JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 4, November 2014 http://dx.doi.org/10.14403/jcms.2014.27.4.735

SPLITTING OFF H^f-SPACES AND THEIR DUALS

YEON SOO YOON*

ABSTRACT. We obtain a splitting theorem which characterizes when a given space is a catesian product of an H^f -space, and also obtain a dual theorem for a co- H^g -space. Then we get Dula and Gottlieb's results as corollaries.

1. Introduction

In [2], Dula and Gottlieb obtained a splitting theorem as follows;

THEOREM 1.1. ([2] Theorem 1.3) Given spaces Z, X and Y the following statements are equivalent;

- (1) X is an H-space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$.
- (2) There are maps $i: X \to Z$ and $r: Z \to X$ such that r is a left homotopy inverse for i and $i \in G(X, Z)$.

In [17], we introduced concepts of H^f -spaces for maps which are generalizations of H-spaces and also introduced concepts of co- H^g -spaces for maps which are generalizations of co-H-spaces. In this paper, we would like to obtain some conditions which characterize when a given space is a cartesian product of an H^f -space and also to obtain some conditions for dual situations. In section 2, we show that if X is an H^f space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$, then there are maps $i : X \to Z$ and $r : Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$. Also, we show that if there are maps $i : X \to Z$ and $r : Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$, then X is an H^f -space and there exists a space Y such that $\pi_n(Z) \cong \pi_n(X \times Y)$ for all n. Moreover, we can obtain a necessary and sufficient condition for splitting an

Received September 30, 2014; Accepted October 20, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: f-cyclic maps, H^f -spaces, g-cocyclic maps, co- H^g -spaces. The author was supported by Hannam University Research Fund, 2014.

 H^f -space off a space under a condition as follows. If $f: A \to X$ has a right homotopy inverse, then X is an H^f -space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$ if and only if there are maps $i: X \to Z$ and $r: Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$. However, taking $f = 1_X$, we can obtain the above Dula and Gottlieb's theorem as a corollary.

In section 3, we study some dual situations obtaining some conditions for splitting co- H^g -space off a space. We show that if X is a co- H^g -space and there exists a simply connected space Y such that Z is homotopy equivalent to $X \vee Y$, then there exist maps $i : Z \to X$ and $r : X \to Z$ such that $i \circ r \sim 1$ and $g \circ i \in DG(Z, A)$. Also, we show that if there exist maps $i : Z \to X$ and $r : X \to Z$ such that $i \circ r \sim 1$ and $g \circ i \in DG(Z, A)$, then X is a co- H^g -space and there exists a simply connected space Y such that $H_n(Z) \cong H_n(X \vee Y)$ for all n. Thus we can obtain a necessary and sufficient condition for splitting a co- H^g -space off a space which is a dual result of the result in section 2. Moreover, we can obtain a Dula and Gottlieb's result as a corollary.

Throughout this paper, space means a space of homotopy type of connected locally finite CW complex. We assume also that spaces have non-degenerate base points. All maps shall mean continuous functions. The base point as well as the constant map will be denoted by *. For simplicity, we use the same symbol for a map and its homotopy class. Also, we denote by [X, Y] the set of homotopy classes of pointed maps $X \to Y$. The identity map of space will be denoted by 1 when it is clear from the context. The diagonal map $\Delta: X \to X \times X$ is given by $\Delta(x) = (x, x)$ for each $x \in X$, the folding map $\nabla: X \vee X \to X$ is given by $\nabla(x, *) = \nabla(*, x) = x$ for each $x \in X$.

2. Splitting H^f -spaces off a space

Let $f : A \to X$ be a map. A based map $g : B \to X$ is called *f*-cyclic [11] if there is a map $\phi : B \times A \to X$ such that the diagram

$$\begin{array}{ccc} A \times B & \stackrel{\phi}{\longrightarrow} & X \\ i \uparrow & & \nabla \uparrow \\ A \lor B & \stackrel{(f \lor g)}{\longrightarrow} & X \lor X \end{array}$$

is homotopy commute, where $j : A \vee B \to A \times B$ is the inclusion and $\nabla : X \vee X \to X$ is the folding map. We call such a map ϕ an *associated map* of a *f*-cyclic map *g*. Clearly, *g* is *f*-cyclic iff *f* is *g*-cyclic. In the

