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V-SEMICYCLIC MAPS AND FUNCTION SPACES

Yeon Soo Yoon and Jung Ok Yu

ABSTRACT. For any map v : X —> y, the generalized Gottlieb 
set X, v, Y) with respect to v is a subgroup of [EA, K]. If
v : X Y has a left homotopy inverse u : Y X, then for 
any f C X, v, Y), g C G(EA; Y, u, X), the function spaces
Z(SA,X; uf) and L(E/1, X; g) have the same homotopy type.

1. Introduction

This work is a continuation of the study of the Gottlieb set G(4, K) 
developed by Gottlieb[2,3] and Varadarajan[7]. Oda[6] generalized 
G(A, ) to G(A, X, y). In this paper we study some properties of

X, v, y) and define a generalization of G(A; X, v, K) when A is 
a co-7/-group. In section 2, we show that for any map v : X —> K, 
G(A; X, v, y) is a subgroup of [A, Y] when A is a co-TI-group. We 
define a v-semicyclic pair which is a generalized concept of a v-cyclic 
map and obtain some sufficient conditions for a pair of maps is to 
be a v-semicyclic pair. In section 3, we show that G(A;X, v,K) is 
the image of the induced map of evaluation map from fuction space 
L(X)y； v) to y, and obtain a sufficient condition for homotopy equiv­
alence of components of X).

Throughout this paper, space means a. space of homotopy type of 
locally finite connected CW complex. We assume also that spaces
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have non-degenerate base points. All maps shall mean continuous 
functions. The base point as well as the constant map will be denoted 
by *・ For simplicity, we use the same symbol for a map and its 
homotopy class. Also, we denote by [X, Y] the set of homotopy classes 
of pointed maps X Y. The identity map of space will be denoted by 
1 when it is clear from the context. The folding map ▽: X V X t X 
is given byV(a:, *) = V(*, x) = x for each x E X, £JX denotes the 
reduced suspension of X・ Frequently j:X\/Y-^XxY will be 
reserved for the inclusion.

2. v-cyclic maps and v-semicyclic pairs

In this section we show that for any map v : X —> F, G(4; X, v, Y) 
is a subgroup of [A, Y] when 4 is a co-H-group. We define a v- 
semicyclic pair which is a generalized concept of a v-cyclic map and 
obtain some sufficient conditions for a pair of maps is to be a v- 
semicyclic pair.

DEFINITION 2.1[7]. A map f : A X is called cyclic if there 
exists a map F : X x A X such that Fj ~ V(1 V /), where 
j:X\/A—^XxAis the inclusion and ▽: X V X X is the folding 
map. Since j :XV4—>Xx4isa cofibration, this is equivalent to 
saying that we can find a map G : XxA X such that Gj = V(1V/). 
The set of all homotopy classes of cyclic maps from A to X is denoted 
byG(4,X).

Definition 2.2[6]. Let u ： X —> Y be a map. A map f ： A Y 
is called v-cyclic if there is a map F : X x A Y such that Fj 〜 
V(v V /) : X V A y, where j:X\/A~>XxAis the inclusion. It 
is clear that f : A Y is v-cyclic if and only if u : X Y is /-cyclic. 
The generalized Gottlieb set G(4;X, u, Y) with respect to v : A X 
is the set of all homotopy classes of v-cyclic maps from A to Y. It is 
clear that if u 〜u : X t Y, then G(A; X, u, K) = GQ4;X,u, V). If 



V-SEMICYCLIG MAPS AND FUNCTION SPACES 79

u ~ lx : X —》X, then 시(4; X, v,X) is just the Gottlieb set GQ4, X).

REMARK 2.3. In general, G(4, 丫)板 G(A; X, v, K). It is known[3] 
that G(S2, S2) = 0. Let 77 : S3 —> S2 be 난le Hopf map. Then there 
is a map F : S2 x S3 t S2 such that Fj ~ V(4 V 77). Thus we know, 
from Proposition 2.4, that G(S2; S3,77, S2) = 7r2(S2) = Z.

Proposition 2.4. If v ： X Y is cyclic, then G(A；X, v,F)=

PROOF. Let f : A Y be any map. Since v : X —* V is cyclic, 
there is a map V : Y x X Y such that V()*)〜1 and V(*,)〜 v. 

, 、 T (/xl) V
Consider the map F = V(f x 1)T : X x A —> AxX------- > Y xX ―>
y, where T:Xx4 —>,4xXis given by (a;, a) = (a, x). Then 
F( and F(*,)〜/. Thus f £ G(A; X, v, F).

