2}): f_n \to \tilde{f}_\#$ are H^{f_n} -primitive with respect to F_n .

We can obtain an equivalent condition for E_k is an $H^{\bar{f}}$ -space for \bar{f} .

Theorem 2.18. Let $(k,l): f \to f'$ be a map. Then E_k is an $H^{\bar{f}}$ -space for $\bar{f}: E_l \to E_k$ if and only if there is a map $G: E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \vee p_k \circ \bar{f})$ and $kG \sim *$, where $j: E_k \vee E_l \to E_k \times E_l$ is the inclusion.

Proof. Suppose that E_k is an $H^{\bar{f}}$ -space for $\bar{f}: E_l \to E_k$. Then there is a map $\bar{F}: E_k \times E_l \to E_k$ such that $\bar{F}j' \sim \nabla(1 \vee \bar{f})$. Let $G = p_k \bar{F}: E_k \times E_l \to X$. Then $Gj \sim \nabla(p_k \vee p_k \circ \bar{f})$, where $j: E_k \vee E_l \to E_k \times E_l$ is the inclusion. Since G has a lifting \bar{F} , by Lemma 2.13, we know that $kG \sim *$. On the other hand, suppose there is a map $G: E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \vee p_k \circ \bar{f})$ and $kG \sim *$, where $j: E_k \vee E_l \to E_k \times E_l$ is the inclusion. Since $kG \sim *$, there is a map $H: E_k \times E_l \to E_k$ such that $p_k H \sim G$. For maps $1: E_k \to E_k$ and $\bar{f}: E_l \to E_k$, we can easily know that $p_k H_{|E_k} \sim p_k \circ 1_{E_k}$ and $p_k H_{|E_l} \sim p_k \circ \bar{f}$. Thus we have, from Lemma 2.14, that there is a map $\bar{F}: E_k \times E_l \to E_k$ such that $p_k \bar{F} = p_k H$ and $\bar{F}_{|E_k} \sim 1$ and $\bar{F}_{E_l} \sim \bar{f}$. Thus we know that E_k is an $H^{\bar{f}}$ -space for $\bar{f}: E_l \to E_k$.

Now we can obtain the converse of Theorem 2.15 under some conditions as follows;

Theorem 2.19. Suppose that there are maps $s_k: X \to E_k$ and $s_l: A \to E_l$ such that $p_k s_k \sim 1_X$ and $p_l s_l \sim 1_A$. If there exists an $H^{\bar{f}}$ -structure $\bar{F}: E_k \times E_l \to E_k$ on E_k such that the following diagram is homotopy commutative;

$$egin{aligned} E_k imes E_l & \stackrel{ar{F}}{\longrightarrow} E_k \ p_k imes p_l & p_k \ X imes A & \stackrel{F}{\longrightarrow} X, \end{aligned}$$

then X is an H^f -space with H^f -structure $F: X \times A \rightarrow X$.

Proof. Since E_k is an $H^{\bar{f}}$ -space for $\bar{f}: E_l \to E_k$, there is a map $G: E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \vee p_k \circ \bar{f})$ and $kG \sim *$, where $j: E_k \vee E_l \to E_k \times E_l$ is the inclusion. Consider the map $F = G(s_k \times s_l): X \times A \to X$. Then $Fj' \sim \nabla(1 \vee f)$

and $kF(p_k \times p_l) \sim *$, where $j': X \vee A \to X \times A$ is the inclusion. Thus we know that X is an H^f -space with H^f -structure $F: X \times A \to X$.

3. Co- H^g -space for Maps

Let $g: X \to A$ be a map. A based map $f: X \to B$ is called *g-coclic* [15] if there is a map $\theta: X \to A \vee B$ such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X & \stackrel{\theta}{\longrightarrow} & A \vee B \\ & \downarrow & & \downarrow \\ X \times X & \stackrel{(g \times f)}{\longrightarrow} & A \times B, \end{array}$$

where $j: A \vee B \to A \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. We call such a map θ a coassociated map of a g-cocyclic map f.

