LIFTING T-STRUCTURES AND THEIR DUALS

Yeon Soo Yoon*

Abstract

We define and study a concept of T^{f}-space for a map, which is a generalized one of a T-space, in terms of the Gottlieb set for a map. We show that X is a T^{f}-space if and only if $G(\Sigma B ; A, f, X)=[\Sigma B, X]$ for any space B. For a principal fibration $E_{k} \rightarrow X$ induced by $k: X \rightarrow X^{\prime}$ from $\epsilon: P X^{\prime} \rightarrow X^{\prime}$, we obtain a sufficient condition to having a lifting $T^{\bar{f}}$-structure on E_{k} of a T^{f}-structure on X. Also, we define and study a concept of co- T^{g}-space for a map, which is a dual one of T^{f}-space for a map. We obtain a dual result for a principal cofibration $i_{r}: X \rightarrow C_{r}$ induced by $r: X^{\prime} \rightarrow X$ from $\iota: X^{\prime} \rightarrow c X^{\prime}$.

1. Introduction

In [1], Aguade introduced a T-space as a space X having the property that the evaluation fibration $\Omega X \rightarrow X^{S^{1}} \rightarrow X$ is fibre homotopically trivial. It is easy to show that any H-space is a T-space. However, there are many T-spaces which are not H-spaces in [16]. Let ΣX denotes the reduced suspension of X , and ΩX denotes the based loop space of X . Let τ be the adjoint functor from the group $[\Sigma X, Y$] to the group $[X, \Omega Y]$. The symbols e and e^{\prime} denote $\tau^{-1}\left(1_{\Omega X}\right)$ and $\tau\left(1_{\Sigma X}\right)$ respectively. In [16], Woo and Yoon showed that the concept of T-space is closely related by the Gottlieb set $G(A, X)$, which is the set of homotopy classes of cyclic maps from A to X as follows; X is a T-space if and only if $G(\Sigma B, X)=[\Sigma B, X]$ for any space B. Also, we introduced and showed [16] that a concept of co- T-space as a dual one of T-space, which is closely related by the dual Gottlieb set $D G(X, A)$ which is the set of homotopy classes of cocyclic maps from X to A as follows; X is a co-T-space if and only if $D G(X ; \Omega B)=[X, \Omega B]$ for any space B. In [12], Oda introduced the concept of f-cyclic map as a generalization of that

[^0]of cyclic map. We called [21] the set of all homotopy classes of f cyclic maps from B to X as the Gottlieb set $G(B ; A, f, X)$ for a map $f: A \rightarrow X$. In general, $G(B, X) \subset G(B ; A, f, X) \subset[B, X]$ for any $\operatorname{map} f: A \rightarrow X$ and any space B. However, it is known [19] that $G\left(S^{5}, S^{5} \times S^{5}\right) \cong 2 Z \oplus 2 Z \neq G\left(S^{5} ; S^{5}, i_{1}, S^{5} \times S^{5}\right) \cong 2 Z \oplus Z \neq\left[S^{5}, S^{5} \times\right.$ $\left.S^{5}\right] \cong Z \oplus Z$, where $i_{1}: S^{5} \rightarrow S^{5} \times S^{5}$ is the inclusion. In [18], we introduced the set of all homotopy classes of g-cocyclic maps from X to B as the dual Gottlieb set $D G(X, g, A ; B)$ for a map $g: X \rightarrow A$. In general, $D G(X, B) \subset D G(X, g, A ; B) \subset[X, B]$ for any map $g: X \rightarrow A$ and any space B. We also showed [20] that $D G\left(S^{n} \times S^{n}, K(Z, n)\right) \neq$ $D G\left(S^{n} \times S^{n}, p_{1}, S^{n} ; K(Z, n)\right) \neq\left[S^{n} \times S^{n}, K(Z, n)\right]$ for all n, where p_{1} : $S^{n} \times S^{n} \rightarrow S^{n}$ is the projection.