THEOREM 2.5. Let V : X Y be a map. Then G(A;X, v,K)= 
nG(A; B, vu, y) for any space B and any map u : B t X・ In partic­

ular, G(A, lz) = G(A; y, 1,1") = AG(A; B,Iz) for any space B and u
any map u : B Y.

PROOF. Let f € G(A; X, v, y). Then there is a map F : X x A
Y such that Fj 〜V(v V /), where j :X\/A—^XxAis the inclusion. 
For any space B and any map tz : B —> X, let G : B x A —K be 

u x 1 F .
the composition B x A-------- > X x A —> Y. Then Gj1 = F(u x 1)项，=

Fj(u V 1) ~ V /), where jf : B V A B x A is the inclusion.
Thus f E G(A; B, vu, K) for any space B and any map u : B X
and f G AG(A; B, viz, for any space B and any map u : B X.u
On the other hand, let f G nG(A; B, vu, K) for any space B and u
any map u : B -스 X. Take B = X and « = lx ： X — X, Then 
f G G(A; X, v, y). This proves the theorem.
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Corollary 2.6. If V : X -» Y has a right homotopy inverse 
u : Y X, then G(4;X, %V) = G(A, K).

Lemma 2.7. Let V : X -^ Y be a map. If f : A Y is a v-cyclic 
map and。： B A is an arbitrary map, then f3:B—^Yisa v-cyclic 

map.

PROOF. Let F:XxA-^Y be a map such that F(*, ) ~ f and 
F( , *)〜v. Then G = F(1 x 0) : X x B Y satisfies G(*, ) ~ f3 
and G( , *) ~ v. This proves the lemma.

Let f and g be pointed maps from A to Y where A is a co-H- 
space with be a co-7?-structure. Define f + g : A Y to be the 

composition
m fvg ▽

a-^ a\/ a -一> y v y —> y.

Theorem 2.8. Let A be a co-H-gi、oup. For any ina.p v : X Y, 
G^X.v.Y') is a subgroup of [A,Y].

PROOF. Let //:A—>AVAbea co-J?-structure and y : A A 
be the inversion on A. Let f.g E G(A;X, v,K). Then there are maps 
F:XxA-^Y^G:XxA—^Y such that F(rr, *) = v(x), F(*, a)= 
/(a) and G(x, *) = v(^), G(*, a) = g(a). Let J X x (A V A) —> F 
be given by J(叫 a, *) = F(奶 a), *, a) = G(@, a). Since F(x^ *)=

=G(心 *))J is well defined and continuous. Also it is clear that 
J(*/(a)) = (V(y V g)〃)(0). Define a map H : X x A Y by the 

composition
1 Xu J

X x A 一一> X x (4 V 4) —> K

Then H(必 *) = J(*,*,*) = v(x) and H(*,q) = J(*/(a)) = (V(/ V 
g)卩，、)(a). Thus we know that f + g E G(A; X, v, Y). From Lemma 2.7, 
we know that fy：A-^Yis v-cyclic. This proves the theorem.
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DEFINITION 2.9. Let V : X y be a map and A a co-H-space. 
A pointed map f : A Y is called v-semicyclic if there exists a map 

: A —> y such that f + f1 is v-cyclic. Then a pair is said 
to be a v-semicyclic pair in [A, K]. The set of all homotopy classes 
of v-semicyclic maps from A to V is denoted by SG(A; X, v, K). In 
particular, SG(Sn; X, v, Y) will be denoted by SGn(X^ v, K).

REMARK 2.10. Let V : X Y a map and A a co-H-space. Let 
/ : A —> y be a v-cyclic map. Since / + / :
A —> is a v-semicyclic map. Thus we know that G(A; X, v, K) C 
SG(A;X,v,y). In general, G(4;X,u,Y)長 SG(A;X,v,Y). It is 
known[10] that I55 : S5 S5 is not a cyclic map, but I55 + I55 : 
S5 —> S5 is a cyclic map. Thus we know that I55 G SG^^S5^ 1^5, S5), 
but I55 £ Gs(S5,155, S5).

From the definition of v-semicyclic pair and Theorem 2.8, we have 
the following proposition.

Proposition 2.11. Let v ： X Y be a, map and A a co-H- 
space. If {/, f1} and {g^ g1} are v-semicyclic pairs in [A, Y], then 

{f + f+ 们 g'}, {/, f + g + g1} and {/,-1, 广T } a흐。v-semicyclic pairs 
in[A,Y],

THEOREM 2.12. Let V : X Y and u : Y Z be maps ,and A a 
co-H-space. If f E G(A; X, v, K) and g E G(4;匕《,Z), then (u/,(7} 
is a uv-semicyclic pair in [A, Z].