case, $f = 1_X : X \to X$, $g : B \to X$ is called cyclic [14]. It is clear that a space X is an H-space if and only if the identity map 1_X of X is cyclic. In [17], for a map $f : A \to X$, we defined a space X to be a H^f -space if the map $f : A \to X$ is cyclic. Clearly, any H-space is an H^f -space for any map $f : A \to X$, but the converse does not hold. Consider the natural pairing $\mu : S^3/S^1 \times S^3 \to S^3/S^1$. Then we know that the Hopf map $\eta : S^3 \to S^2$ is cyclic. Thus S^2 is an H^η -space for $\eta : S^3 \to S^2$, but S^2 is not an H-space. We denote the set of all homotopy classes of f-cyclic maps from B to X by G(B; A, f, X) which is called the Gottlieb set for a map $f : A \to X$. In the case $f = 1_X : X \to X$, we called such a set G(B; X, 1, X) the Gottlieb set denoted G(B; X). In particular, $G(S^n; A, f, X)$ will be denoted by $G_n(A, f, X)$. Gottlieb [4,5] introduced and studied the evaluation subgroups $G_n(X) = G_n(X, 1, X)$ of $\pi_n(X)$.

In general, $G(B;X) \subset G(B;A,f,X) \subset [B,X]$ for any map $f : A \to X$ and any space B. However, there is an example [16] such that $G(B,X) \neq G(B;A,f,X) \neq [B,X]$.

PROPOSITION 2.1. [8] X is an H-space if and only if G(B, X) = [B, X] for any space B.

PROPOSITION 2.2. [17] X is an H^f -space for a map $f : A \to X$ if and only if G(B; A, f, X) = [B, X] for any space B.

PROPOSITION 2.3. [17] X is an H-space if and only if for any space A and any map $f: A \to X$, X is an H^f -space for a map $f: A \to X$.

We obtain a necessary condition for splitting H^f -space off a space as follows;

THEOREM 2.4. If X is an H^f -space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$, then there are maps $i: X \to Z$ and $r: Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$.

Proof. There are maps $h: Z \to X \times Y$, $k: X \times Y \to Z$ which are satisfying $k \circ h \sim 1_Z$ and $h \circ k \sim 1_{X \times Y}$. Let $r = p_1 \circ h: Z \to X$ and $i = k \circ i_1: X \to Z$, where $p_1: X \times Y \to X$ is the projection and $i_1: X \to X \times Y$ is the inclusion. Then $r \circ i \sim p_1 \circ h \circ k \circ i_1 \sim 1_X$. Thus ihas r as a left homotopy inverse. Since X is an H^f -space, there is a map $F: A \times X \to X$ such that $F \circ j = \nabla(f \vee 1)$, where $j: A \vee X \to A \times X$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. Consider the map $I = k \circ (F \times 1) \circ (1 \times h): A \times Z \to Z$. Then $I \circ j' \sim \nabla(i \circ f \vee 1)$, where $j': A \vee Z \to A \times Z$ is the inclusion and $\nabla: Z \vee Z \to Z$ is the folding map. Thus $i \circ f \in G(A, Z)$.

We do not know whether the converse of the above result holds or not. But we can obtain a little bit weaker result than the converse of the above theorem.

LEMMA 2.5. [7] Let $0 \to A \xrightarrow{\lambda} B \xrightarrow{\mu} C \to 0$ be an exact sequence of groups in which λA is in the center of B. Then the following three assertions are equivalent:

- (1) There is a homomorphism $\bar{\mu}: C \to B$ with $\mu \bar{\mu} = 1$.
- (2) There is a homomorphism $\overline{\lambda} : B \to A$ with $\overline{\lambda}\lambda = 1$.
- (3) There is a homomorphism $\overline{\lambda} : B \to A$ such that $(\overline{\lambda}, \mu) : B \to A \times C$ is an isomorphism.

THEOREM 2.6. If there are maps $i : X \to Z$ and $r : Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$, then X is an H^f -space and there exists a space Y such that $\pi_n(Z) \cong \pi_n(X \times Y)$ for all n.