In this paper, we introduce a T^{f}-space for a map $f: A \rightarrow X$ as a space X having the property that $e: \Sigma \Omega X \rightarrow X$ is f-cyclic, that is, there is a T^{f}-structure $F: \Sigma \Omega X \times A \rightarrow X$ on X. We show that X is a T^{f}-space if and only if $G(\Sigma B ; A, f, X)=[\Sigma B, X]$ for any space B. There is an example which is a T^{f}-space for a map $f: A \rightarrow X$, but not T-space. We can also obtain, from some properties of T^{f}-spaces, that for any $x \in \pi_{n}\left(S^{2}\right), \alpha \in \pi_{k}\left(S^{2}\right),[x, \alpha]=0$ for all $n \geq 3, k \geq 1$. It is known [16] that if X dominates A and X is a T-space, then A is a T-space. This fact can be generalized as follows. If X is a T^{i}-space for a map $i: A \rightarrow X$ and $i: A \rightarrow X$ has a left homotopy inverse $r: X \rightarrow A$, then A is a T-space. Moreover, let $p_{k}: E_{k} \rightarrow X$ be a principal fibration induced by $k: X \rightarrow X^{\prime}$ from $\epsilon: P X^{\prime} \rightarrow X^{\prime}$. Let $F: \Sigma \Omega X \times A \rightarrow X$ be a $T^{f_{-}}$ structure on X. When can we have a $T^{\bar{f}}$-structure $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ on E_{k} such that $p_{k} \bar{F} \sim F\left(\Sigma \Omega p_{k} \times p_{l}\right): E_{k} \times E_{l} \rightarrow X$? We can obtain an answer of the above question as follows. If X is a T^{f}-space with $T^{f_{-}}$ structure $F: \Sigma \Omega X \times A \rightarrow X$ and X^{\prime} is a $T^{f^{\prime}}$-space with $T^{f^{\prime}}$-structure $F^{\prime}: \Sigma \Omega X^{\prime} \times A^{\prime} \rightarrow X^{\prime}$ such that $k F \sim F^{\prime}(\Sigma \Omega k \times l): \Sigma \Omega X \times A \rightarrow X^{\prime}$, then there exists a $T^{\bar{f}}$-structure $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ on E_{k} such that $p_{k} \bar{F} \sim F\left(\Sigma \Omega p_{k} \times p_{l}\right): \Sigma \Omega E_{k} \times E_{l} \rightarrow X$. As a corollary, we can obtain a sufficient condition to be E_{k} a T-space when X and X^{\prime} are T-spaces.

On the other hand, we introduce a dual one of the above concept, co- T^{g}-space for a map $g: X \rightarrow A$ as a space X having the property that $e^{\prime}: X \rightarrow \Omega \Sigma X$ is a g-cocyclic, that is, there is a co- T^{g}-structure $\theta: X \rightarrow \Omega \Sigma X \vee A$. We show that X is a co- T^{g}-space if and only if $D G(X, g, A ; \Omega B)=[X, \Omega B]$ for any space B. It is known [16] that if X dominates A and X is a co- T-space, then A is a co- T-space. This fact can be generalized as follows. If X is a co- T^{r}-space for a map $r: X \rightarrow A$ and $r: X \rightarrow A$ has a right homotopy inverse $i: A \rightarrow X$, then
A is a co- T-space. Moreover, let $i_{r}: X \rightarrow C_{r}$ be a principal cofibration induced by $r: X^{\prime} \rightarrow X$ from $\iota: X^{\prime} \rightarrow c X^{\prime}$. Let $\theta: X \rightarrow \Omega \Sigma X \vee A$ be a co- T^{g}-structure on X. When can we have a co- $T^{\bar{g}}$-structure on C_{r} such that $\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta \sim \bar{\theta} i_{r}: X \rightarrow \Omega \Sigma C_{r} \vee C_{s}$? Then we show that if X is a co- T^{g}-space with co- T^{g}-structure $\theta: X \rightarrow \Omega \Sigma X \vee A$ and X^{\prime} is a co- $T^{g^{\prime}}$-space with co- $T^{g^{\prime}}$-structure $\theta^{\prime}: X^{\prime} \rightarrow \Omega \Sigma X^{\prime} \vee A^{\prime}$ such that $(\Omega \Sigma r \vee s) \theta^{\prime} \sim \theta r: X^{\prime} \rightarrow \Omega \Sigma X \vee A$, then there exists a co- $T^{\bar{g}^{-}}$-structure $\bar{\theta}: C_{r} \rightarrow \Omega \Sigma C_{r} \vee C_{s}$ on C_{r} such that $\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta \sim \bar{\theta} i_{r}: X \rightarrow \Omega \Sigma C_{r} \vee C_{s}$. As a corollary, we can obtain a sufficient condition to be C_{r} a co- T-space when X and X^{\prime} are co- T-spaces.

