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V-SEMICYCLIC MAPS AND FUNCTION SPACES

YEON SO0 YOON AND Jung Ok YU

ABSTRACT. For any map v ; X — Y, the generalized Gottlieb
set G(XA; X, v, Y) with respect to v is a subgroup of [EA,Y]. If
v 1 X — Y has a left homotopy inverse v : ¥ — X, then for
any f € G{ZA; X,v,Y), g € G(ZA,;Y,u,X), the functiion spaces
L(¥A, X;uf) and L{X A, X; g) have the same homotopy type.

1. Introduction

This work is a continuation of the study of the Gottlieb set G(A4,Y")
developed by Gottlieb[2,3] and Varadarajan[7]. Oda[6] generalized
G(A,Y) to G(4,X,v,Y). In this paper we study some properties of
G(A; X,v,Y) and define a generalization of G{A; X,v,Y) when A is
a co-H-group. In section 2, we show that for any map v : X — Y,
G(4;X,0,Y) is a subgroup of [4,Y] when A is a co-H-group. We
define a v-semicyclic pair which is a generalized concept of a v-cyclic
map and obtain some sufficient conditions for a pair of maps is to
be a v-semicyclic pair. In section 3, we show that G(4;X,v,Y) is
the image of the induced map of evaluation map from fuction space
L(X,Y;v) to Y, and obtain a sufficient condition for homotopy equiv-
alence of components of L(T 4, X).

Throughout this paper, space means a space of homotopy type of

locally finite connected CW complex. We assume also that spaces
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have non-degenerate base points. All maps shall mean continuous
functions. The base point as well as the constant map will be denoted
by *. For simplicity, we use the same symbol for a map and its
homotopy class. Also, we denote by {X, Y] the set of Lhomotopy classes
of pointed maps X — Y. The identity map of space will be denoted by
1 when it is clear from the context. The folding map V: X VX — X
is given byV(z,*) = V(*,z) = z for each z € X. £X denotes the
reduced suspension of X. Frequently j : X VY — X x Y will be

reserved for the inclusion.

2. v-cyclic maps and v-semicyclic pairs

In this section we show that for any mapv: X - Y, G(4; X,v,Y)
is a subgroup of [4,Y] when A is a co-H-group. We define a v-
semicyclic pair which is a generalized concept of a v-cyclic map and
obtain some sufficient conditions for a pair of maps is to be a v-

semicyclic pair.

DEFINITION 2.1{7]. A map f: A — X is called cyclic if there
exists a map F : X x A — X such that F7 ~ V(1V f), where
j: XVA— X x Aisthe inclusion and V : X VX — X is the folding
map. Since j : X VA — X X A is a cofibration, this is equivalent to
saying that we can find amap G : X x A — X suchthat Gj = V(1V f).
The set of all homotopy classes of cyclic maps from A to X is denoted
by G(4,X).

DEFINITION 2.2[6]. Let v : X — Y be a map. A map f: A—Y
is called v-cyclic if there is a map F : X X A — Y such that Fy ~
VvV f): XVA-=Y,where j: X VA — X X A is the inclusion. It
is clear that f : A = Y is v-cyclicif and only if v : X — Y is f-cyclic.
The generalized Gotilieh set G(A; X, v,Y ) with respecttov : A — X
is the set of all homotopy classes of v-cyclic maps from A to Y. It is
clear that if u ~ v : X — Y, then G(A; X,v,Y) = G(4; X,v,Y). If



V-SEMICYCLIC MAPS AND FUNCTION SPACES 79

v~1lx:X — X, then G{A; X,v, X) is just the Gottlieb set G(A4, X).

REMARK 2.3. In general, G(4,Y) G G(4; X,v,Y). Tt is known{3]
that G(S%,5%) = 0. Let  : S* — 5% be the Hopf map. Then there
is a map F': 5% x §% — 52 such that F'j ~ V(¢ V ). Thus we know,
from Proposition 2.4, that G(S8%; 53,7, 5%) = m(5?) = Z.

PrROPOSITION 2.4. If v : X — Y is eyclic, then G(A; X,v,Y) =
[A,Y].

ProOOF. Let f: A — Y be any map. Sincev : X — Y is cyclic,
thereisamap V : Y x X — Y such that V( ,*) ~ 1 and V(*, ) ~ v.

. T (fx1) v
Consider the map F=V(fx1)T: X XA — AXX —— Y xX —
Y, where T : X x 4 — A x X is given by (2,a) = (a,z). Then
F(,*)~vand F(x, )~ f. Thus f € G(4; X,v,Y).