In the case $g=1_X:X\to X,\ f:X\to B$ is called *cocyclic* [18]. Clearly any cocyclic map is a g-cocyclic map and also $f:X\to B$ is g-cocyclic iff $g:X\to A$ is f-cocyclic. The dual Gottlieb set DG(X,g,A;B) for a map $g:X\to A$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g=1_X:X\to X$, we called such a set DG(X,1,X;B) the dual Gottlieb set denoted DG(X;B), that is, the dual Gottlieb set is exactly same with the dual Gottlieb set for the identity map. In particular, $DG(X,g,A;K(\pi,n))$ will be denoted by $G^n(X,g,A;\pi)$. Haslam [8] introduced and studied the coevaluation subgroups $G^n(X;\pi)$ of $H^n(X;\pi)$. $G^n(X;\pi)$ is defined to be the set of all homotopy classes of cocyclic maps from X to $K(\pi,n)$.

In general, $DG(X;B)\subset DG(X,g,A;B)\subset [X,B]$ for any map $g:X\to B$ and any space B. However, there is an example in [22] such that $DG(X,B)\neq DG(X,g,A;B)\neq [X,B]$.

The next proposition is an immediate consequence from the definition.

Proposition 3.1.

- (1) For any maps $g: X \to A$, $h: A \to B$ and any space C, $DG(X, g, A; C) \subset DG(X, hg, B; C)$.
- (2) $DG(X,B) = DG(X,1_X,X;B) \subset DG(X,g,A;B) \subset DG(X,*,A;B) = [X,B]$ for any spaces X, A and B.
- $(3)\ DG(X,B)=\cap \{DG(X,g,A;B)|g:X\to A\ is\ a\ map\ and\ A\ is\ a\ space\}.$

- (4) If $h: A \to B$ is a homotopy equivalence, then DG(X, g, A; C) = DG(X, hg, B; c).
- (5) For any map $k: Y \to X$, $k^{\#}(DG(X, g, A; B)) \subset DG(Y, gk, A; B)$.
- (6) For any map $k: Y \to X$, $k^{\#}(DG(X;B)) \subset DG(Y,k,X;B)$.
- (7) For any map $s: B \to C$, $s_{\#}(DG(X, g, A; B)) \subset DG(X, g, A; C)$.

It is well known [7] that $G^n(X; \pi)$ is a subgroup of $H^n(X; \pi)$. Moreover, it is also shown [12] that if B is an H-group, then DG(X, B) is a subgroup of [X, B].

But we do not know whether DG(X, g, A; B) is a group. So we would like to investigate the relationship among DG(X; B), DG(X, g, A; B) and [X, B].

Corollary 3.2.

- (1) If $g: X \to A$ has a left homotopy inverse, then DG(X, g, A; B) = DG(X; B) for any space B. In that case, $G^n(X, g, A; \pi) = G^n(X; \pi)$ is a group.
- (2) If $g: X \to A$ is a map such that $G^n(X, g, A; \pi) \subset g^{\#}(G^n(A; \pi))$, then $G^n(X, g, A; \pi)$ is a subgroup of $H^n(X; \pi)$.

Theorem 3.3. Let $g: X \to A$ be a map and B an H-group. Then

- (1) For any $[\gamma] \in g^{\#}(DG(A;B))$ and any $[\alpha] \in DG(X,g,A;B)$, $[\gamma]+[\alpha] \in DG(X,g,A;B)$.
- (2) For any $[\alpha] \in DG(X, g, A; B), -[\alpha] \in DG(X, g, A; B)$.

