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H/-SPACES FOR MAPS AND THEIR DUALS

YEON SO0 YOON

ABSTRACT. We define and study a concept of H”-space for a map, which is a gener-
alized concept of an H-space, in terms of the Gottlieb set for a map. For a principal
fibration Ex — X induced by k : X — X’ from ¢ : PX' — X', we can obtain a
sufficient condition to having an H”-structure on Ej, which is a generalization of
StashefI’s result {17]. Also, we define and study a concept of co- H9-space for a map,
which is a dual concept of HY-space for a map. Also, we get a dual result which is
a generalization of Hilton, Mislin and Roitberg’s result [6].

1. INTRODUCTION

A map f: A — X is cyclic [18] if there is a map F : X x A — X such that
F|x ~1x and F|4 ~ f. It is clear that a space X is an H-space if and only if the
identity map of X is cyclic. We call a space X as an HY-space if there is a cyclic
map f: A — X. We show that if a space X is an H-space, then for any spacc A
and any map f: A — X, X is an H¥-space for a map f : A — X, but the conversc
docs not hold. Let py : Ex — X be a principal fibration induced by &k : X — X’
from € : PX' — X’'. Stasheff [17] showed that if X and X’ are H-spaces, and
k: X — X'is an H-map, then there is an H-structure on Ej, such that py : By — X
is an H-map. We can generalize the above result as follows. If X is an H7-spacc
with H/-structure F : X x A — X and X’ is an Hf -space with H/ -structurc
F': X'x A" - X' such that kF ~ F'(kx 1) : X x A — X', then therc exists an H/-
structurc F : Ey x E; — E), on E}, such that pF ~ F(pr xpp) : Ex x B} — X. Also,
we can show that if X is an H/-space with H/-structure F' : X x A — X, then there
exists an H/»-structure F, : X,, X A, — X, for each Postnikov stage X,, of X such

that p,Fy, ~ Fy_1(pn X p},) : X» X Ap — X, _1, where f,, is an induced map from

Received by the editors April 30, 2007 and, in revised form, July 18, 2007.
2000 Mathematics Subject Classification. 55P45, 55P35.

Key words and phrases. H’-spaces for maps, co-H9-spaces for maps.
This work was supported by Hannam University Research Fund, 2006.

© 2007 Korea Soc. Math. Educ.
289



290 YEON S00 YOON

f, and all the pair of k-invariants (k}”,kﬁ”) D fp— f# arc Hf»-primitive with
respect to F,, where f# : K(mp41(A),n+2) — K(mp41(X),n+2) is the induced map
by f : A — X. On the other hand, we define and study a concept of co-H9-space
of a map, which is a dual concept of H/-spacc for a map. In 1978, Hilton, Mislin
and Roitberg (6] showed that if X and X’ are co-H-spaces, and 7 : X! — X is a co-
H-map, then there is a co-H-structure on C, such that i, : X — C, is a co-H -map.
Then we can obtain a generalization of the above result to showing that if X is a co-
HY-space with co- H9-structure 8 : X — XVAand X'is a co—Hgl—spa,cc with co-HY -
structurc ' : X' — X’V A’ such that (rV s)8 ~ 0r : X’ — X V A, then there cxists
a co-HY-structure 8 : C, — C, vV C, on C, satisfying (i, V i5)0 ~ 0i, : X — C, V Cs.
In 1998. Golansinski and Klein [5] obtained some sufficient conditions for a map
r: X" — X is a co-H-map as follows. Let r : X’ — X be a map with X’ and X
1-connected co-H-spaces. If the mapping cone C, is a co-H-space, i, : X — C, a
co-H-map and dim X’ < conn X'+ min{conn X, conn C,}, then r : X' — X is a co-
H-map. We can gencralize the above result as follows: Let X be a simply connccted
co-H9-space with co-H9-structure 6§ : X — X V A. Let X’ be a simply connected
co-H-space and (s,7) : ¢ — g a map, where ¢’ : X’ — A’ is a map. If there is a
co-H3-structure 8 : C, — C,VCs on C, satisfying (i, Vis)0 ~ 0i, : X — C,VC, and
dim X’ < min{conn (X') + conn (Cs), conn (A’) + conn (X)}, then (s,7) : ¢ — g is
a co-HY-primitive with respect to 6.