2. Lifting T^{f}-structures

Let $f: A \rightarrow X$ be a map. A based map $g: B \rightarrow X$ is called f-cyclic [12] if there is a map $\phi: B \times A \rightarrow X$ such that the diagram

is homotopy commute, where $j: A \vee B \rightarrow A \times B$ is the inclusion and $\nabla: X \vee X \rightarrow X$ is the folding map. We call such a map ϕ an associated map of a f-cyclic map g. Clearly, g is f-cyclic iff f is g-cyclic. In the case $f=1_{X}: X \rightarrow X$, a map $g: B \rightarrow X$ is called cyclic [15]. We denote the set of all homotopy classes of f-cyclic maps from B to X by $G(B ; A, f, X)$ which is called the Gottlieb set for a map $f: A \rightarrow X$. In the case $f=1_{X}: X \rightarrow X$, we called such a set $G(B ; X, 1, X)$ as the Gottlieb set, denoted by $G(B ; X)$. In particular, $G\left(S^{n} ; A, f, X\right)$ will be denoted by $G_{n}(A, f, X)$. Gottlieb [3,4] introduced and studied the evaluation subgroups $G_{n}(X)=G_{n}(X, 1, X)$ of $\pi_{n}(X)$.

In general, $G(B ; X) \subset G(B ; A, f, X) \subset[B, X]$ for any map $f: A \rightarrow$ X and any space B. However, there is an example [19] such that $G(B, X) \neq G(B ; A, f, X) \neq[B, X]$. Thus we know that for any map $f: A \rightarrow X$, any cyclic map $g: B \rightarrow X$ is f-cyclic, but the converse does not hold.

The next proposition is an immediate consequence from the definition.

Proposition 2.1.
(1) For any maps $f: A \rightarrow X, \theta: C \rightarrow A$ and any space $B, G(B ; A, f, X) \subset$ $G(B ; C, f \theta, X)$.
(2) $G(B, X)=G\left(B ; X, 1_{X}, X\right) \subset G(B ; A, f, X) \subset G(B ; A, *, X)=[B, X]$ for any spaces X, A and B.
(3) $G(B, X)=\cap\{G(B ; A, f, X) \mid f: A \rightarrow X$ is a map and A is a space $\}$.
(4) If $h: C \rightarrow A$ is a homotopy equivalence, then $G(B ; A, f, X)=$ $G(B ; C, f h, X)$.
(5) For any map $k: X \rightarrow Y, k_{\#}(G(B ; A, f, X)) \subset G(B ; A, k f, Y)$.
(6) For any map $k: X \rightarrow Y, k_{\#}(G(B, X)) \subset G(B ; X, k, Y)$.
(7) For any map $s: C \rightarrow B, s^{\#}(G(B ; A, f, X)) \subset G(C ; A, f, X)$.

The following proposition says that T-spaces are completely characterized by the Gottlieb sets.

Proposition 2.2. [16] X is a T-space if and only if $G(\Sigma B, X)=$ $[\Sigma B, X]$ for any space B.

Aguade showed [1] that X is a T-space if and only if $e: \Sigma \Omega X \rightarrow X$ is cyclic. Now, for a map $f: A \rightarrow X$, we would like to introduce new spaces which can be characterized by the Gottlieb sets for a map $f: A \rightarrow X$.

Definition 2.3. A space X is called a T^{f}-space for a map $f: A \rightarrow X$ if there is a map, T^{f}-structure on $X, F: \Sigma \Omega X \times A \rightarrow X$ such that $F j \sim \nabla(e \vee f)$, where $j: \Sigma \Omega X \vee A \rightarrow \Sigma \Omega X \times A$ is the inclusion.

Clearly, any T-space means a T^{1}-space. A space X is called an H^{f} space for a map $f: A \rightarrow X[20]$ if there is a map, H^{f}-structure on X, $F: X \times A \rightarrow X$ such that $F j \sim \nabla(1 \vee f)$, where $j: X \vee A \rightarrow X \times A$ is the inclusion. We can easily show that any H^{f}-space for a map $f: A \rightarrow X$ is a T^{f}-space for a $\operatorname{map} f: A \rightarrow X$ for we can take a T^{f}-structure $F^{\prime}=F(e \times 1): \Sigma \Omega X \times A \rightarrow X$, where $F: X \times A \rightarrow X$ is an $H^{f_{-}}$ structure on X.

The following theorem says that a T^{f}-space can be characterized by the Gottlieb sets for a map $f: A \rightarrow X$.

Theorem 2.4. X is a T^{f}-space for a map $f: A \rightarrow X$ if and only if $G(\Sigma B ; A, f, X)=[\Sigma B, X]$ for any space B.