Proof. Let $\iota_r : Y \to Z$ be the inclusion of the homotopy fiber of $r: Z \to X$. By Milnor's result in [10], ΩZ is homotopy equivalent to a CW complex. Thus in the fiber sequence $\Omega Z \to Y \to Z$ the base and fiber are homotopy equivalent to a CW complex, hence by Stasheff's result in [13], Y is homotopy equivalent to a CW complex. Since $i \circ f : A \to Z$ is cyclic, there is a map $H : A \times Z \to Z$ such that $H \circ j \sim \nabla (i \circ f \lor 1)$. Then the composition $r \circ H \circ (1 \times i) : A \times X \to X$ establishes the fact that $f: A \to K$ is cyclic. Thus we know that X is an H^f -space. Moreover, we know, from the fact $r \circ i \sim 1 : X \to X$, that the fibration $Y \xrightarrow{\iota_r} Z \xrightarrow{r} X$ has a cross section $i: X \to Z$. Then the section i induces a splitting of sequence for the fibration so that we get a split short exact sequences $0 \to \pi_*(Y) \xrightarrow{\iota_*} \pi_*(Z) \xleftarrow{r_*}{\leftarrow} \pi_*(X) \to 0.$ Since $Im \iota_* = Ker r_* \subset Z(\pi_*(Z))$ and $r_* \circ i_* = 1$, we know, from Lemma 2.5, that there is a homomorphism $\lambda : \pi_*(Z) \to \pi_*(Y)$ such that $(\lambda, r_*): \pi_*(Z) \to \pi_*(Y) \times \pi_*(X)$ is an isomorphism. Thus we have $\pi_n(Z) \cong \pi_n(X \times Y)$ for all n.

From the Whitehead's theorem, we have the following corollary.

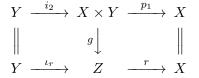
COROLLARY 2.7. If there is a map $\rho : Z \to Y$ such that $\rho_* = \lambda$: $\pi_*(Z) \to \pi_*(Y)$ in the proof of the above theorem, then X is an H^f -space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$ if and only if there are maps $i : X \to Z$ and $r : Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$.

738

In the proof of Theorem 2.6, if we can show that Z is homotopy equivalent to $X \times Y$, then we can obtain a necessary and sufficient condition for splitting H^f -space off a space as follows. Anyway we need a little bit more condition for this.

COROLLARY 2.8. Suppose $f : A \to X$ has a right homotopy inverse $g : X \to A$. Then X is an H^f -space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$ if and only if there are maps $i : X \to Z$ and $r : Z \to X$ such that r is a left homotopy inverse for i and $i \circ f \in G(A, Z)$.

Proof. A necessary part follows from Theorem 2.4. For a sufficient part, from the proof of Theorem 2.6, we only need to show that Z is homotopy equivalent to $X \times Y$. Let $\iota_r : Y \to Z$ be the inclusion of the homotopy fiber of $r : Z \to X$. Let $H : A \times Z \to Z$ be a map satisfying $H \circ j \sim \nabla(i \circ f \lor 1)$. Then let $h = H \circ (1 \times \iota_r) \circ (g \times 1) : X \times Y \to Z$. Consider the following diagram;



By the definition of h, the left square commutes, while the right square commutes after π_* is applied. Thus h induces an isomorphism of homotopy groups, and as all spaces are homotopy equivalent to CW complexes, it follows that $h: X \times Y \to Z$ is a homotopy equivalence. \Box

Taking $f = 1_X$, we have, from the fact H^1 -space is just an H-space, that the following corollary for splitting an H-space off a space.

COROLLARY 2.9. [2] The following conditions are equivalent;

- (1) X is an H-space and there exists a space Y such that Z is homotopy equivalent to $X \times Y$.
- (2) There are maps $i: X \to Z$ and $r: Z \to X$ such that r is a left homotopy inverse for i and $i \in G(X, Z)$.

3. Splitting $co-H^g$ -spaces off a space

Let $g: X \to A$ be a map. A based map $f: X \to B$ is called *g*-coclic [11] if there is a map $\theta: X \to A \lor B$ such that the following diagram is homotopy commutative;

$$\begin{array}{cccc} X & \stackrel{\theta}{\longrightarrow} & A \lor B \\ \Delta & & j \\ X \times X & \stackrel{(g \times f)}{\longrightarrow} & A \times B, \end{array}$$

where $j : A \lor B \to A \times B$ is the inclusion and $\Delta : X \to X \times X$ is the diagonal map. We call such a map θ a *coassociated map* of a *g*-cocyclic map f.