2. HY-SPACES FOR MAPS

Let f: A — X be a map. A based map g: B — X is called f-cyclic [15] if there
is a map ¢ : B x A — X such that the diagram

AxB %, x

i dl
AvB YY), xyx

is homotopy commute, where j : AVB — Ax B is the inclusionand V: XVX — X
is the folding map. We call such a map ¢ an associated map of a f-cyclic map
g. Clearly, g is f-cyclic iff f is g-cyclic. In the case, f = 1x : X — X, ¢ :
B — X is called cyclic [18]. We denote the set of all homotopy classes of f-cyclic
maps from B to X by G(B; A, f,X) which is called the Gottlieb set for a map
f:A— X Inthecase f = 1x : X — X, we called such a set G(B; X,1,X)
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the Gottlieb set denoted G(B; X). In particular, G(S™; A, f, X) will be denoted
by Gn(A, f,X). Gottlieb [3, 4] introduced and studied the evaluation subgroups
Gn(X) = Gp(X, 1, X) of mp(X).

In general, G(B; X) € G(B; A, f,X) C [B,X] for any map f: A — X and any
spacc B. However, there is an example [23] such that G(B, X) # G(B; A, f, X) #
[B, X].

The next proposition is an immediate consequence from the definition.

Proposition 2.1.

(1) For any maps f : A — X, 8 : C — A and any space B, G(B; A, f,X) C
G(B;C, f0,X).

(2) G(B,X) = G(B; X,1x,X) C G(B; A, f,X) C G(B;A,* X) = [B,X] for any
spaces X, A and B.

(3) G(B,X) =n{G(B;A, f,X)|f : A— X is a map and A is a space}.

(4) If h: C — A is a homotopy equivalence, then G(B; A, f,X) = G(B;C, fh, X).
(5) For anymap k: X =Y, ky(G(B; A, f, X)) C G(B; A, kf,Y).

(6) For any map k: X —Y, ky(G(B,X)) C G(B; X, k,Y).

(7) For any map s : C — B,s*(G(B; A, f, X)) C G(C; A, f,X).

From Proposition 2.1(1), we have the following corollary.

Corollary 2.2. If f : A — X has a right homotopy inverse, then G(B; A, f,X) =
G(B, X) for any space B. In that case, Gn(A, f, X) = Gp(X).

Let Map (A, X) be the space of continuous maps from A to X with compact open
topology. For a based map f : A — X, lct Map(A, X; f) be the path component
of Map (A, X) containing f. Let Map,(A, X) and Map.(A, X; f) be the spaces of
base point preserving maps in Map (A, X) and Map (A, X; f) respectively. Clearly,
the cvaluation map w : Map(A,X) — X is a fibration. Moreover, the restriction
to path component wy = wiarep(a,x;5) : Map (4, X; f) — X is a fibration with fiber
Map.(A, X; ).

Proposition 2.3 ([24]). For the evaluation map w : Map (A, X; f) — X,
wy([B, Map (A, X; f)]) = G(B; A, f, X).
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Thus we have the following corollary.

Corollary 2.4. Let B be a co-H-group. Then G(B; A, f, X) is a subgroup of [B, X]
forany f 1 A — X.

Clearly, a spacc X is an H-spacc means the identity map 1x : X — X is cyclic.
"Then the following proposition says that H-spaces are completely characterized by
the Gottlicb scts.

Proposition 2.5 ([11]). X is an H-space if and only if G(B, X) = [B, X] for any
space B.

Now, for a map f: A — X, we would like to introduce new spaces which can be
charactcrized by the Gottlicb sets for a map f: A — X.

Definition 2.6. A spacc X is called an Hf-space for a map f : A — X if there
is a map, H/-structure on X, F : X x A — X such that Fj ~ V(1V f), where
j: XVA— X x Ais the inclusion.

For the dual Puppe sequence of a fibration --- — QF — QB SriEX B,
we have an opcration (8, p. 97] p: F x QB — F of QB on F such that 8 ~ p|nz,
that is, 0 : QB — F is cyclic. Thus the space F is an H-space for 8 : QB — F.
Cyclicity can be used to characterize properties of the co-domain of a map.

Theorem 2.7. X is an H7 -space for a map f : A — X if and only if G(B; A, 5X)
= [B, X] for any space B.

Proof. Suppose that X is an Hf-space for a map f:A— X. Then f: A —- X
is a cyclic map, and there is a map F : X x A — X such that Fj ~ V(1V f),
where j : X VA — X x A is the inclusion. Let g € [B, X]. Consider thc map
G=F(gx1):BxA— X. Then Gj ~V(gV f) and g € G(B; A, f,X). On the
other hand, suppose that G(B; 4, f, X) = [B, X] for any space B. Take B = X and
consider the identity map 1x : X — X. Since 1x € G(X; A, f, X), we know that
the identity map 1x is f-cyclic and X is an H/-space for amap f: A — X. g

It is well known fact that if X dominates A and X is an H-space, then A is an
H-space. This fact can be generalized as the following corollary.