Proof. Suppose that X is a T^{f}-space for a map $f: A \rightarrow X$. Then there is a map $F: \Sigma \Omega X \times A \rightarrow X$ such that $F j \sim \nabla(e \vee f)$, where $j: \Sigma \Omega X \vee A \rightarrow \Sigma \Omega X \times A$ is the inclusion. Let $g \in[\Sigma B, X]$. Consider the map $G=F(\Sigma \tau(g) \times 1): \Sigma B \times A \rightarrow X$. Then $G j \sim \nabla(g \vee f)$ and $g \in G(\Sigma B ; A, f, X)$. On the other hand, suppose that $G(\Sigma B ; A, f, X)=$
[$\Sigma B, X]$ for any space B. Take $B=\Omega X$ and consider the map e : $\Sigma \Omega X \rightarrow X$. Since $e \in G(\Sigma \Omega X ; A, f, X)$, we know that the map e is f-cyclic and X is a T^{f}-space for a map $f: A \rightarrow X$.

It is known [16] that if X dominates A and X is a T-space, then A is a T-space. This fact can be generalized as the following corollary.

Corollary 2.5. Let X be a T^{i}-space for a map $i: A \rightarrow X$.
(1) If $i: A \rightarrow X$ has a left homotopy inverse $r: X \rightarrow A$, then A is a T-space.
(2) If $i: A \rightarrow X$ has a right homotopy inverse $r: X \rightarrow A$, then X is a T-space.

Proof. (1) Let B be any space. It is sufficient to show that $[\Sigma B, A] \subset$ $G(\Sigma B, A)$ for any space B. Since X is a T^{i}-space for $i: A \rightarrow X$, we know, from Theorem 2.4, that $G(\Sigma B ; A, i, X)=[\Sigma B, X]$. Thus we have, from Proposition 2.1(5), that $[\Sigma B, A]=r_{*}[\Sigma B, X]=r_{*}(G(\Sigma B ; A, i, X))$ $\subset G(\Sigma B ; A, r i, A)=G(\Sigma B, A, 1, A)=G(\Sigma B, A)$. Thus A is a T-space. (2) We show that $[\Sigma B, X] \subset G(\Sigma B, X)$ for any space B. By Theorem 2.4 and Proposition 2.1(1), we can obtain that $[\Sigma B, X]=G(\Sigma B ; A, i, X) \subset$ $G(\Sigma B ; X$, ir,$X)=G(\Sigma B ; X, 1, X)=G(\Sigma B, X)$. Thus we know, from Proposition 2.2, that X is a T-space.

From Proposition 2.1(2),(3), Proposition 2.2 and Theorem 2.4, we have the following corollary.

Corollary 2.6. X is a T-space if and only if for any space A and any map $f: A \rightarrow X, X$ is a T^{f}-space for a map $f: A \rightarrow X$.

Definition 2.7. For a map $f: A \rightarrow X, P(\Sigma B ; A, f, X)=\{\alpha \in$ $[\Sigma B, X] \mid\left[f_{\#}(\beta), \alpha\right]=0$ for any space C and any map $\left.\beta \in[\Sigma C, A]\right\} . A$ space X is called a $G W^{f}$-space for a map $f: A \rightarrow X$ if for any space B, $P(\Sigma B ; A, f, X)=[\Sigma B, X]$.

Proposition 2.8. $G(\Sigma B ; A, f, X) \subset P(\Sigma B ; A, f, X)$ for any space B.

Proof. Let $[h] \in G(\Sigma B ; A, f, X)$. Then there is a map $H: A \times \Sigma B \rightarrow$ X such that $H j \sim \nabla(f \vee h)$, where $j: A \vee \Sigma B \rightarrow A \times \Sigma B$ is the inclusion. Let C be a space and $\beta=[g] \in[\Sigma C, A]$. Then consider the map $F=$ $H(g \times 1): \Sigma C \times \Sigma B \xrightarrow{(g \times 1)} A \times \Sigma B \xrightarrow{H} X$. Then $F j^{\prime} \sim \nabla(f g \vee h)$, where $j^{\prime}: \Sigma C \vee \Sigma B \rightarrow \Sigma C \times \Sigma B$ is the inclusion. Thus we have $\left[f_{\#}(\beta),[h]\right]=0$ and $[h] \in P(\Sigma B ; A, f, X)$.

Corollary 2.9. If X is a T^{f}-space for a map $f: A \rightarrow X$, then X is a $G W^{f}$-space for $f: A \rightarrow X$.

