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SPLITTING OFF Hf -SPACES AND THEIR DUALS

Yeon Soo Yoon*

Abstract. We obtain a splitting theorem which characterizes when
a given space is a catesian product of an Hf -space, and also obtain
a dual theorem for a co-Hg-space. Then we get Dula and Gottlieb’s
results as corollaries.

1. Introduction

In [2], Dula and Gottlieb obtained a splitting theorem as follows;

Theorem 1.1. ([2] Theorem 1.3) Given spaces Z, X and Y the fol-
lowing statements are equivalent;

(1) X is an H-space and there exists a space Y such that Z is homotopy
equivalent to X × Y .

(2) There are maps i : X → Z and r : Z → X such that r is a left
homotopy inverse for i and i ∈ G(X,Z).

In [17], we introduced concepts of Hf -spaces for maps which are gen-
eralizations of H-spaces and also introduced concepts of co-Hg-spaces
for maps which are generalizations of co-H-spaces. In this paper, we
would like to obtain some conditions which characterize when a given
space is a cartesian product of an Hf -space and also to obtain some
conditions for dual situations. In section 2, we show that if X is an Hf -
space and there exists a space Y such that Z is homotopy equivalent
to X × Y , then there are maps i : X → Z and r : Z → X such that
r is a left homotopy inverse for i and i ◦ f ∈ G(A,Z). Also, we show
that if there are maps i : X → Z and r : Z → X such that r is a left
homotopy inverse for i and i ◦ f ∈ G(A,Z), then X is an Hf -space and
there exists a space Y such that πn(Z) ∼= πn(X × Y ) for all n. More-
over, we can obtain a necessary and sufficient condition for splitting an
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Hf -space off a space under a condition as follows. If f : A → X has a
right homotopy inverse, then X is an Hf -space and there exists a space
Y such that Z is homotopy equivalent to X × Y if and only if there are
maps i : X → Z and r : Z → X such that r is a left homotopy inverse
for i and i ◦ f ∈ G(A,Z). However, taking f = 1X , we can obtain the
above Dula and Gottlieb’s theorem as a corollary.

In section 3, we study some dual situations obtaining some conditions
for splitting co-Hg-space off a space. We show that if X is a co-Hg-space
and there exists a simply connected space Y such that Z is homotopy
equivalent to X ∨ Y , then there exist maps i : Z → X and r : X → Z
such that i◦r ∼ 1 and g◦i ∈ DG(Z,A). Also, we show that if there exist
maps i : Z → X and r : X → Z such that i◦r ∼ 1 and g◦ i ∈ DG(Z,A),
then X is a co-Hg-space and there exists a simply connected space Y
such that Hn(Z) ∼= Hn(X∨Y ) for all n. Thus we can obtain a necessary
and sufficient condition for splitting a co-Hg-space off a space which is
a dual result of the result in section 2. Moreover, we can obtain a Dula
and Gottlieb’s result as a corollary.

Throughout this paper, space means a space of homotopy type of
connected locally finite CW complex. We assume also that spaces have
non-degenerate base points. All maps shall mean continuous functions.
The base point as well as the constant map will be denoted by *. For
simplicity, we use the same symbol for a map and its homotopy class.
Also, we denote by [X,Y ] the set of homotopy classes of pointed maps
X → Y . The identity map of space will be denoted by 1 when it is
clear from the context. The diagonal map ∆: X → X ×X is given by
∆(x) = (x, x) for each x ∈ X, the folding map ∇ : X ∨X → X is given
by ∇(x, ∗) = ∇(∗, x) = x for each x ∈ X.