Corollary 2.8. Let X be an H*-space for a map i : A — X.
(1) If i : A — X has a left homotopy inverse 7 : X — A, then A is an H-space.
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(2) If i : A — X has a right homotopy inverse r : X — A, then X 1is an H-space.

Proof. (1) Let B be any space. It is sufficient to show that [B, A] C G(B, A) for
any spacc B. Sincc X is an H'space for i : A — X, we know, from Theorem
2.7, that G(B;A,i,X) = [B,X]. Thus we have, from Proposition 2.1(5), that
[B,A] = r[B, X] = 1.(G(B; A,i, X)) C G(B; A,ri, A) = G(B,A,1,A) = G(B, A).
Thus A is an H-space. (2) We show that [B, X] C G(B, X) for any space B. By
Theorem 2.7 and Proposition 2.1(1), we can obtain that (B, X] = G(B;A,4,X) C
G(B; X,ir,X) = G(B; X,1,X) = G(B,X). Thus we know, from Proposition 2.5,
that X is an H-space. U

Clearly, any H-spacc is an Hf-space for any map f : A — X, but the converse
docs not hold.

Example 2.9. Consider the natural pairing p : $%/51x 83 — §3/8%. Then we know
that thc Hopf map 7 : §3 — S? is cyclic. Thus S? is an H”-space for 7 : 83— 82,
but S2 is not an H-space.

From Proposition 2.1(2) and (3), Proposition 2.5 and Theorem 2.7, we have the
following corollary.

Corollary 2.10. X is an H-space if and only if for any space A and any map
f:A— X, X is an Hf -space for a map f: A — X.

From some properties of cyclic maps [11], we have the following proposition.

Proposition 2.11.

(1) If X is an HY-space for a map f : A — X, then for any map 6 : B — A, X is
an H®-space for a map v0 : B — X.

(2) If r : X — Y has a right homotopy inverse and X is an H’-space for a map
f:A—= X, thenY is an H" -space for a maprf: A—Y.

(3) If X is an H'-space for a map f : A — X and Y is an H9-space for a map
g:B—Y, then X xY is an H/*9-space for amap f xg: Ax B— X xY.

(4) If X is an Hf-space for a map f : A — X and X is an H9-space for a map
g: B — X, then X is an HVUV9 _space for a map V(fVg): AVB — X.

Let f:A— X, fl: A - X', 1:A— A, k:X — X' bemaps. Then a pair of
maps (k,1) : (X, A) — (X', A") is called a map from f to f’ if the following diagram
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is commutative;

a2 x
It will be denoted by (k,1) : f — f'.
Givenmaps f: A— X, f': A’ - X', It (k,l) : f — f' bc a map from f to f’. Let
PX' and PA’ be the spaces of paths in X’ and A’ which begin at * respectively. Let
ex' : PX' — X" and €4 : PA' — A’ be the fibrations given by evaluating a path at
its end point. Let py : Ex — X be the fibration induced by k : X — X’ from ey:.
Let p; : E; — A induced by [ : A — A’ from e4. Then there is a map f : E; — Ej,

such that the following diagram is commutative

E; —z—>Ek

A1 x
where E; = {(a.€) € A x PA'|l(a) = €(£)} , Ex, = {(x,n) € X x PX'|k(z) = ¢(n)},
f_'(aif) = (f(a)a fl © E)a Pk(l’s’ﬂ) =z, pl(aag) = a.

Definition 2.12. Let X be an H/-space with H/-structure F : X x A — X. A map
(k,1) : f — f'is called an H7 -primitive with respect to F if there is an associate map
F': X'"x A" - X' of f’ such that the following diagram is homotopy commutative;

XxA £ x

wl ]

X' xA . x

The following lemmas arc standard.

Lemma 2.13. A map |l : C — X can be lifted to a map C — Ei if and only if
kl ~ x.

Lemma 2.14 ([7]). Given maps g; : A; — Ei, i =1, 2 and g : A} x Ay — E}
satisfying prgla, ~ Prgi, 1 = 1, 2, then there is a map h : Ay X Ay — E;, such that
prh =prg and hla, ~ g;,i =1, 2.