In the case $g = 1_X : X \to X$, $f : X \to B$ is called *cocyclic* [14]. Clearly any cocyclic map is a g-cocyclic map and also $f : X \to B$ is g-cocyclic iff $g : X \to A$ is f-cocyclic. The dual Gottlieb set DG(X, g, A; B) for a map $g : X \to A$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g = 1_X : X \to X$, we called such a set DG(X, 1, X; B) the dual Gottlieb set denoted DG(X; B), that is, the dual Gottlieb set is exactly same with the dual Gottlieb set for the identity map.

In general, $DG(X; B) \subset DG(X, g, A; B) \subset [X, B]$ for any map $g : X \to B$ and any space B. However, there is an example in [15] such that $DG(X, B) \neq DG(X, g, A; B) \neq [X, B]$.

PROPOSITION 3.1. [9] X is a co-H-space if and only if DG(X, B) = [X, B] for any space B.

DEFINITION 3.2. A space X is called a co-H^g-space for a map $g : X \to A$ [17] if there is a map, a co-H^g-structure, $\theta : X \to X \lor A$ such that $j\theta \sim (1 \times g)\Delta$, where $j : X \lor A \to X \times A$ is the inclusion and $\Delta : X \to X \times X$ is the diagonal map.

PROPOSITION 3.3. [17] X is a co- H^g -space for a map $g: X \to A$ if and only if DG(X, g, A; B) = [X, B] for any space B.

Clearly we have, from Proposition 3.1 and Proposition 3.3, the following corollary.

COROLLARY 3.4. X is a co-H-space if and only if for any space A and any map $g: X \to A$, X is a co-H^g-space for a map $g: X \to A$.

From now on, every space is assumed to be homotopy equivalent to a connected simply connected CW complex.

THEOREM 3.5. If X is a co- H^g -space and there exists a simply connected space Y such that Z is homotopy equivalent to $X \vee Y$, then there exist maps $i : Z \to X$ and $r : X \to Z$ such that $i \circ r \sim 1$ and $g \circ i \in DG(Z, A)$.

Proof. Since Z is homotopy equivalent to $X \vee Y$, there exist maps $h: Z \to X \vee Y, k: X \vee Y \to Z$ such that $k \circ h \sim 1_Z$ and $h \circ k \sim 1_{X \vee Y}$. Let $i = p_1 \circ h: X \xrightarrow{h} X \vee Y \xrightarrow{p_1} X$ and $r = k \circ i_1: X \xrightarrow{i_1} X \vee Y \xrightarrow{k} Z$, where $p_1: X \vee Y \to X$ is the projection and $i_1: X \to X \vee Y$ is the inclusion. Then $i \circ r = p_1 \circ h \circ k \circ i_1 \sim p_1 \circ i_1 = 1_X$. Since X is a co- H^g -space, there is a map $\theta: X \to A \vee X$ such that $j \circ \theta = (g \times 1) \circ \Delta$, where $j: X \vee A \to X \times A$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. Now we show that $g \circ i \in DG(Z, A)$. Consider the composite map $\rho: Z \xrightarrow{h} X \vee Y \xrightarrow{(\theta \vee 1)} A \vee X \vee Y \xrightarrow{(1 \vee k)} A \vee Z$. Consider the commutative diagram

We do not know whether the converse of the above result holds or not. But we can obtain a little bit weaker result than the converse of the above theorem.

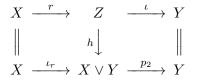
THEOREM 3.6. If there exist maps $i : Z \to X$ and $r : X \to Z$ such that $i \circ r \sim 1$ and $g \circ i \in DG(Z, A)$, then X is a co-H^g-space and there exists a simply connected space Y such that $H_n(Z) \cong H_n(X \lor Y)$ for all n.