Consider the natural pairing $\mu: S^{3} / S^{1}=S^{2} \times S^{3} \rightarrow S^{3} / S^{1}=S^{2}$. Thus we know that the Hopf map $\eta: S^{3} \rightarrow S^{2}$ is cyclic. Thus η is e-cyclic and e is η-cyclic, that is, S^{2} is a T^{η}-space. Thus we know that S^{2} is a $G W^{\eta}$-space for $\eta: S^{3} \rightarrow S^{2}$. On the other hand, it is known [16] that H-spaces and T-spaces are equivalent in the category of spheres. Thus we know that S^{2} is not a T-space. Moreover, it is known [14] that $\eta_{\#}: \pi_{n}\left(S^{3}\right) \rightarrow \pi_{n}\left(S^{2}\right), \eta_{\#}(\beta)=\eta \circ \beta$, is an isomorphism for $n \geq 3$. Thus we have the following example.

Example 2.10.
(1) S^{2} is a T^{η}-space, but not T-space.
(2) For any $x \in \pi_{n}\left(S^{2}\right), \alpha \in \pi_{k}\left(S^{2}\right)(n \geq 3, k \geq 1),[x, \alpha]=0$.

Let $f: A \rightarrow X, f^{\prime}: A^{\prime} \rightarrow X^{\prime}, l: A \rightarrow A^{\prime}, k: X \rightarrow X^{\prime}$ be maps. Then a pair of maps $(k, l):(X, A) \rightarrow\left(X^{\prime}, A^{\prime}\right)$ is called a map from f to f^{\prime} if the following diagram is commutative;

It will be denoted by $(k, l): f \rightarrow f^{\prime}$.
Given maps $f: A \rightarrow X, f^{\prime}: A^{\prime} \rightarrow X^{\prime}$, let $(k, l): f \rightarrow f^{\prime}$ be a map from f to f^{\prime}. Let $P X^{\prime}$ and $P A^{\prime}$ be the spaces of paths in X^{\prime} and A^{\prime} which begin at $*$ respectively. Let $\epsilon_{X^{\prime}}: P X^{\prime} \rightarrow X^{\prime}$ and $\epsilon_{A^{\prime}}: P A^{\prime} \rightarrow A^{\prime}$ be the fibrations given by evaluating a path at its end point. Let $p_{k}: E_{k} \rightarrow X$ be the fibration induced by $k: X \rightarrow X^{\prime}$ from $\epsilon_{X^{\prime}}$. Let $p_{l}: E_{l} \rightarrow A$ induced by $l: A \rightarrow A^{\prime}$ from $\epsilon_{A^{\prime}}$. Then there is a map $\bar{f}: E_{l} \rightarrow E_{k}$ such that the following diagram is commutative

where $E_{l}=\left\{(a, \xi) \in A \times P A^{\prime} \mid l(a)=\epsilon(\xi)\right\}, E_{k}=\{(x, \eta) \in X \times$ $\left.P X^{\prime} \mid k(x)=\epsilon(\eta)\right\}, \bar{f}(a, \xi)=\left(f(a), f^{\prime} \circ \xi\right), p_{k}(x, \eta)=x, p_{l}(a, \xi)=a$.

Definition 2.11. Let X be a T^{f}-space with T^{f}-structure $F: \Sigma \Omega X \times$ $A \rightarrow X$. A map $(k, l): f \rightarrow f^{\prime}$ is called a T^{f}-primitive with respect to
F if there is an associate map $F^{\prime}: \Sigma \Omega X^{\prime} \times A^{\prime} \rightarrow X^{\prime}$ of $e_{X^{\prime}}$-cyclic map f^{\prime} such that the following diagram is homotopy commutative;

The following lemmas are standard.
Lemma 2.12. A map $l: C \rightarrow X$ can be lifted to a map $C \rightarrow E_{k}$ if and only if $k l \sim *$.

Lemma 2.13. [5] Given maps $g_{i}: A_{i} \rightarrow E_{k}, i=1,2$ and $g: A_{1} \times$ $A_{2} \rightarrow E_{k}$ satisfying $\left.p_{k} g\right|_{A_{i}} \sim p_{k} g_{i}, i=1,2$, then there is a map $h:$ $A_{1} \times A_{2} \rightarrow E_{k}$ such that $p_{k} h=p_{k} g$ and $\left.h\right|_{A_{i}} \sim g_{i}, i=1,2$.