H7.SPACES FOR MAPS AND THEIR DUALS 295

Theorem 2.15. If X is an H/-space with Hf -structure F : X x A — X and
(k,0) : f — f' is an H/-primitive with respective to F, then there exists an
H _structure F : Ey x By — Ey on Ey such that the following diagram is homotopy
commutative;

EkXEl —F>Ek

Pk szl Pkl

XxA £, x

Proof. Since (k,l) : f — f'is an H-primitive with respect to F, therc is a map
F': X' x A’ — X’ such that the following diagram is homotopy commutative;

XxA £, x

kxll kl

X' xA o x
Then kF(pk X pl) ~ F’(k) X l)(pk X pl) = F’(k o P X l Opl) ~ FI(* X *) ~ ko
Ef x E; — X'. From Lemma 2.13, there is a lifting ' : Ey x E; — Ej of F(py xp;)
Ei x E; — X, that is, pF = F(p; x p1). Then py oﬁ‘lEk ~ F|x opg ~pr ol and
pkol:“lEl ~ Flgop; ~ fop; = prof. Thus we have, from Lemma 2.14, that there is a
map F : Ey x E; — Ej, such that py F = py F' = F(py, X p;) and Flg, ~1, F|lg ~ f.
This proves the theorem. O

Taking f = 1x and [ = k, we can obtain the following corollary.

Corollary 2.16 ([17]). If X and X' are H-spaces and k : X — X' is an H-map,
then there is an H-structure on Ey such that py : Ex — X is an H-map.

In 1951, Postnikov [16] introduced the notion of the Postnikov system as follows;
A Postnikov system for X (or homotopy decomposition of X) {Xy,in,pn} consists
of a sequence of spaces and maps satisfying (1) i, : X — X,, induces an isomorphism
(in)g : m(X) — m(X,) for i < mn. (2) pn : Xp — X,_1 is a fibration with fiber
K(ma(X),n). (3) Pnin ~ int1. It is well known fact [13] that if X is a 1-connected
space having a homotopy type of CW-complex, then there is a Postnikov system
{Xn,%n,pn} for X such that p, 1 : X1 — X, is the fibration induced from the path
space fibration over K(m,41(X),n + 2) by a map k"2 : X,, — K(mp1(X),n + 2).

Theorem 2.17. Let A and X be spaces having the homotopy type of 1-connected
countable CW -complexes, and {An,i,,p)} and {X,,in,pn} be Postnikov systems
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for A and X respectively. If X is an H/ -space with HY -structure F: X x A — X,
then there exists an HIn-structure F, : Xp x Ay — X, for each stage X,, such that

X, x4, . x,
PnXp;sz p"l
F_
X —1 X A -1 —‘—‘ X —15

where f, is an induced map from f, and all the pair of k-invariants (k}”,kﬁ”):
fn — f# are H-primitive with respect to F,,, where f# : K(mp1(A)yn + 2) —
K(mny1(X),n+2) is the induced map by f : A — X.

Proof. Clearly {X,, X Ap,in X i, pn x pl,} is a Postnikov system for X x A. Then
we have, by Kahn’s result {9, Theorem 2.2], that there arc familics of maps f, :
Ap — Xn and Fy, : X x Ay — X, such that p,fp, = fu_1p), and inf ~ fnih, and
Pnky = Fo_1(pn x p),) and inF ~ F (i, x i) for n = 2,3, - - - respectively, and there
arc homotopy commutative diagrams

An L X,
kz+2l k;+2l
f;
K(mny1(4),n +2) — K(mn41(X),n +2),
X, x An N X,
Kyt xknt? l ko2 l

K (M 1(X),n +2) x K(Tns1(A),n+2) — 2o Kt (X),n+2),

where k;“+2 : Ap — K(mp41(A),n +2) and k}” 1 Xy — K(mpp1(X),n + 2) are
k-invariants of A and X respectively, fu : K(mni1(A),n+2) — K(mps1(X),n + 2)
and Fy : K(mp41(X),n + 2) X K(Tnp1(A),n + 2) ~ Ky (X x A)yn + 2) —
K(mn+1(X),n + 2) are the induced maps by f : A > X and F: X x A —» X
respectively. Since Fix ~ 1 and F,|4, ~ fn, we know, from Kahn’s another result
(10, Theorem 1.2], that F, X, = (Flx)n ~ 1 and Fy 4, = (F|a)n ~ fa. Thus there
exists an H/»-structure F, : X,, x A, — X, for each stage X,, such that

X, x A, -, x,

Pn xp&l Pn l

Fooa
ne1 X Ap1 — X,_1,
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where f, is an induced map from f, and all the pair of k-invariants (k}“, kZH) :
fn — fa arc Hf-primitive with respect to F,,, where f# : K(mpg1(A),n +2) —
K(mp41(X),n + 2) is the induced map by f: A — X. g

In fact, the above theorem follows from Theorem 2.15 if we can show that all the
pair of k-invariants (k%2 k7*2) : f, — fy arc H/»-primitive with respect to F,.