Proof. Let $m: B \times B \to B$ and $\mu: B \to B$ be the H-structure and the inverse on B respectively. We can easily know, from Proposition 3.1(7), that $-[\alpha] = [\mu\alpha] = \mu_*([\alpha]) \in DG(X,g,A;B)$ for any $[\alpha] \in DG(X,g,A;B)$. Thus DG(X,g,A;B) is closed under inversion. To show the property (1), let $[\gamma] \in g^\#(DG(A;B))$ and $[\alpha] \in DG(X,g,A;B)$. Since $[\gamma] \in g^\#(DG(A;B))$, there is $[\beta] \in DG(A;B)$ such that $\beta g \sim \gamma: X \to B$. Thus there are maps $\theta_1: A \to A \vee B$ and $\theta_2: X \to A \vee B$ such that $j\theta_1 \sim (1 \times \beta)\Delta$ and $j\theta_2 \sim (g \times \alpha)\Delta$, where $j: A \vee B \to A \times B$ is the inclusion. Let $\lambda = (1 \vee m)i(\theta_1 \vee 1)\theta_2: X \to A \vee B$, where $i: A \vee (B \vee B) \to A \vee (B \times B)$ is the inclusion. Then we have $j\lambda \sim (1 \times m)((1 \times \beta)\Delta \times 1)(g \times \alpha)\Delta = (1 \times m)(g \times \beta g)\Delta \times \alpha)\Delta \sim (g \times m(\gamma \times \alpha)\Delta)\Delta = (g \times (\gamma + \alpha))\Delta$, where $j: A \vee B \to A \times B$ is the inclusion. Thus we know that $[\gamma] + [\alpha] \in DG(X,g,A;B)$.

Corollary 3.4 ([12]).

(1) DG(X; B) is a subgroup of [X, B] for an H-group B.

(2) For any map $g: X \to A$, the group $g^{\#}(G^n(A; \pi))$ acts on $G^n(X, g, A; \pi)$.

The following proposition says that co-*H*-spaces are completely characterized by the dual Gottlieb sets.

Proposition 3.5 ([12]). X is a co-H-space if and only if DG(X, B) = [X, B] for any space B.

Now, for a map $g: X \to A$, we would like to introduce new spaces which can be characterized by the dual Gottlieb sets for a map $g: X \to A$.

Definition 3.6. A space X is called a co-H^g-space for a map $g: X \to A$ if there is a map, a co-H^g-structure, $\theta: X \to X \lor A$ such that $j\theta \sim (1 \times g)\Delta$, where $j: X \lor A \to X \times A$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map.

Proposition 3.7 ([22]). X is a co- H^g -space for a map $g: X \to A$ if and only if DG(X, g, A; B) = [X, B] for any space B.

It is well known fact that if X dominates A and X is a co-H-space, then A is a co-H-space. This fact can be generalized as follows;

Corollary 3.8. Let X be a co-H^r-space for a map $r: X \to A$.

- (1) If $r: X \to A$ has a right homotopy inverse $i: A \to X$, then A is a co-H-space.
- (2) If $r: X \to A$ has a left homotopy inverse $i: A \to X$, then X is a co-H-space.

Proof. (1) Let B be any space. It is sufficient to show that $[A, B] \subset DG(A, B)$. Since X is a co-H-space for a map $r: X \to A$, we have that DG(X, r, A; B) = [X; B]. Thus we know, from Proposition 3.1(5), that $[A, B] = i^{\#}[X, B] = i^{\#}DG(X, r, A; B) \subset DG(A, ri, A; B) = DG(A, 1, A; B) = DG(A, B)$. (2) For any space B, we can obtain, from Proposition 3.7 and Proposition 3.1(1), that $[X, B] = DG(X, r, A; B) \subset DG(X, ir, X; B) = DG(X, 1, X) = DG(X, B)$.