THEOREM 2.5. Let v: X — Y be a map. Then G(4;X,v,Y) =
NG(A4; B,vu,Y) for any space B and any map u : B — X. In partic-
U
ular, G(A,Y) = G(4;,Y,1,Y) = QG(A; B,u,Y) for any space B and

anymapu:B - Y.

Proov. Let f € G{(4;X,v,Y). Then thereisamap F: X x 4 —
Y such that Fj ~ V(vV f), wherej : X VA — X X A is the inclusion.
For any space B and any mapu : B — X, let G: Bx A > Y be
the composition B x 4 X xA L\ Y. Then Gj'=Flux1)j'=
Fj(uVv 1) ~ V(vuV f), where 7' : BV A — B x A is the inclusion.
Thus f € G(A; B,vw,Y) for any space B and any map u : B — X
and f € NG(A; B,vu,Y) for any space B and any map v : B — X.
On the olitzher hand, let f € NG(4;B,vu,Y) for any space B and
any map u : B — X. Take 1; =X andu =1x : X - X. Then
f € G(A; X,v,Y). This proves the theorem.
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COROLLARY 2.6. If v : X — Y has a right homotopy inverse
uw:Y — X, then G(A; X,v,Y) = G(A,Y).

LEMMA 2.7. Letv: X —» Y beamap. If f: A — Y Is av-cyclic
map and 8 : B — A is an arbitrary map, then f6 : B — Y isav-cyclic

map.

PROOF. Let F: X x A — Y be a map such that F(x, ) ~ f and
F(,%¥)~v. Then G = F(1 x8): X x B — Y satisfies G(*, ) ~ fé

and G( ,*) ~ v. This proves the lemma.

Let f and g be pointed maps from A to ¥ where 4 is a co-H-
space with g be a co-H-structure. Define f+g: A — Y to be the
composition

" fvg v
A—AVA—-—YVY =Y.

THEOREM 2.8. Let A be a co-H-group. For any mapv: X — Y,
G(4; X,v,Y) is a subgroup of [A,Y].

PROOF. Let p: A — AV A be a co-H-structure and v : A — A
be the inversion on A. Let f,¢ € G(A;X,v,Y). Then there are maps
F:XxA—-Y,G:X xA— Y such that Fz,*) = v(z), F(x,a) =
f(a) and G(z,*) = v(z),G(*,a) = g(a). Let J: X x (AVA) =Y
be given by J(x,a,*) = F(z,a), J(z,*,a) = G(z,a). Since F(z,*) =
v(z) = G(a,*), J is well defined and continuous. Also it is clear that
J(x, p{a)) = (V(f V g}u)(a). Define a map H : X x 4 — Y by the
composition

Xx A X x(AvA) DY,
Then H(z,*) = J(a,*,*) = v(z) and H(*,a) = J(x,p(a)) = (V(f V
g)u)(a). Thus we know that f+¢ € G(A; X,v,Y). From Lemma 2.7,

we know that fv: A — Y is v-cyclic. This proves the theorem.



V-SEMICYCLIC MAPS AND FUNCTION SPACES 81

DEFINITION 2.9, Let v : X — Y be a map and 4 a co-H-space.
A pointed map f : A — Y is called v-semicyclic if there exists a map
f'i A =Y such that f+ f' is v-cyclic. Then a pair {f, f'} is said
to be a v-semicyclic pair in [A,Y]. The set of all homotopy classes
of v-semicyclic maps from A to Y is denoted by SG(4; X,v,Y). In
particular, SG(S™; X, v,Y ) will be denoted by SG,(X,v,Y).

REMARK 2.10. Let v : X — Y a map and A a co-H-space. Let
f:+ A — Y be awvcyclicmap. Since f ~ f4+x: A Y, [
A — Y 1s a v-semicyclic map. Thus we know that G(4; X,v,Y) C
SG(A; X,v,Y). In geueral, G(4;X,v,Y) G SG(4;X,0,Y). It is
known[10] that 1gs : S° — S% is not a cyclic map, but 1gs + 1gs :
5% — S% is a cyclic map. Thus we know that 1gs € SG5(S%,1g5,5°),
but 1gs & G5(S5%, 165,5%).

From the definition of v-semicyclic pair and Theorem 2.8, we have

the following proposition.

PROPOSITION 2.11. Let v : X — Y be a map and A a co-H-
space. If {f, f'} and {g¢.¢'} are v-semicyclic pairs in [A,Y], then
{f+f +g.¢0L{f, ff+yg+g¢'} and {f'~1, f~'} arc v-semicyclic pairs
in [A, Y]

THEOREM 2.12. Letv: X =Y andu Y — Z be maps ,and A a
co-H-space. If f € G{A; X,v.Y) and g € G(A;Y,w,Z), then {uf, g}
is a uv-semicyclic pair in [4, Z].