THEOREM 2.14. If X is a T^{f}-space with T^{f}-structure $F: \Sigma \Omega X \times A \rightarrow$ X and $(k, l): f \rightarrow f^{\prime}$ is a T^{f}-primitive with respective to F, then there exists a $T^{\bar{f}}$-structure $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ on E_{k} such that the following diagram is homotopy commutative;

Proof. Since $(k, l): f \rightarrow f^{\prime}$ is a T^{f}-primitive with respect to F, there is a map $F^{\prime}: \Sigma \Omega X^{\prime} \times A^{\prime} \rightarrow X^{\prime}$ such that $k F \sim F^{\prime}(\Sigma \Omega k \times l): \Sigma \Omega X \times A \rightarrow$ X^{\prime}. Then $k F\left(\Sigma \Omega p_{k} \times p_{l}\right) \sim F^{\prime}(\Sigma \Omega k \times l)\left(\Sigma \Omega p_{k} \times p_{l}\right)=F^{\prime}\left(\Sigma \Omega\left(k \circ p_{k}\right) \times\right.$ $\left.l \circ p_{l}\right) \sim F^{\prime}(* \times *) \sim *: \Sigma \Omega E_{k} \times E_{l} \rightarrow X^{\prime}$. From Lemma 2.12, there is a lifting $\tilde{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ of $F\left(\Sigma \Omega p_{k} \times p_{l}\right): \Sigma \Omega E_{k} \times E_{l} \rightarrow X$, that is, $p_{k} \tilde{F}=F\left(\Sigma \Omega p_{k} \times p_{l}\right)$. Then $\left.\left.p_{k} \circ \tilde{F}\right|_{\Sigma \Omega E_{k}} \sim F\right|_{\Sigma \Omega X} \circ \Sigma \Omega p_{k} \sim p_{k} \circ e_{E_{k}}$ and $\left.\left.p_{k} \circ \tilde{F}\right|_{E_{l}} \sim F\right|_{A} \circ p_{l} \sim f \circ p_{l}=p_{k} \circ \bar{f}$. Thus we have, from Lemma 2.13, that there is a map $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ such that $p_{k} \bar{F}=p_{k} \tilde{F}=F\left(\Sigma \Omega p_{k} \times p_{l}\right)$ and $\left.\bar{F}\right|_{\Sigma \Omega E_{k}} \sim e_{E_{k}},\left.\bar{F}\right|_{E_{l}} \sim \bar{f}$. This proves the theorem.

Taking $f=1_{X}, f^{\prime}=1_{X^{\prime}}$ and $l=k$, we can obtain the following corollary.

Corollary 2.15. Let X and X^{\prime} be T-spaces with T^{1}-structures E : $\Sigma \Omega X \times X \rightarrow X$ and $E^{\prime}: \Sigma \Omega X^{\prime} \times X^{\prime} \rightarrow X^{\prime}$ respectively. If $k: X \rightarrow X^{\prime}$ is a map satisfying $k E \sim E^{\prime}(\Sigma \Omega k \times 1): \Sigma \Omega X \times X \rightarrow X^{\prime}$, then there is an T^{1} structure $\bar{E}: \Sigma \Omega E_{k} \times E_{k} \rightarrow E_{k}$ on E_{k} such that $p_{k} \bar{E} \sim E\left(\Sigma \Omega p_{k} \times p_{k}\right)$: $\Sigma \Omega E_{k} \times E_{k} \rightarrow X$.

In 1951, Postnikov [13] introduced the notion of the Postnikov system as follows; A Postnikov system for X (or homotopy decomposition of X) $\left\{X_{n}, i_{n}, p_{n}\right\}$ consists of a sequence of spaces and maps satisfying (1) $i_{n}: X \rightarrow X_{n}$ induces an isomorphism $\left(i_{n}\right)_{\#}: \pi_{i}(X) \rightarrow \pi_{i}\left(X_{n}\right)$ for $i \leq n$. (2) $p_{n}: X_{n} \rightarrow X_{n-1}$ is a fibration with fiber $K\left(\pi_{n}(X), n\right)$. (3) $p_{n} i_{n} \sim i_{n+1}$. It is well known fact [11] that if X is a 1-connected space having a homotopy type of CW-complex, then there is a Postnikov system $\left\{X_{n}, i_{n}, p_{n}\right\}$ for X such that $p_{n+1}: X_{n+1} \rightarrow X_{n}$ is the fibration induced from the path space fibration over $K\left(\pi_{n+1}(X), n+2\right)$ by a map $k^{n+2}: X_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$.