Proof. Let $\iota: Z \to Y$ be the projecton of the homotopy cofiber of $r: X \to Z$. That is, we have a cofibration $X \xrightarrow{r} Z \xrightarrow{\iota} Y(=C_r)$. It is clear that $Y = C_r$ is homotopy equivalent to CW complex, where C_r is the mapping cone of $r: X \to Z$. Since $g \circ i \in DG(Z, A)$, there is a map $\rho: Z \to A \lor Z$ such that $j \circ \rho \sim (g \circ i \times 1) \circ \Delta$. Let $\theta: X \xrightarrow{r} Z \xrightarrow{\rho} A \lor Z \xrightarrow{(1 \lor i)} A \lor X$. Then $j \circ \theta \sim (g \times 1) \circ \Delta$ and X is a co- H^g -space. Since $i \circ r \sim 1$, the cofibration $X \xrightarrow{r} Z \xrightarrow{\iota} Y$ gives rise to a split short exact sequence $0 \to H_n(X) \xrightarrow{r_*}_{i_*} H_n(Z) \xrightarrow{\iota_*} H_n(Y) \to 0$. Since $Im \ r_* = Ker \ \iota_* \subset Z(H_*(Z))$ and $i_* \circ r_* = 1$, we know, from Lemma 2.5, that there is an isomorphism $(i_*, \iota_*): H_*(Z) \to H_*(X) \times H_*(Y)$. Thus we have, from the fact $H_*(X) \times H_*(Y) \cong H_*(X \lor Y)$, that $H_n(Z) \cong H_n(X \lor Y)$ for all n.

In the proof of Theorem 3.6, if we can show that Z is homotopy equivalent to $X \vee Y$, then we can obtain a necessary and sufficient condition for splitting so- H^g -space off a space as follows. Anyway we need a little bit more condition for this.

COROLLARY 3.7. Suppose $g: X \to A$ has a left homotopy inverse $f: A \to X$. Then X is a co- H^g -space and there exists a space Y such that Z is homotopy equivalent to $X \vee Y$ if and only if there are maps $i: Z \to X$ and $r: X \to Z$ such that r is a right homotopy inverse for i and $g \circ i \in DG(Z, A)$.

Proof. A necessary part follows from Theorem 3.5. For a sufficient part, from the proof of Theorem 3.6, we only need to show that Z is homotopy equivalent to $X \vee Y$. Let $\iota : Z \to Y$ be the projecton of the homotopy cofiber of $r : X \to Z$. Let $\rho : Z \to A \vee Z$ be a map satisfying $j \circ \rho \sim (g \circ i \times 1) \circ \Delta$. Then let $h = (1 \vee \iota) \circ (f \vee 1) \circ \rho : Z \to X \vee Y$. Then the following diagram of cofiber sequence is homotopy commute;



By the definition of h, the left square commutes, while the right square commutes after H_* is applied. Thus h induces an isomorphism of homology groups, and as all spaces are homotopy equivalent to CW complexes and $\pi_1(Z) = \pi_1(X \lor Y) = 0$, it follows that $h: Z \to X \lor Y$ is a homotopy equivalence.

Taking $g = 1_X$, we have, from the fact co- H^1 -space is just a co-H-space, that the following corollary for splitting a co-H-space off a space.

COROLLARY 3.8. [2] The following conditions are equivalent;

- (1) X is a co-H-space and there exists a space Y such that Z is homotopy equivalent to $X \vee Y$.
- (2) There are maps $i: Z \to X$ and $r: X \to Z$ such that r is a right homotopy inverse for i and $i \in DG(Z, X)$.

References

- [1] J. Aguade, Decomposable free loop spaces, Can. J. Math. 39 (1987), 938-955.
- [2] G. Dula and D. H. Gottlieb, Splitting off H-spaces and Conner-Raymond Splitting Theorem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37 (1990), 321-334.

Splitting off H^f -spaces and their duals

- [3] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- [4] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
- [5] D. H. Gottlieb, Splitting off tori and the evaluation subgroup of the fundamental group, Israel. J. Math. 66 (1989), 216-222.
- [6] H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- [7] P. Hilton, Nilpotency and H-spaces, Topology 3 (1965), no. 3, 161-176.
- [8] K. L. Lim, On cyclic maps, J. Austral. Math. Soc. (Series A) 32 (1982), 349-357.
- [9] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [10] J. W. Milnor, On spaces having the homotopy type of a CW complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.
- [11] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
- [12] J. Stasheff, On homotopy abelian H-spaces, Proc. Camb. Phil. Soc. 57 (1961), 734.
- [13] J. Stasheff, A classification theorem for fiber spaces, Topology 2 (1963), 239-246.
- [14] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [15] Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001), 173-181.
- [16] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci. Math. Japon. 55 (2002), no. 1, 139-148.
- [17] Y. S. Yoon, *H^f*-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B **14** (2007), no. 4, 289-306.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: yoon@hannam.ac.kr