2. Splitting Hf -spaces off a space

Let f : A→ X be a map. A based map g : B → X is called f -cyclic
[11] if there is a map φ : B ×A→ X such that the diagram

A×B φ−−−−→ X

j

x ∇
x

A ∨B (f∨g)−−−−→ X ∨X
is homotopy commute, where j : A ∨ B → A × B is the inclusion and
∇ : X ∨X → X is the folding map. We call such a map φ an associated
map of a f -cyclic map g. Clearly, g is f -cyclic iff f is g-cyclic. In the
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case, f = 1X : X → X, g : B → X is called cyclic [14]. It is clear that a
space X is an H-space if and only if the identity map 1X of X is cyclic.
In [17], for a map f : A → X, we defined a space X to be a Hf -space
if the map f : A → X is cyclic. Clearly, any H-space is an Hf -space
for any map f : A → X, but the converse does not hold. Consider the
natural pairing µ : S3/S1 × S3 → S3/S1. Then we know that the Hopf
map η : S3 → S2 is cyclic. Thus S2 is an Hη-space for η : S3 → S2,
but S2 is not an H-space. We denote the set of all homotopy classes of
f -cyclic maps from B to X by G(B;A, f,X) which is called the Gottlieb
set for a map f : A→ X. In the case f = 1X : X → X, we called such
a set G(B;X, 1, X) the Gottlieb set denoted G(B;X). In particular,
G(Sn;A, f,X) will be denoted by Gn(A, f,X). Gottlieb [4,5] introduced
and studied the evaluation subgroups Gn(X) = Gn(X, 1, X) of πn(X).

In general, G(B;X) ⊂ G(B;A, f,X) ⊂ [B,X] for any map f :
A → X and any space B. However, there is an example [16] such
that G(B,X) 6= G(B;A, f,X) 6= [B,X].

Proposition 2.1. [8] X is an H-space if and only if G(B,X) =
[B,X] for any space B.

Proposition 2.2. [17] X is an Hf -space for a map f : A→ X if and
only if G(B;A, f,X) = [B,X] for any space B.

Proposition 2.3. [17] X is an H-space if and only if for any space
A and any map f : A→ X, X is an Hf -space for a map f : A→ X.

We obtain a necessary condition for splitting Hf -space off a space as
follows;

Theorem 2.4. If X is an Hf -space and there exists a space Y such
that Z is homotopy equivalent to X×Y , then there are maps i : X → Z
and r : Z → X such that r is a left homotopy inverse for i and i ◦ f ∈
G(A,Z).

Proof. There are maps h : Z → X × Y, k : X × Y → Z which are
satisfying k ◦ h ∼ 1Z and h ◦ k ∼ 1X×Y . Let r = p1 ◦ h : Z → X
and i = k ◦ i1 : X → Z, where p1 : X × Y → X is the projection and
i1 : X → X×Y is the inclusion. Then r ◦ i ∼ p1 ◦h◦k ◦ i1 ∼ 1X . Thus i
has r as a left homotopy inverse. Since X is an Hf -space, there is a map
F : A×X → X such that F ◦ j = ∇(f ∨ 1), where j : A ∨X → A×X
is the inclusion and ∇ : X ∨X → X is the folding map. Consider the
map I = k ◦ (F × 1) ◦ (1× h) : A× Z → Z. Then I ◦ j′ ∼ ∇(i ◦ f ∨ 1),
where j′ : A ∨ Z → A × Z is the inclusion and ∇ : Z ∨ Z → Z is the
folding map. Thus i ◦ f ∈ G(A,Z).
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We do not know whether the converse of the above result holds or
not. But we can obtain a little bit weaker result than the converse of
the above theorem.

Lemma 2.5. [7] Let 0 → A
λ→ B

µ→ C → 0 be an exact sequence
of groups in which λA is in the center of B. Then the following three
assertions are equivalent;

(1) There is a homomorphism µ̄ : C → B with µµ̄ = 1.
(2) There is a homomorphism λ̄ : B → A with λ̄λ = 1.
(3) There is a homomorphism λ̄ : B → A such that (λ̄, µ) : B → A×C

is an isomorphism.

Theorem 2.6. If there are maps i : X → Z and r : Z → X such
that r is a left homotopy inverse for i and i ◦ f ∈ G(A,Z), then X is an
Hf -space and there exists a space Y such that πn(Z) ∼= πn(X × Y ) for
all n.