Theorem 2.16. Let A and X be spaces having the homotopy type of 1-connected countable $C W$-complexes, and $\left\{A_{n}, i_{n}^{\prime}, p_{n}^{\prime}\right\}$ and $\left\{X_{n}, i_{n}, p_{n}\right\}$ be Postnikov systems for A and X respectively. If X is a T^{f}-space with T^{f}-structure $F: \Sigma \Omega X \times A \rightarrow X$, then there exists a $T^{f_{n}}$-structure $F_{n}: \Sigma \Omega X_{n} \times A_{n} \rightarrow X_{n}$ for each stage X_{n} such that

$$
\begin{array}{lll}
\Sigma \Omega X_{n} \times A_{n} & \xrightarrow{F_{n}} & X_{n} \\
\Sigma \Omega p_{n} \times p_{n}^{\prime} \\
\downarrow & & p_{n} \downarrow \\
\Sigma \Omega X_{n-1} \times A_{n-1} & \xrightarrow{F_{n-1}} & X_{n-1},
\end{array}
$$

where f_{n} is an induced map from f, and all the pair of k-invariants $\left(k_{X}^{n+2}, k_{A}^{n+2}\right): f_{n} \rightarrow \tilde{f}_{\#}$ are $T^{f_{n}}$-primitive with respect to F_{n}, where $\tilde{f}_{\#}: K\left(\pi_{n+1}(A), n+2\right) \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ is the induced map by $f: A \rightarrow X$.

Proof. Clearly $\left\{\Sigma \Omega X_{n} \times A_{n}, \Sigma \Omega i_{n} \times i_{n}^{\prime}, \Sigma \Omega p_{n} \times p_{n}^{\prime}\right\}$ is a Postnikov system for $\Sigma \Omega X \times A$. Then we have, by Kahn's result [7,Theorem 2.2], that there are families of maps $f_{n}: A_{n} \rightarrow X_{n}$ and $F_{n}: \Sigma \Omega X_{n} \times$ $A_{n} \rightarrow X_{n}$ such that $p_{n} f_{n}=f_{n-1} p_{n}^{\prime}$ and $i_{n} f \sim f_{n} i_{n}^{\prime}$, and $p_{n} F_{n}=$ $F_{n-1}\left(\Sigma \Omega p_{n} \times p_{n}^{\prime}\right)$ and $i_{n} F \sim F_{n}\left(\Sigma \Omega i_{n} \times i_{n}^{\prime}\right)$ for $n=2,3, \cdots$ respectively, and $k_{X}^{n+2} f_{n} \sim \tilde{f}_{\#} k_{A}^{n+2}: A_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ and $k_{X}^{n+2} F_{n} \sim$ $\tilde{F}_{\#}\left(k_{\Sigma \Omega X}^{n+2} \times k_{A}^{n+2}\right): X_{n} \times A_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$, where $k_{A}^{n+2}:$ $A_{n} \rightarrow K\left(\pi_{n+1}(A), n+2\right), k_{X}^{n+2}: X_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ and $k_{\Sigma \Omega X}^{n+2}:$ $\Sigma \Omega X_{n} \rightarrow K\left(\pi_{n+1}(\Sigma \Omega X), n+2\right)$ are k-invariants of A, X and $\Sigma \Omega X$ respectively, $\tilde{f}_{\#}: K\left(\pi_{n+1}(A), n+2\right) \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ and $\tilde{F}_{\#}$: $K\left(\pi_{n+1}(\Sigma \Omega X), n+2\right) \times K\left(\pi_{n+1}(A), n+2\right) \approx K\left(\pi_{n+1}(\Sigma \Omega X \times A), n+\right.$ 2) $\rightarrow K\left(\pi_{n+1}(X), n+2\right)$ are the induced maps by $f: A \rightarrow X$ and $F: X \times A \rightarrow X$ respectively. Since $\left.F\right|_{\Sigma \Omega X} \sim e$ and $\left.F_{n}\right|_{A_{n}} \sim f_{n}$, we know, from Kahn's another result [8, Theorem 1.2], that $F_{n \mid \Sigma \Omega X_{n}}=$
$\left(\left.F\right|_{\Sigma \Omega X}\right)_{n} \sim e$ and $F_{n \mid A_{n}}=\left(\left.F\right|_{A}\right)_{n} \sim f_{n}$. Thus there exists an $T^{f_{n}}$ structure $F_{n}: \Sigma \Omega X_{n} \times A_{n} \rightarrow X_{n}$ for each stage X_{n} such that

where f_{n} is an induced map from f, and all the pair of k-invariants $\left(k_{X}^{n+2}, k_{A}^{n+2}\right): f_{n} \rightarrow \tilde{f}_{\#}$ are $T^{f_{n}}$-primitive with respect to F_{n}, where $\tilde{f}_{\#}: K\left(\pi_{n+1}(A), n+2\right) \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ is the induced map by $f: A \rightarrow X$.

In fact, the above theorem follows from Theorem 2.14 if we can show that all the pair of k-invariants $\left(k_{X}^{n+2}, k_{A}^{n+2}\right): f_{n} \rightarrow \tilde{f}_{\#}$ are $T^{f_{n}}$-primitive with respect to F_{n}.