PROOF. There are maps F : X x A Y and G : Y x A Z 
such that Fj 〜Vy(v V f) and Gi ~ ▽z(u V g) respectively, where 
j : XV A —» X x A, z : y V A —^YxA are inclusions. Let 卩: A -수 AV A 
be a co-7?-structure on A, Consider the map H : X x A —> Z to be 
the composition

ix/t , lx/ Fxi G
X xA ——> X x (A V A)——> X x A x A ——> F xA—^Z, 
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where j1 : 4 V A —> A x A is the inclusion. Then Hj = G(F x 
1)(1 x f)(l x Q顶 ~ ▽z(u V fif)(Vy(v V/) V 1)(1 V Q = Vz(l V 
▽z)(皿 V " V g)(l、")=z(uv Vz(uf V g)卩、). Thus we know 
that uf + g E G(& X, uvy Z), This proves the theorem.

Corollary 2.13. Let A be a co-H-space.

(1) If f e G(A;X,v,y)and g G G(4,Y) = G(A;K1,Y), then 
{f^g} is a v-semicyclic pair in [A, Y],

(2) If f E GQ4,X) and g G G(4;X, u, Y), then {vf^g} is a v- 
semicyclic pair in [A, Y}.

(3) Let v : X Y has a left homotopy inverse u : Y —> X. 
If f E G(A; X, v, lz) and g E G(厶；K%X), then {uf,g} is 
Ix-semicyclic pair in [A^X],

We also, as a corollary, have the following lemma.

LEMMA 2.14. Let u : Y Z be a map. Then iz*(G(A; X, v, K)) C 

G(4;X, u 幻 Z).

THEOREM 2.15. Let u :Y Z has a. left homotopy inverse. Then 
G(A; X, Z) A u^[A, Y]) = u*(GQ4； X, v, K)).

PROOF. It follows, from Lemma 2.14, that u*(G(A;X,v,F)) C 
G(A;X, tiv, Z) A y]). Conversely, let f e G(A; X, uv^ Z) A 
u*([Ay Iz]). Then there are maps g \ A Y and F : X x A Z 
siKh that u*(g) = ug ~ / and Fj ~ V(uv V /) respectively. Define 
a map G : X x A t X by G(①，q) = wF(x^ a), where w : Z Y is 
a left homotopy inverse of iz : V —> Z、Then G( ,*) = wF( , *)〜 
wuv 〜v and G(*, ) = ~ wf ~ w(ug) = (wu)g ~ g. Thus
g £ GQ4;X, and f = s(g) G u*(G(4;X,幻 I")). This proves 
the theorem.
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3. Evaluation fibrations of function spaces

In this section we show that G(A; X, v, Y) is the image of the in­
duced map of evaluation map from fuction space L(X、Y; v) to K, and 
obtain a sufficient condition for homotopy equivalence of components 
of £(SA,X). From now on, let A be a compact CW complex. We 
use the following notations. L(A^X) will denote the spaces of maps 
from 4 to X with the compact open topology and 乙(&X;f) the 
path component of L(A,X) containing f : A X. 乙o(A,X) and 
乙o(4,X;f) will denote the space of base point preserving maps in 
乙(4, X) and 乙(4, X; /) respectively. According to a well known fact, 
L(A,X) and Lq(A,X) have the homotopy type of CW complexes. 
Clearly the evaluation map 3 : L(A, X) —» X is a fibration. Let 
/ : A —* X be a pointed map. Since X is a path connected, the 
restriction c^f = : L(A)X; t X is a fibration with fiber
乙 o(4,X; J) We call this fibration 0(&X;f),叼，X) the evaluation 
fibration defined by f. First we recall the following well-known lemma.

LEMMA 3.1. Let X be a locally compact Hausdorff space, Z a 
Hausdorff space and Y any space. Then the function spaces 

£(X, K)) and L(X x Z, K) 处給 homeomorphic and a homeomo끄- 

phism H : £(Z,£(X,y)) - L(X x Z.Y) is given by H(g)(x,z)= 
g(z)(x) for each g : Z £(X, K), x € X, z € Z. Furthermore, f 〜g 
iffH(F)〜H(g\

THEOREM 3.2. Let u? : Z(X, Y; v)—》Y be the evaluation Gbra­
tion. Then L(X，Y\ v)]) = GQ4; X, v, K) as set, where 3* is the 
induced function of 3.