We can obtain an cquivalent condition for Ej is an H f -space for f.

Theorem 2.18. Let (k1) : f — f’ be a map. Then Ej is an HY -space for f : B, —
Ey if and only if there is a map G : Ey x E; — X such that Gj ~ V(px V pp o f)
and kG ~ *, where j : Ex V E; — Ei x E; is the inclusion.

Proof. Suppose that E is an H f -space for f : E; — Ei. Then there is a map
F : E, x E; — Ej, such that Fj' ~V(1V f). Let G = pF : Ex x E; — X. Then
Gj ~ V(pr Vpr o f), where j : E, V E; — Ej, x E; is the inclusion. Since G has
a lifting F, by Lemma 2.13, we know that kG ~ *. On the other hand, supposc
there is a map G : Ex x E; — X such that Gj ~ V(pg V pr o f) and kG ~ %, where
Jj : ExVE; — Epx Ej is the inclusion. Since kG ~ *, thereis amap H : E, x E; — E
such that prH ~ G. For maps 1 : Ex — E; and f : E; — Ej, we can casily know
that pH\g, ~ pr o 1g, and ppH|p, ~ pr o f. Thus we have, from Lemma 2.14, that
there is a map F : Ey, x E; — E;, such that ppF' = pi H and Fig, ~1and Fg ~ f.
Thus we know that Ej is an H/-space for f: E; — Ej. 0

Now we can obtain the converse of Theorem 2.15 under some conditions as follows;

Theorem 2.19. Suppose that there are maps s : X — Ei and s; : A — E; such
that prsk ~ 1x and pis; ~ 14. If there exists an HY -structure F : Ey, x E; — Ey on
Ey, such that the following diagram is homotopy commutative;

EkXEl —F>Ek

kaml Pkl

XxA -2 x,
then X is an Hf-space with HY -structure F: X x A — X.

Proof. Since Ej, is an Hf_-space for f: E; — Ey, thercisamap G : Ex x E; —» X
such that Gj ~ V(px V px o f) and kG ~ x, where j : E, V E; — Ej x Ej is the
inclusion. Consider the map F = G(sg x 5;) : X x A — X. Then Fj' ~ V(1 V f)
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and kF(pr x p;) ~ %, where 5 : X VA — X x A is the inclusion. Thus we know
that X is an H/-spacc with H-structure F: X x A — X. ]

3. Co-HY9-SPACE FOR MAPS

Let g: X — A be a map. A based map f: X — B is called g-coclic [15] if there
isamap #: X — AV B such that the following diagram is homotopy commutativc;

X —-%., avB

Al ’l
xxx W9 o4xB

where j : AV B — A x B is the inclusion and A : X — X x X is the diagonal map.
We call such a map @ a coassociated map of a g-cocyclic map f.

Inthecase g =1x : X - X, f: X — B is called cocyclic [18]. Clearly any
cocyclic map is a g-cocyclic map and also f : X — B is g-cocyclic iff g: X —>Ais
f-cocyclic. The dual Gotilieb set DG(X, g, A; B) for a map g : X — A is the set of
all homotopy classes of g-cocyclic maps from X to B. In the case g=1lx: X — X,
we called such a set DG(X, 1, X; B) the dual Gottlieb set denoted DG(X; B), that is,
the dual Gottlicb set is exactly same with the dual Gottlieb set for the identity map.
In particular, DG(X, g, A; K(m,n)) will be denoted by G™(X, 9,A; 7). Haslam [8]
introduced and studied the coevaluation subgroups G™(X; ) of H™ (X;m). GM(X;7)
is defined to be the set of all homotopy classes of cocyclic maps from X to K (m,n).

In general, DG(X;B) ¢ DG(X,g,A;B) C [X,B] for any map g : X — B
and any space B. However, there is an example in [22] such that DG(X, B) #
DG(X,g4,A; B) # [X, B.

The next proposition is an immediate consequence from the definition.

Proposition 3.1.

(1) For any maps g : X — A, h : A — B and any space C, DG(X,q,A;C) C
DG(X,hg,B;C).

(2) DG(X,B) = DG(X,1x,X;B) C DG(X,9,A; B) ¢ DG(X,*,A;B) = [X, B]
for any spaces X, A and B.

(3) DG(X,B) =N{DG(X,g9,4;B)|g : X — A is a map and A is a space}.
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(4) Ifh : A — B is a homotopy equivalence, then DG(X, g, A;C) = DG(X, hg, B;c).
(5) For any map k:Y — X, k#(DG(X, g, A; B)) C DG(Y, gk, A; B).