Proof. Let ιr : Y → Z be the inclusion of the homotopy fiber of
r : Z → X. By Milnor’s result in [10], ΩZ is homotopy equivalent
to a CW complex. Thus in the fiber sequence ΩZ → Y → Z the
base and fiber are homotopy equivalent to a CW complex, hence by
Stasheff’s result in [13], Y is homotopy equivalent to a CW complex.
Since i ◦ f : A → Z is cyclic, there is a map H : A × Z → Z such that
H ◦ j ∼ ∇(i ◦ f ∨ 1). Then the composition r ◦H ◦ (1× i) : A×X → X
establishes the fact that f : A → K is cyclic. Thus we know that X
is an Hf -space. Moreover, we know, from the fact r ◦ i ∼ 1 : X → X,

that the fibration Y
ιr→ Z

r→ X has a cross section i : X → Z. Then
the section i induces a splitting of sequence for the fibration so that we

get a split short exact sequences 0 → π∗(Y )
ι∗→ π∗(Z)

r∗→←
i∗
π∗(X) → 0.

Since Im ι∗ = Ker r∗ ⊂ Z(π∗(Z)) and r∗ ◦ i∗ = 1, we know, from
Lemma 2.5, that there is a homomorphism λ : π∗(Z) → π∗(Y ) such
that (λ, r∗) : π∗(Z)→ π∗(Y )× π∗(X) is an isomorphism. Thus we have
πn(Z) ∼= πn(X × Y ) for all n.

From the Whitehead’s theorem, we have the following corollary.

Corollary 2.7. If there is a map ρ : Z → Y such that ρ∗ = λ :
π∗(Z) → π∗(Y ) in the proof of the above theorem, then X is an Hf -
space and there exists a space Y such that Z is homotopy equivalent to
X ×Y if and only if there are maps i : X → Z and r : Z → X such that
r is a left homotopy inverse for i and i ◦ f ∈ G(A,Z).
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In the proof of Theorem 2.6, if we can show that Z is homotopy
equivalent to X × Y , then we can obtain a necessary and sufficient
condition for splitting Hf -space off a space as follows. Anyway we need
a little bit more condition for this.

Corollary 2.8. Suppose f : A → X has a right homotopy inverse
g : X → A. Then X is an Hf -space and there exists a space Y such
that Z is homotopy equivalent to X × Y if and only if there are maps
i : X → Z and r : Z → X such that r is a left homotopy inverse for i
and i ◦ f ∈ G(A,Z).

Proof. A necessary part follows from Theorem 2.4. For a sufficient
part, from the proof of Theorem 2.6, we only need to show that Z is
homotopy equivalent to X × Y . Let ιr : Y → Z be the inclusion of the
homotopy fiber of r : Z → X. Let H : A× Z → Z be a map satisfying
H ◦ j ∼ ∇(i ◦ f ∨ 1). Then let h = H ◦ (1× ιr) ◦ (g × 1) : X × Y → Z.
Consider the following diagram;

Y
i2−−−−→ X × Y p1−−−−→ X∥∥∥ g

y ∥∥∥
Y

ιr−−−−→ Z
r−−−−→ X

By the definition of h, the left square commutes, while the right square
commutes after π∗ is applied. Thus h induces an isomorphism of ho-
motopy groups, and as all spaces are homotopy equivalent to CW com-
plexes, it follows that h : X × Y → Z is a homotopy equivalence.

Taking f = 1X , we have, from the fact H1-space is just an H-space,
that the following corollary for splitting an H-space off a space.

Corollary 2.9. [2] The following conditions are equivalent;

(1) X is an H-space and there exists a space Y such that Z is homo-
topy equivalent to X × Y .

(2) There are maps i : X → Z and r : Z → X such that r is a left
homotopy inverse for i and i ∈ G(X,Z).