PROOF. Since X is a locally compact, any continuous map h : 
(&*) t (L(X, v), v) gives rise to a continuous map H(h) : X x
A —> Y, Since 丑(")(*, q) = /i(a)(*) = and H(力)(z,*)= 
力(*)(cz) = v(a), we have 3*([/z]) = \ujh] G G(A; X, v, lz). Conversely,
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let [/] G G(A; X^v^Y). Then there is a map F : X x A Y 
such that F\x = v and = f. Define g : A L(X, v, K) by 
g(a)(z) = a). Since g(*)(x) = H~1(F)(x^ *) = and

3g(a)二二 9(0)(*) = = /(a), [/]=物]=3*(以)e
L(X, Y; v)]. This completes the theorem.

Under the same hypotheses as the above theorem, if, in addition, 
A is a co-Jf-group, then L(X, K; v]) = G(4; X, )as groups.

THEOREM 3.3. Let : £(A, Y; /) Y be the evaluation fibra­
tion and v : X Y a map. Then there exists a map s/ : X 
£(A, Y; /) such that and only if f : A Y is v-cyclic.

PROOF. Let Sf : X £(A, Y; /) be a map such that cofS/ = v.
Define a map H : X x A Y by letting a) = sy(a;)(a). Then H :
X〉C/4 —> Y is a continuous map and H(必 *) = (*)(*) = cjfSf(x)=
v(x), a) = s/(*)(q). Since s了(*) belongs to Lq(A^ Y; f), s了(*) is 
homotopic to /. Thus / : A —> K is ^-cyclic. On the other hand, 
suppose that f : A —> Y is v-cyclic. Then there is a map F \ X x A 
Y such that Fj = V(v V /'). Define a map 町 : X —> L(A, X; /) 
by letting s/(^)(a) = a). Since X is a path connected space,
Sf : X —> L(A)X; f) is a map such that lojs/ = v. This completes 
the theorem.

For any f G [A, Y] the evaluation map 3了 : L(A, K; /) —> Y is a 
fibration with fibre 乙V; /). Then we have a long exact sequence 
of homotopy groups

——> [疗+也 y] 으愼宵, Lo(A, y； f)]

二阿3,乙(A"/)] 二 口"H 으 … .

It is known[4] that for f E £o(SA, K), Zo(SA, Y; *) is homotopy 
equivalent to £q(SA, K; f) and [S(B A A), Y] is isomorphic to 
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[B, Lo(SA, Y; *)]. From the above fact, and Theorem 3.2 and Theo­
rem 3.3, we have the following corollary.

Corollary 3.4.

(1) There is a. short exact sequence

0 —> [S(SrBAA), K]二[SrB, £(SA, K; /)]= G(疗3; SA, Y) —> 0.

(2) If f : A Y is a v-cyclic map for a surjection u : X —> V, 
then [SrB,y] = G(疔for r > 1.

We showed[10] that the following lemma.

LEMMA 3.5[1 이 . If f + g : SA —> X is cyclic, then the evaluation 
fibrations (L(SA,X; f and (L(£A,X; are fibre ho­
motopy equivalent.

Combining Corollary 2.13 and Lemma 3.5, we have the following 
theorem.

THEOREM 3.6. Let V : X Y has a left homotopy inverse u : Y —> 
X, Then for 이]y f G and g G G(減4; 匕 «,X), the
evaluation fibrations (£(SA, X; uf),cuuf, X) and (£(EA,X; g\3g)X) 
are fibre homotopy equivalent.

LEMMA 3.7[1]. [/,g] = 0 if and only if there is a map m : SA x 
SB t X such that mj 〜V(/ V g).

THEOREM 3.8. Let f £ G(SA; X, V, y). Then for any map g : 
SB t X, g*3), /] = 0 in [S(A A B), F].

PROOF. Since f E G(EA; X, V, y), there is a map F : Xx SA —)Y 
such that Fj 〜V(t? V /). Define a map m : SB x EA -t Y to be the 
composition

(gxi) f
SB x SA------- > X x SA —> K
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Then mjl = F(g x = Fj(g V 1) ~ W(vg V /). By Lemma 3.7, we 
have = 0.

We recall (Proposition 3.4 in[l]) one more fact regarding the gen­
eralized Whitehead product. If A and B are themselves suspensions 
and /, / G [SA,X] and g^g E then

(1) Lf+ £S = UH] + 配外
(2) [f^g + 3] = [f^g] + [A 9]*

COROLLARY 3.9. Let {/, f1} be a v-semicyclic pair in [SA, Y]. 
Then for any map g : EB -> X,伊*(g) J] = — W*(g),尸]•
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