(6) For any map k:Y — X, k#*(DG(X; B)) ¢ DG(Y,k,X;B).

(7) For any map s: B — C,s4(DG(X, g,A; B)) C DG(X, g, A;C).

It is well known [7] that G™(X; 7} is a subgroup of H"(X; 7). Moreover, it is also
shown [12] that if B is an H-group, then DG(X, B) is a subgroup of [X, B].

But we do not know whether DG(X, g, A; B) is a group. So we would like to
investigate the relationship among DG(X; B), DG(X, g, A; B) and [X, B].

Corollary 3.2.

(1) If g : X — A has a left homotopy inverse, then DG(X, g, A; B) = DG(X; B) for
any space B. In that case, G"(X, g, A;7) = G*(X;7) is a group.

(2) If g: X — A is a map such that G™(X, g, A;7) C g*(G"(A; 7)), then G*(X, g,
A; ) is a subgroup of H™(X;n).

Theorem 3.3. Let g: X — A be a map and B an H-group. Then

(1) For any [1] € g#(DG(A; B)) and any [a] € DG(X, g, 4; B), h]+[a] € DG(X, g,
A; B).

(2) For any [a] € DG(X, g, A; B), —[a] € DG(X, g, A; B).

Proof. Let m: B x B — B and i : B — B be the H-structure and the inverse on
B respectively. We can easily know, from Proposition 3.1(7), that —[a] = [pa] =
p«([a]) € DG(X,g,A; B) for any [a] € DG(X,g,A; B). Thus DG(X,g,4; B) is
closed under inversion. To show the property (1), let [y] € ¢#(DG(A;B)) and
[a] € DG(X, g, A; B). Since [7] € g* (DG(A; B)), there is [3] € DG(A; B) such that
8g ~«:X — B. Thus there are maps §; : A — AV B and 8 : X — AV B such that
J01 ~ (1 x 8)A and j6; ~ (g x a)A, where j : AV B — A x B is the inclusion. Let
A= (1vm)i(61V1)0; : X — AVB, where i : AV(BVB) — AV(Bx B) is the inclusion.
Then we have jA ~ (1 x m)((1 x 8)A x 1)(g x a)A = (1 x m)(g X 89)A x a)A ~
(9 x m(y x a)A)A = (g x (y + a))A, where j : AV B — A x B is the inclusion.
Thus we know that [v] + [a] € DG(X, g, A; B). 0

Corollary 3.4 ([12]).
(1) DG(X; B) is a subgroup of [X, B) for an H-group B.
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(2) For any map g: X — A, the group g% (G™(A; 7)) acts on G™(X, g, A; ).

"The following proposition says that co- H-spaces are completely characterized by the
dual Gottlicb scts.

Proposition 3.5 ([12]). X is a co-H-space if and only if DG(X,B) = [X, B] for
any space B.

Now, for a map g : X — A, we would like to introduce new spaces which can be
characterized by the dual Gottlicb sets for a map g : X — A.

Definition 3.6. A spacc X is called a co-HY-space for a map g : X — A if there
is a map, a co-H9-structure, # : X — X V A such that j6 ~ (1 x g)A. where
J:XVA— X x Ais the inclusion and A : X — X x X is the diagonal map.

Proposition 3.7 ([22]). X is a co-H9-space for a map g : X — A if and only if
DG(X,g,A; B) = [X, B] for any space B.

It is well known fact that if X dominates A and X is a co-H-space, then A is a
co-H-spacc. This fact can be generalized as follows;

Corollary 3.8. Let X be a co-H"-space for a map r: X — A.
(1) If r : X — A has a right homotopy inverse i : A — X, then A is a co-H-space.
(2) If 1 : X — A has a left homotopy inverse i : A — X, then X is a co-H-space.

Proof. (1) Let B be any space. It is sufficient to show that [A, B] C DG(A, B). Since
X is a co-H-space foramap r : X — A, we have that DG(X, r, A; B) = [X; B]. Thus
we know, from Proposition 3.1(5), that [A, B] = i#[X,B] = i# DG(X,r, A;B) C
DG(A,ri, A; By = DG(A,1,A; B) = DG(A, B). (2) For any space B, we can ob-
tain, from Proposition 3.7 and Proposition 3.1(1), that [X, B] = DG(X,r, A; B) C
DG(X,ir, X; B) = DG(X, 1, X) = DG(X, B). 0

Givenmaps g: X — A, ¢ : X' — A, let (s,7) : ¢ — g be a map from ¢’ to g,
that is, the following diagram is commutative;
X! g A
L
X 2. A

It is a well known fact that Y -5 ¢ — XY is a cofibration, where 4(y) = [y, 1]. Let
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iy : X — Cy be the cofibration induced by r : X’ — X from tx : X' — ¢X’. Let
is : A — Cs be the cofibration induced by s : A’ — A from 14 : A’ — cA’. Then

there is a map g: Cy — C; such that the following diagram is commutative

x 4,

Cr L’ Cs,
where Gy = X' X/[2',1] ~ t(2'), and Cs = cA' T A/[d’,1] ~ s(a’). §: Ct — Cs
is given by g([z',t]) = [¢'(z'),?] if [¢',t] € X’ and g(z) = g(x) if z € X, i (x) =
z, is(a) = a.