3. Splitting co-Hg-spaces off a space

Let g : X → A be a map. A based map f : X → B is called g-coclic
[11] if there is a map θ : X → A ∨B such that the following diagram is
homotopy commutative;
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X
θ−−−−→ A ∨B

∆

y j

y
X ×X (g×f)−−−−→ A×B,

where j : A ∨ B → A × B is the inclusion and ∆ : X → X ×X is the
diagonal map. We call such a map θ a coassociated map of a g-cocyclic
map f .

In the case g = 1X : X → X, f : X → B is called cocyclic
[14]. Clearly any cocyclic map is a g-cocyclic map and also f : X →
B is g-cocyclic iff g : X → A is f -cocyclic. The dual Gottlieb set
DG(X, g,A;B) for a map g : X → A is the set of all homotopy classes
of g-cocyclic maps from X to B. In the case g = 1X : X → X, we called
such a set DG(X, 1, X;B) the dual Gottlieb set denoted DG(X;B), that
is, the dual Gottlieb set is exactly same with the dual Gottlieb set for
the identity map.

In general, DG(X;B) ⊂ DG(X, g,A;B) ⊂ [X,B] for any map g :
X → B and any space B. However, there is an example in [15] such
that DG(X,B) 6= DG(X, g,A;B) 6= [X,B].

Proposition 3.1. [9] X is a co-H-space if and only if DG(X,B) =
[X,B] for any space B.

Definition 3.2. A space X is called a co-Hg-space for a map g :
X → A [17] if there is a map, a co-Hg-structure, θ : X → X ∨ A such
that jθ ∼ (1 × g)∆, where j : X ∨ A → X × A is the inclusion and
∆ : X → X ×X is the diagonal map.

Proposition 3.3. [17] X is a co-Hg-space for a map g : X → A if
and only if DG(X, g,A;B) = [X,B] for any space B.

Clearly we have, from Proposition 3.1 and Proposition 3.3, the fol-
lowing corollary.

Corollary 3.4. X is a co-H-space if and only if for any space A
and any map g : X → A, X is a co-Hg-space for a map g : X → A.

From now on, every space is assumed to be homotopy equivalent to
a connected simply connected CW complex.

Theorem 3.5. If X is a co-Hg-space and there exists a simply con-
nected space Y such that Z is homotopy equivalent to X ∨ Y , then
there exist maps i : Z → X and r : X → Z such that i ◦ r ∼ 1 and
g ◦ i ∈ DG(Z,A).
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Proof. Since Z is homotopy equivalent to X ∨ Y , there exist maps
h : Z → X ∨ Y , k : X ∨ Y → Z such that k ◦ h ∼ 1Z and h ◦ k ∼ 1X∨Y .

Let i = p1◦h : X
h→ X∨Y p1→ X and r = k◦i1 : X

i1→ X∨Y k→ Z, where
p1 : X ∨ Y → X is the projection and i1 : X → X ∨ Y is the inclusion.
Then i ◦ r = p1 ◦ h ◦ k ◦ i1 ∼ p1 ◦ i1 = 1X . Since X is a co-Hg-space,
there is a map θ : X → A ∨ X such that j ◦ θ = (g × 1) ◦ ∆, where
j : X ∨A→ X ×A is the inclusion and ∆ : X → X ×X is the diagonal
map. Now we show that g ◦ i ∈ DG(Z,A). Consider the composite map

ρ : Z
h→ X ∨ Y (θ∨1)→ A ∨X ∨ Y (1∨k)→ A ∨ Z. Consider the commutative

diagram

Z
h−−−−→ X ∨ Y θ∨1−−−−→ A ∨X ∨ Y 1∨k−−−−→ A ∨ Z

∆

y ∆

y y j

y
Z × Z h×h−−−−→ (X ∨ Y )× (X ∨ Y )

g◦p1×1−−−−→ A× (X ∨ Y )
1×k−−−−→ A× Z.