Given maps $g: X \to A$, $g': X' \to A'$, let $(s,r): g' \to g$ be a map from g' to g, that is, the following diagram is commutative;

It is a well known fact that $Y \stackrel{\iota}{\to} cY \to \Sigma Y$ is a cofibration, where $\iota(y) = [y,1]$. Let

 $i_r: X \to C_r$ be the cofibration induced by $r: X' \to X$ from $\iota_{X'}: X' \to cX'$. Let $i_s: A \to C_s$ be the cofibration induced by $s: A' \to A$ from $\iota_{A'}: A' \to cA'$. Then there is a map $\bar{g}: C_t \to C_s$ such that the following diagram is commutative

$$egin{array}{ccc} X & \stackrel{g}{\longrightarrow} & A \\ i_r & & i_s & \\ C_r & \stackrel{ar{g}}{\longrightarrow} & C_s, \end{array}$$

where $C_t = cX' \coprod X/[x',1] \sim t(x')$, and $C_s = cA' \coprod A/[a',1] \sim s(a')$, $\bar{g}: C_t \to C_s$ is given by $\bar{g}([x',t]) = [g'(x'),t]$ if $[x',t] \in cX'$ and $\bar{g}(x) = g(x)$ if $x \in X$, $i_r(x) = x$, $i_s(a) = a$.

Definition 3.9. Let X be a co- H^g -space with co- H^g -structure $\theta: X \to X \lor A$. Then a map $(s,r): g' \to g$ is called a co- H^g -primitive with respect to $\theta: X \to X \lor A$ if there is a coassociate map $\theta': X' \to X' \lor A'$ of g' such that the following diagram is homotopy commutative;

$$\begin{array}{ccc} X' & \xrightarrow{\theta'} & X' \vee A' \\ r \downarrow & & r \vee s \downarrow \\ X & \xrightarrow{\theta} & X \vee A. \end{array}$$

The following lemmas are standard.

Lemma 3.10. Let $f: X \to B$ be a map. Then there is a map $h: C_r \to B$ such that $hi_r = f$ if and only if $fr \sim *$.

Lemma 3.11 ([21]). Let $g_t: C_r \to B_t(t=1,2)$ and $g: C_r \to B_1 \vee B_2$ a map such that $p_t j g i_k \sim g_t i_r(t=1,2)$, where $j: B_1 \vee B_2 \to B_1 \times B_2$ is the inclusion and $p_t: B_1 \times B_2 \to B_t, t=1,2$ are projections. Then there is a map $h: C_r \to B_1 \vee B_2$ such that $g i_r = h i_r$ and $p_t j' h \sim g_t(t=1,2)$.

Theorem 3.12. If X is a co- H^g -space with co- H^g -structure $\theta: X \to X \lor A$ and $(s,r): g' \to g$ is a co- H^g -primitive with respect to θ , then there exists a co- $H^{\bar{g}}$ -structure $\bar{\theta}: C_r \to C_r \lor C_s$ on C_r satisfying commutative diagram

$$\begin{array}{ccc} C_r & \stackrel{\bar{\theta}}{\longrightarrow} & C_r \vee C_s \\ i_r & & i_r \vee i_s \\ X & \stackrel{\theta}{\longrightarrow} & X \vee A. \end{array}$$

Proof. Since $(s,r): g' \to g$ is a co- H^g -primitive with respect to θ , then there is a map $\theta': X' \to X' \vee A'$ satisfying commutative diagram

$$X' \xrightarrow{\theta'} X' \vee A'$$

$$r \downarrow \qquad \qquad r \vee s \downarrow$$

$$X \xrightarrow{\theta} X \vee A.$$

Then we have that $(i_r \vee i_s)\theta r \sim (i_r \vee i_s)(r \vee s)\theta' \sim (i_r \circ r \vee i_s \circ s)\theta \sim *$. Thus we know, from Lemma 3.10, that there is a map $\tilde{\theta}: C_r \to C_r \vee C_s$ such that $\tilde{\theta}i_r = (i_r \vee i_s)\theta$. Then $p_1j\tilde{\theta}i_r = p_1j(i_r \vee i_s)\theta \sim p_1(i_r \times i_s)(1 \times g)\Delta \sim i_r = 1 \circ i_r$ and $p_2j\tilde{\theta}i_r \sim p_2(i_r \times i_s)(1 \times g)\Delta \sim i_s \circ g = \bar{g} \circ i_r$. Thus we have, from Lemma 3.11, that there is a map $\bar{\theta}: C_r \to C_r \vee C_s$ such that $\bar{\theta}i_r = \tilde{\theta}i_r = (i_r \vee i_s)\theta$.