PrOOF. There are maps FF : X X 4 - YV and G: Y X A — Z
such that F7 ~ Vy(v V f) and Gi ~ Vz{u V g¢) respectively, where
FJ:XVA - XxA71:YVA - YV xAdarcinclusions. Let u: 4 — AVA
be a co-H-structure on A. Consider the map H : X x A — Z to be

the composition

Ixp 1xj" Fx1 | G
XXA -3 X X{(AVA) — X xAxd4d— )Y XA Z,
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where j' : AVA — A X A is the inclusion. Then Hj = G(F x
D1 x )1 x p)j ~ VeV gl(Vy(V FVINIV ) = V1V
Vz)uvVufVvgllVpu) =Vz(uvV Vz{ufVg)u) Thus we know
that uf + ¢ € G(A4; X,uv,Z). This proves the theorem.

COROLLARY 2.13. Let A be a co-H-space.

(1) If fe G4 X,v,Y)and g € G(A,Y) = G(A4;Y,1,Y), then
{f,9} is a v-semicyclic pair in [4,Y].

(2) If f € G{A,X) and g € G(A; X,v,Y), then {vf,¢} is a v-
semicyelic pair in [A,Y].

(3) Let v : X — ¥ has a left homotopy inverse u 1 ¥ — X,
Iffe G4, X,v,Y)and g € G(4;Y,u,X), then {uf,g} is
1x-semicyclic pair in [A, X].

We also, as a corollary, have the following lemma,

LEMMA 2.14. Letu:Y — Z be amap. Then u.(G(A; X,v,Y)) C
G(4; X, uv, Z).

THEOREM 2.15. Let u : Y — Z has a left Lhomotopy inverse. Then
G(A; X, uv, Z) Nu.([4,Y]) = uu(G(A4; X, v, Y)).

ProoF. It follows, from Lemma 2.14, that.u*(G(A;X,v,Y)) C
G(A; X, uv, Z) Nu.([4,Y]). Conversely, let f € G(A;X,uv,Z) N
u«([A,Y]). Then there are maps ¢ : A - Y and F: X x4 — Z
such that u.(g) = ug ~ f aud Fj ~ V(uv V f) respectively. Define
amap G: X x A —» X by G(z,a) = wF(z,a), where w: Z = Y is
a left homotopy inverse of w : ¥ — Z. Then G( ,*) = wF( ,*) ~
wuv ~ v and G(*, ) = wF(*, ) ~ wf ~ w(ug) = (wu)g ~ g. Thus
g € G{A; X,v,Y) and f = u.g) € w(G(A; X,v,Y)). This proves

the theorem.
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3. Evaluation fibrations of function spaces

In this section we show that G{A; X,v,Y ) is the image of the in-
duced map of evaluation map from fuction space L{X,Y;v) to Y, and
obtain a sufficient condition for homotopy equivalence of components
of L(¥ A, X). From now on, let A be a compact CW complex. We
use the following notations. L{A, X) will denote the spaces of maps
from A to X with the compact open topology and L{A,X; f) the
path component of L(4, X) containing f : A — X. Lo(A,X) and
Ly(A, X, f) will denote the space of base point preserving maps in
L{A,X) and L(A, X; f) respectively. According to a well known fact,
L(A,X) and Lo(A, X) have the homotopy type of CW complexes.
Clearly the evaluation map w : L(A,X) — X is a fibration. Lect
f: A —> X be a pointed map. Since X is a path connected, the
restriction wy = plrax;f) @ L(4,X; f) — X is a fibration with fiber
Lo(A,X; ). We call this fibration (L(A,X; f),wy, X)) the evaluation
fibration defined by f. First we recall the following well-known lemma.

LEMMA 3.1. Let X be a locally compact Hausdorff space, Z a
Hausdorff space and Y any space. Then the function spaces
L(Z,L(X,Y)) and L(X x Z,Y") are homeomorphic and a homeomor-
phism H : L(Z,L(X,Y)) — L(X x Z,Y) is given by H(g)(z,z) =
g(z)(z) for cach g : Z — L(X,Y),2 € X,z € Z. Furthermore, f ~ ¢
iff H(f) ~ Hlg)

THEOREM 3.2. Let w : L(X,Y;v) — Y be the evaluation fibra-
tion. Then w,({A4, L(X,Y;v)]} = G(4; X,v,Y) as set, where w, is the

induced function of w.