Definition 3.9. Let X be a co-H9-space with co-H9-structure 6§ : X — XV A. Then
a map (s,r): ¢ — g is called a co-HI-primitive with respect to § : X — X V A if
there is a coassociate map 6' : X' — X'V A’ of ¢’ such that the following diagram is
homotopy commutative;

x L xvaA

x ‘. xva

The following lemmas are standard.

Lemma 3.10. Let f: X — B be a map. Then there is a map h : C, — B such that
hir = f if and only if fr ~ *.

Lemma 3.11 ([21]). Let g; : C, — By(t = 1,2) and g : C; — B1 V By a map
such that p:jgix ~ gi,(t = 1,2), where j : B; V Bo — By X By is the inclusion and
Pt : By X By — By, t = 1,2 are projections. Then there is a map h : C, — By V Bs
such that gi, = hi, and p1j’h ~ g:(t = 1,2).

Theorem 3.12. If X is a co-H9-space with co-HY-structure § : X — X V A and
(s,7) : ¢ — g is a co-HI-primitive with respect to 8, then there erists a co-HY-
structure 0 : C, — C, V Cs on C, satisfying commutative diagram

c. ., cvc,

| invia |

x 22, xva
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Proof. Since (s,7) : ¢ — g is a co-H9-primitive with respect to 8, then there is a
map &' : X' — X'V A’ satisfying commutative diagram

x . xva

L

X ——9—> X Vv A.

Then we have that (i, V is)0r ~ (i, Vig)(r V §)0 ~ (i, o7 Vigos)8 ~ %. Thus
we know, from Lemma 3.10, that there is a map 6 :C. — C,V C, such that
0ir = (ir V i5)8. Then p1ji, = pyj(iy V is)0 ~ p1(ir X is)(1 X 9)A ~ i, = 1 0, and
p2jliy ~ p2(iy X i5){1 X g)A ~ i,0g9 = §oi,. Thus we have, from Lemma 3.11, that
there is a map 8 : C, — C, V C, such that 8i, = i, = (ir V i5)0. O

Taking g = 1x and s = r, we can get the following corollary.

Corollary 3.13 ([6]). If X and X' are co-H-spaces, andr : X' — X is a co-H-map,

then there is a co-H-structure on C, such that i, : X — C, is a co-H-map.

In 1959, Eckmann and Hilton [1] introduced a dual concept of Postnikov system
as follows; A homology decomposition of X consists of a sequence of spaces and maps
{Xn,qn,in} satisfying (1) g, : X, — X induces an isomorphism (g, ). : H;(X,) —
Hi(X) for i <n. (2) iy : X;, = Xp41 is a cofibration with cofiber M(H,,4+1(X), n)(
a Moorc space of type (Hp41(X),n)). (3) ¢gn ~ gn+1 © in. It is known by [8] that
if X be a l-connected space having the homotopy type of CW complex, then there
is a homology decomposition {X,,,qn,in} of X such that i, : X,, — X, is the
principal cofibration induced from ¢ : M(H,,+1(X),n) — ¢M(Hp+1(X),n) by a map
7 M(Hp4+1(X),n) — X, which is called the dual Postnikov invariants.

From Theorem 3.12; we have the following corollary.

Corollary 3.14. Let X and A be spaces having the homotopy type of 1-connected
countable CW-complexes, and {X,,qn,in} and {An,q,,i,} be homology decom-
positions for X and A respectively. If X is a co-H9-space with co-HYI-structure
6: X — XVA and for eachn > 2, the pair of r daul invariants (ry,7%) : g« — gn are
co-H9 -primitive with respect to 6, : X, — X, V Ay, where g, : M(Hp41(X),n) —
M(Hp+1(A),n) and g, are induced maps from g : X — A, then there exists a co-
H9m+2-structure on X411 such that (i), 1,9n41) : Gn — Gn+1 45 a co-HI"+1-primitive
with respect to 6,, : X,, — X, V A,.
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For amap f : X — Y, we write conn f = n if the induced map of homotopy
groups 7x(f) : mx(X) — m(Y') is an isomorphism for ¥ < n and an epimorphism for
k = n. In particular, for the constant map C, : X — * we put conn X = conn C,.
Let XbY and X AY be the flat product and the smash product of spaces X and
Y, respectively. There is a homotopy equivalence XbY = QX A QY (sec c.g., [8,
p. 216]). We now show that the converse of Theorem 3.12 also holds, provided somc
conditions are satisfied.