Taking $g = 1_X$ and s = r, we can get the following corollary.

Corollary 3.13 ([6]). If X and X' are co-H-spaces, and $r: X' \to X$ is a co-H-map, then there is a co-H-structure on C_r such that $i_r: X \to C_r$ is a co-H-map.

In 1959, Eckmann and Hilton [1] introduced a dual concept of Postnikov system as follows; A homology decomposition of X consists of a sequence of spaces and maps $\{X_n, q_n, i_n\}$ satisfying (1) $q_n : X_n \to X$ induces an isomorphism $(q_n)_* : H_i(X_n) \to H_i(X)$ for $i \leq n$. (2) $i_n : X_n \to X_{n+1}$ is a cofibration with cofiber $M(H_{n+1}(X), n)$ (a Moore space of type $(H_{n+1}(X), n)$). (3) $q_n \sim q_{n+1} \circ i_n$. It is known by [8] that if X be a 1-connected space having the homotopy type of CW complex, then there is a homology decomposition $\{X_n, q_n, i_n\}$ of X such that $i_n : X_n \to X_{n+1}$ is the principal cofibration induced from $\iota : M(H_{n+1}(X), n) \to cM(H_{n+1}(X), n)$ by a map $r : M(H_{n+1}(X), n) \to X_n$ which is called the dual Postnikov invariants.

From Theorem 3.12, we have the following corollary.

Corollary 3.14. Let X and A be spaces having the homotopy type of 1-connected countable CW-complexes, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ be homology decompositions for X and A respectively. If X is a co- H^g -space with co- H^g -structure $\theta: X \to X \lor A$ and for each $n \ge 2$, the pair of r daul invariants $(r_A^n, r_X^n): \tilde{g}_* \to g_n$ are co- H^{g_n} -primitive with respect to $\theta_n: X_n \to X_n \lor A_n$, where $\tilde{g}_*: M(H_{n+1}(X), n) \to M(H_{n+1}(A), n)$ and g_n are induced maps from $g: X \to A$, then there exists a co- $H^{g_{n+1}}$ -structure on X_{n+1} such that $(i'_{n+1}, i_{n+1}): g_n \to g_{n+1}$ is a co- $H^{g_{n+1}}$ -primitive with respect to $\theta_n: X_n \to X_n \lor A_n$.

For a map $f: X \to Y$, we write $conn \ f = n$ if the induced map of homotopy groups $\pi_k(f): \pi_k(X) \to \pi_k(Y)$ is an isomorphism for k < n and an epimorphism for k = n. In particular, for the constant map $C_*: X \to *$ we put $conn \ X = conn \ C_*$. Let $X \flat Y$ and $X \land Y$ be the flat product and the smash product of spaces X and Y, respectively. There is a homotopy equivalence $X \flat Y \simeq \Sigma \Omega X \land \Omega Y$ (see e.g., [8, p. 216]). We now show that the converse of Theorem 3.12 also holds, provided some conditions are satisfied.

Lemma 3.15. For any two maps $f: X \to Y$, $g: X' \to Y'$, $conn(f \triangleright g) = min\{conn(f) + conn(Y'), conn(X) + conn(g)\}$

Proof. Since $f \triangleright g = (f \triangleright 1_{Y'}) \circ (1_X \triangleright g) : X \triangleright X' \xrightarrow{1_X \triangleright g} X \triangleright Y' \xrightarrow{f \triangleright 1_Y} Y \triangleright Y'$ and $conn(f \triangleright 1_{Y'}) = conn(\Sigma \Omega(f) \wedge 1_{\Omega Y'}) = conn(f) + conn(Y')$ and $conn(1_X \triangleright g) = conn(X) + conn(g)$, we have that

$$conn (f \flat g) = \min\{conn (f) + conn (Y'), conn (X) + conn (g)\}.$$

Lemma 3.16. ([19, Theorem 7.16]) For a map $f: X \to Y$, conn (f) = n if and only if (1) for every CW complex K with dim K < n, $f_{\#}: [K, X] \to [K, Y]$ is one-to-one correspondence (2) for every CW complex K with dim K = n, $f_{\#}: [K, X] \to [K, Y]$ is onto.