Then j ◦ ρ ∼ (g ◦ i× 1) ◦∆. Thus g ◦ i ∈ DG(Z,A).

We do not know whether the converse of the above result holds or
not. But we can obtain a little bit weaker result than the converse of
the above theorem.

Theorem 3.6. If there exist maps i : Z → X and r : X → Z such
that i ◦ r ∼ 1 and g ◦ i ∈ DG(Z,A), then X is a co-Hg-space and there
exists a simply connected space Y such that Hn(Z) ∼= Hn(X ∨ Y ) for
all n.

Proof. Let ι : Z → Y be the projecton of the homotopy cofiber of

r : X → Z. That is, we have a cofibration X
r→ Z

ι→ Y (= Cr). It is
clear that Y = Cr is homotopy equivalent to CW complex, where Cr
is the mapping cone of r : X → Z. Since g ◦ i ∈ DG(Z,A), there is a

map ρ : Z → A ∨ Z such that j ◦ ρ ∼ (g ◦ i× 1) ◦∆. Let θ : X
r→ Z

ρ→
A∨Z (1∨i)→ A∨X. Then j ◦θ ∼ (g×1)◦∆ and X is a co-Hg-space. Since

i ◦ r ∼ 1, the cofibration X
r→ Z

ι→ Y gives rise to a split short exact

sequence 0→ Hn(X)
r∗→←
i∗
Hn(Z)

ι∗→ Hn(Y )→ 0. Since Im r∗ = Ker ι∗ ⊂
Z(H∗(Z)) and i∗ ◦ r∗ = 1, we know, from Lemma 2.5, that there is an
isomorphism (i∗, ι∗) : H∗(Z) → H∗(X) × H∗(Y ). Thus we have, from
the fact H∗(X)×H∗(Y ) ∼= H∗(X ∨Y ), that Hn(Z) ∼= Hn(X ∨Y ) for all
n.
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In the proof of Theorem 3.6, if we can show that Z is homotopy
equivalent to X ∨ Y , then we can obtain a necessary and sufficient con-
dition for splitting so-Hg-space off a space as follows. Anyway we need
a little bit more condition for this.

Corollary 3.7. Suppose g : X → A has a left homotopy inverse
f : A → X. Then X is a co-Hg-space and there exists a space Y such
that Z is homotopy equivalent to X ∨ Y if and only if there are maps
i : Z → X and r : X → Z such that r is a right homotopy inverse for i
and g ◦ i ∈ DG(Z,A).

Proof. A necessary part follows from Theorem 3.5. For a sufficient
part, from the proof of Theorem 3.6, we only need to show that Z is
homotopy equivalent to X ∨ Y . Let ι : Z → Y be the projecton of the
homotopy cofiber of r : X → Z. Let ρ : Z → A ∨ Z be a map satisfying
j ◦ ρ ∼ (g ◦ i × 1) ◦∆. Then let h = (1 ∨ ι) ◦ (f ∨ 1) ◦ ρ : Z → X ∨ Y .
Then the following diagram of cofiber sequence is homotopy commute;

X
r−−−−→ Z

ι−−−−→ Y∥∥∥ h

y ∥∥∥
X

ιr−−−−→ X ∨ Y p2−−−−→ Y

By the definition of h, the left square commutes, while the right square
commutes after H∗ is applied. Thus h induces an isomorphism of homol-
ogy groups, and as all spaces are homotopy equivalent to CW complexes
and π1(Z) = π1(X∨Y ) = 0, it follows that h : Z → X∨Y is a homotopy
equivalence.

Taking g = 1X , we have, from the fact co-H1-space is just a co-H-
space, that the following corollary for splitting a co-H-space off a space.

Corollary 3.8. [2] The following conditions are equivalent;

(1) X is a co-H-space and there exists a space Y such that Z is ho-
motopy equivalent to X ∨ Y .

(2) There are maps i : Z → X and r : X → Z such that r is a right
homotopy inverse for i and i ∈ DG(Z,X).
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