ProoF. Since X is a locally compact, any continuous map 5 :
(A, %) — (L{X,Y;v),v) gives rise to a continuous map H(h) : X x
A — Y. Since H(h)(x,¢) = h{a)(*) = whia) and H{h)(z,*) =
h(*)(a) = v{a), we have wi([k]) = [wh] € G(A4; X,v,Y). Conversely,
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let [f] € G(A; X,v,Y). Then thereisamap F : X x4 - V
such that Fixy = v and Fj4 = f. Define g : A — L(X,v,Y) by
g(a)(z) = H Y (F)(z,a). Since g(*)(z) = H™(F)(z,*) = v(z) and
wg(a) = gla)(x) = H-H{F){x,a) = fla), [f] = [wg] = w.llg]) €

w«[A, L{X,Y;v)]. This completes the theorem.

Under the same hypotheses as the above theorem, if, in addition,

A is a co- H-group, then w.([4, L{X,Y;v]) = G(4; X,v,Y) as groups.

THEOREM 3.3. Let wy : L(A,Y; f) — Y be the evaluation fibra-
tion and v : X — Y a map. Then there exists a map sy : X —
L(AY; f) such that wysy ~v ifandonly if f : A = Y is v-cyclic.

PrROOF. Let sy : X — L(A,Y; f) be a map such that wygsy = v.
Defincamap H : X XA — Y by letting H(x,«) = sp(2)(a). Then H :
X x A — Y is acontinuous map and H(z,*) = sp(z)(*) = wysyp(e) =
v{z), H(*,a) = sy(*)(a). Since s¢(*) belongs to Lo(A,Y; f), sg(*) is
homotopic to f. Thus f : 4 — Y is v-cyclic. On the other hand,
suppose that f: A — Y is v-cyclic. Then thereisamap FF: X x4 —
Y such that £y = V(v V f). Define a map sy : X — L(4,X;f)
by letting ss(2)(a¢) = F(z,a). Since X is a path connected space,
s+ X — L(A,X; f) is a map such that wys; = v. This completes

the theorem.

For any f € [A,Y] the evaluation map wy : L{A, Y f) » Y is a
fibration with fibre Ly(A4,17; f). Then we have a long exact sequence

of homotopy groups
< [EH1BY] 2" B, Lo(4,Y; f)]
'i. We a
—[EB,L(A,Y; f)] — [£'B, Y] — -+

It is known{4] that for f € Lg(ZA,Y),Le(2A,Y;*) is homotopy
cquivalent to Lg(EXA,Y; f) and [B(B A A),Y] is isomorphic to
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[B, Lo(2A,Y; *)]. From the above fact, and Theorem 3.2 and Theo-
rem 3.3, we have the following corollary.
COROLLARY 3.4.

(1) There is a short exact sequence
0 — [S(STBAA), Y] — [S7B,L(EA,Y; f)] — G(S"B; T4, f,Y) — 0.

(2) If f: A > Y is av-cyclic map for a sugjectionv : X - Y,
then [S"B.Y| =G(X"B; A, f,Y) forr > 1.

We showed[10] that the following lemma.

LEmMMA 3.5[10]. If f + ¢ : ZA — X is cyclic, then the evaluation
fibrations (L(XA, X; f),wy, X) and (L(ZA, X; ¢),wy, X ) are fibre ho-
motopy equivalent.

Combining Corollary 2.13 and Lemma 3.5, we have the following

theorem.

THEOREM 3.6. Letv : X — Y has a left homotopy inverseu : Y —
X. Then for any f € G(ZA;X,v,Y) and ¢ € G(EA;Y,u, X), the
evaluation fibrations (L{XA, X uf),wu s, X} and (L(TA, X; g),wy, X)

are fibre homotopy equivalcnt.

Lemma 3.7[1]. [f,¢] = 0 if and only if there is a map m : TA x
YB — X such that mj ~V(f Vyg).

THEOREM 3.8. Let f € G{EA;X,v,Y). Then for any map ¢ :
B — X, [v{g) fl=01in[Z(AAB),Y]

PRrROOF. Since f € G(E4; X,v,Y), tharcisamap F: XxTA4A - Y
such that Fy ~ V(o V f). Define a map m: XB x ¥A - Y to be the
composition

(gx1) F
YBx Y4 — A xTA Y.
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Then mj’ = F(g x 1)j' = Fj(g V1)~ V(vg V f). By Lemma 3.7, we
have [v.(g), f] = 0.

We recall (Proposition 3.4 in{1]) one more fact regarding the gen-

eralized Whitchead product. If 4 and B are themselves suspensions

and f, f € [£4,X] and ¢,7 € [SB, X], then

(1) [f+ f.al =1, 9]+ ], 9.
(2) (f,9+3)=1[f g1+ [f.dl

CoRrROLLARY 3.9. Let {f,f'} be a v-semicyclic pair in [EA,Y].
Then for any map ¢ : B — X, [v.(9), f1 = —lv«(9), /']

o
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