Theorem 3.17. Let X be a simply connected co- H^g -space with co- H^g -structure $\theta: X \to X \lor A$. Let X' be a simply connected co-H-space and $(s,r): g' \to g$ a map, where $g': X' \to A'$ is a map. If there is a co- $H^{\bar{g}}$ -structure $\bar{\theta}: C_r \to C_r \lor C_s$ on C_r satisfying commutative diagram

and dim $X' < \min\{conn(X') + conn(C_s), conn(A') + conn(X)\}, then(s, r) : g' \to g$ is a co-H^g-primitive with respect to θ .

Proof. Let $\mu': X' \to X' \vee X'$ be a co-H-structure on X'. It is known by [2] that a co-H-structure μ' on a 1-connected space X' admits an inversion. It is also known by [14] that for a co-H-space X' with a co-H-structure μ' and an inversion map, and any spaces X and A, there is a split short exact sequence

$$0 \to [X', XbA] \to [X', X \lor A] \begin{array}{c} j\#\\ \rightleftarrows\\ \gamma \end{array} [X', X \times A] \to 0,$$

where $j_{\#}\gamma = 1$ with $\gamma([\alpha_1, \alpha_2]) = [(\alpha_1 \vee \alpha_2)\mu']$. Denote the induced operation on $[X', X \vee A]$ additively and let $\beta = 1 - \gamma j_{\#} : [X', X \vee A] \to [X', X \vee A]$. Since $j_{\#}\beta = 0$, we know that $\beta : [X', X \vee A] \to [X', XbA]$. Consider the commutative diagram

Then $(i_rb\ i_s)_\#\beta\theta_\#([r])=\beta'\bar{\theta}_\#i_\#([r])=\beta'\bar{\theta}_\#([i_r\circ r])=0$. Clearly $conn\ i_r=conn\ X'$ and $conn\ i_s=conn\ A'$. By Lemma 3.15, we know that $conn\ (i_rb\ i_s)=\min\{conn\ i_r+conn\ C_s,conn\ i_s+conn\ X\}$ and $\dim X'< conn\ (i_rb\ i_s)$. Thus we have, from Lemma 3.16, that $(i_rb\ i_s)_\#$ is an isomorphism, so we get that $\beta\theta_\#([r])=0$. From the definition of β , we know that $0=\beta\theta_\#([r])=(1-\gamma j_\#)([\theta r])=[\theta r]-\gamma[j\theta r]$. Thus we have that $\theta r\sim (p_1j\theta r\vee p_2j\theta r)\mu'\sim (r\vee g\circ r)\mu'\sim (r\vee s)(1\vee g')\mu'$ and $(s,r):g'\to g$ is a co- H^g -primitive with respect to θ .

Taking $g = 1_X$, $g' = 1_{X'}$ and s = r, we have the following corollary.

Corollary 3.18 ([5]). Let $r: X' \to X$ be a map with X' and X 1-connected co-H-spaces. If the mapping cone C_r is a co-H-space, $i_r: X \to C_r$ a co-H-map and $\dim X' < conn X' + \min\{conn X, conn C_r\}$, then $r: X' \to X$ is a co-H-map.

In particular, let M(A, n) be the Moore space of type (A, n) for $n \geq 2$. Then $\dim M(A, n) \leq n + 1$ and $\operatorname{conn} M(A, n) = n - 1$. Thus we have the following corollary.