Lemma 3.15. For any two maps f : X — Y, g: X' — Y, conn (fdb g) =
min{conn (f) + conn (Y’), conn (X) + conn (g)}

Proof. Since fb g = (fp 1y') o (1xb g) : Xb X’ P9 xh v P vh v and
conn (fb 1yr) = conn (ZQ(f) A lgy+) = conn (f) + conn (Y’) and conn (1xb g) =
conn (X) + conn (g), we have that

conn (fb g) = min{conn (f) + conn (Y'), conn (X) + conn (g)}.
O
Lemma 3.16. ({19, Theorem 7.16]) For amap f : X — Y, conn (f) = n if and only
if (1) for every CW complex K with dim K < n, fg : [K,X]| — [K,Y] is one-to-one

correspondence (2) for every CW complez K with dimK =n, fg: [K,X] — [K,Y]
s onto.

Theorem 3.17. Let X be a simply connected co-HY-space with co-HY-structure
6:X — XVA. Let X' be a simply connected co-H-space and (s,7): ¢ — g a map,
where ¢’ : X' — A’ is a map. If there is a co-HI-structure 8 : C. — C» V Cy on C:
satisfying commutative diagram

C, _e, Cr Vv Cs

XL)XVA

and dim X’ < min{conn (X')+conn (Cs), conn (A')+conn (X)}, then (s,7): ¢’ — g
15 a co-HI-primitive with respect to 6.

Proof. Let p/ : X' - X'V X’ be a co-H-structure on X’. It is known by [2] that a
co-H-structure u’ on a l-connected space X’ admits an inversion. It is also known
by [14] that for a co-H-space X' with a co-H-structurc u' and an inversion map,
and any spaces X and A, there is a split short exact sequence
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0 — [X', XbA] — [X', X V 4] h (X', X x A] -0,
v
where jgv = 1 with q([a1, az]) = [(a1 V a2)y’]. Denote the induced operation on
[X',X v A] additively and let 3 = 1 — vjy : [X', X V A] — [X’,X V A]. Since
J#8 = 0, we know that 8 : (X', X V A] — [X’,XbA]. Consider the commutative
diagram

(X', X] . (X, XVA —2 X', XD A

i,.#l (irvis)#l (i is)#l

(X',C] =2 [X',Cov O] —2— [X',C)b C].
Then (irb is)4804([r]) = B'04ig([r]) = B84(lir o)) = 0. Clearly conn i, =
conn X' and conn i, = conn A'. By Lemma 3.15, we know that conn (i.b i,) =
min{conn i, +conn Cy, conn is+conn X } and dim X’ < conn (i,b is). Thus we have,
from Lemma 3.16, that (i-b is)s is an isomorphism, so we get that 364([r]) = 0.
From the definition of 3, we know that 0 = 304([r]) = (1—~;j4)([0r]) = [6r] —[0r].
Thus we have that r ~ (p1j0r V pejér)y’ ~ (rvgor)y ~ (rvs)(1Vg¢)y and
(s,7): ¢’ — g is a co-H9-primitive with respect to 6. O

Taking g = 1x, ¢’ = 1x+ and s = r, we have the following corollary.

Corollary 3.18 ([5]). Let r : X' — X be a map with X' and X 1-connected co-
H-spaces. If the mapping cone C, is a co-H-space, iy : X — Cy a co-H-map and
dim X’ < conn X' + min{conn X,conn C,}, then r: X' — X is a co-H-map.

In particular, let M(A,n) be the Moore space of type (4,n) for n > 2. Then
dimM(A,n) < n+1 and conn M(A,n) = n — 1. Thus we have the following
corollary.

Corollary 3.19. Let X be a 2-connected co-H9-space with co-HI-structure 6 : X —
XVA. Let(s,r):g — g be a map, where ¢’ : M(A,n) — M(A',n) (n >2) is a
map. If there is a co-H9-structure 8 : C, — C, V Cy on C, satisfying commutative
diagram )

¢, -2 o.ve,

ir T irVis T

X % xva,

then (s,r): ¢ — g is a co-HI-primitive with respect to 6.
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