Corollary 3.19. Let X be a 2-connected co- H^g -space with co- H^g -structure $\theta: X \to X \vee A$. Let $(s,r): g' \to g$ be a map, where $g': M(A,n) \to M(A',n)$ $(n \geq 2)$ is a map. If there is a co- $H^{\bar{g}}$ -structure $\bar{\theta}: C_r \to C_r \vee C_s$ on C_r satisfying commutative diagram

$$\begin{array}{ccc} C_r & \stackrel{\bar{\theta}}{\longrightarrow} & C_r \vee C_s \\ i_r & & & i_r \vee i_s \\ X & \stackrel{\theta}{\longrightarrow} & X \vee A, \end{array}$$

then $(s,r):g'\to g$ is a co-H^g-primitive with respect to θ .

References

- 1. B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, ibid, 248(1959), 2054-2558.
- 2. T. Ganca: Cogroups and suspensions. Invent. Math. 9 (1970), 185-197.
- D. H. Gottlieb: A certain subgroup of the fundamental group. Amer. J. Math. 87 (1965), 840-856.
- 4. D. H. Gottlieb: Evaluation subgroups of homotopy groups. Amer. J. Math. 91 (1969), 729-756.
- M. Golasinski and J. Klein: On maps into a co-H-space. Hiroshima Math. J. 28 (1998), 321-327.
- P. Hilton, G. Mislin & J. Roitberg: On co-H-spaces. Comment. Math. Helv. 53 (1978), 1-14.
- 7. H. B. Haslam: G-spaces and H-spaces. Ph. D. Thesis, Univ. of California, Irvine, 1969.
- 8. P. Hilton: Homotopy Theory and Duality, Gordon and Breach Science Pub., 1965.
- 9. D. W. Kahn: Induced maps for Postnikov systems. Trans. Amer. Math. Soc. 107 (1963), 432-450.
- 10. D. W. Kahn: A note on *H*-spaces and Postnikov systems of spheres. *Proc. Amer. Math. Soc.* **15** (1964), 300-307.
- 11. K. L. Lim: On cyclic maps. J. Austral. Math. Soc. (Series A) 32 (1982), 349-357.
- K. L. Lim: Cocyclic maps and coevaluation subgroups. Canad. Math. Bull. 30 (1987), 63-71.
- 13. R. E. Mosher & M. C. Tangora: Cohomology operations and applications in homotopy theory, Harper & Row, New York, 1968.
- J. L. Navarro: On the existence and classification of co-H-structures. Collect. Math. 30 (1979), 103-111.
- 15. N. Oda: The homotopy of the axes of pairings. Canad. J. Math. 17 (1990), 856-868.
- M. Postnikov: On the homotopy type of polyhedra. Dokl. Akad. Nauk. SSSR 76(6) (1951), 789-791.
- 17. J. D. Stasheff: On extensions of *H*-spaces. *Trans. Amer. Math. Soc.* **105** (1962), 126-135.
- 18. K. Varadarajan: Genralized Gottlieb groups. J. Indian Math. Soc. 33 (1969), 141-164.
- 19. G. W. Whitehead: Elements of homotopy theory, Springer-Verlag, New York Inc., 1978.
- M. H. Woo & Y. S. Yoon: T-spaces by the Gottlieb groups and duality. J. Austral. Math. Soc. (Series A) 59 (1995), 193-203.
- Y. S. Yoon: Lifting Gottlieb sets and duality. Proc. Amer. Math. Soc. 119(4) (1993), 1315-1321.
- 22. Y. S. Yoon: The generalized dual Gottlieb sets. Topology Appl. 109 (2001), 173-181.

- 23. Y. S. Yoon: Generalized Gottlieb groups and generalized Wang homomorphisms. *Sci. Math. Japon.* **55**(1) (2002),139-148.
- 24. Y. S. Yoon & J. O. Yu: v-semicyclic maps and fuction spaces. J. Chungcheong Math. Soc. 9 (1996), 77-87.

DEPARTMENT OF MATHEMATICS EDUCATION, HANNAM UNIVERSITY, DAEJEON 306-791, KOREA Email address: yoon@hannam.ac.kr