We can obtain an equivalent condition for E_{k} is a $T^{\bar{f}}$-space for \bar{f}.
Theorem 2.17. Let $(k, l): f \rightarrow f^{\prime}$ be a map. Then E_{k} is a $T^{\bar{f}}$-space for $\bar{f}: E_{l} \rightarrow E_{k}$ if and only if there is a map $G: \Sigma \Omega E_{k} \times E_{l} \rightarrow X$ such that $G j \sim \nabla\left(p_{k} \circ e \vee p_{k} \circ \bar{f}\right)$ and $k G \sim *$, where $j: \Sigma \Omega E_{k} \vee E_{l} \rightarrow \Sigma \Omega E_{k} \times E_{l}$ is the inclusion.

Proof. Suppose that E_{k} is a $T^{\bar{f}}$-space for $\bar{f}: E_{l} \rightarrow E_{k}$. Then there is a map $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ such that $\bar{F} j^{\prime} \sim \nabla(e \vee \bar{f})$. Let $G=$ $p_{k} \bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow X$. Then $G j \sim \nabla\left(p_{k} \circ e \vee p_{k} \circ \bar{f}\right)$, where $j:$ $\Sigma \Omega E_{k} \vee E_{l} \rightarrow \Sigma \Omega E_{k} \times E_{l}$ is the inclusion. Since G has a lifting \bar{F}, by Lemma 2.12, we know that $k G \sim *$. On the other hand, suppose there is a map $G: \Sigma \Omega E_{k} \times E_{l} \rightarrow X$ such that $G j \sim \nabla\left(p_{k} \circ e \vee p_{k} \circ \bar{f}\right)$ and $k G \sim *$, where $j: \Sigma \Omega E_{k} \vee E_{l} \rightarrow \Sigma \Omega E_{k} \times E_{l}$ is the inclusion. Since $k G \sim *$, there is a map $H: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ such that $p_{k} H \sim G$. For maps $e: \Sigma \Omega E_{k} \rightarrow E_{k}$ and $\bar{f}: E_{l} \rightarrow E_{k}$, we can easily know that $p_{k} H_{\mid \Sigma \Omega E_{k}} \sim p_{k} \circ e_{E_{k}}$ and $p_{k} H_{\mid E_{l}} \sim p_{k} \circ \bar{f}$. Thus we have, from Lemma 2.13, that there is a map $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ such that $p_{k} \bar{F}=p_{k} H$ and $\bar{F}_{\mid \Sigma \Omega E_{k}} \sim e$ and $\bar{F}_{E_{l}} \sim \bar{f}$. Thus we know that E_{k} is a $T^{\bar{f}}$-space for $\bar{f}: E_{l} \rightarrow E_{k}$.

Now we can obtain the converse of Theorem 2.14 under some conditions as follows;

Theorem 2.18. Suppose that there are maps $s_{k}: X \rightarrow E_{k}$ and $s_{l}: A \rightarrow E_{l}$ such that $p_{k} s_{k} \sim 1_{X}$ and $p_{l} s_{l} \sim 1_{A}$. If there exists a $T^{\bar{f}}-$ structure $\bar{F}: \Sigma \Omega E_{k} \times E_{l} \rightarrow E_{k}$ on E_{k} such that the following diagram
is homotopy commutative;

then X is a T^{f}-space with T^{f}-structure $F: \Sigma \Omega X \times A \rightarrow X$.
Proof. Since E_{k} is a $T^{\bar{f}_{\text {-space }}}$ for $\bar{f}: E_{l} \rightarrow E_{k}$, there is a map G : $\Sigma \Omega E_{k} \times E_{l} \rightarrow X$ such that $G j \sim \nabla\left(p_{k} \circ e \vee p_{k} \circ \bar{f}\right)$ and $k G \sim *$, where $j: \Sigma \Omega E_{k} \vee E_{l} \rightarrow \Sigma \Omega E_{k} \times E_{l}$ is the inclusion. Consider the map $F=G\left(\Sigma \Omega s_{k} \times s_{l}\right): \Sigma \Omega X \times A \rightarrow X$. Then $F j^{\prime} \sim \nabla(e \vee f)$ and $k F\left(\Sigma \Omega p_{k} \times p_{l}\right) \sim *$, where $j^{\prime}: \Sigma \Omega X \vee A \rightarrow \Sigma \Omega X \times A$ is the inclusion. Thus we know that X is a T^{f}-space with T^{f}-structure $F: \Sigma \Omega X \times A \rightarrow$ X.

3. Extending co- T^{g}-structures

Let $g: X \rightarrow A$ be a map. A based map $f: X \rightarrow B$ is called g-coclic [12] if there is a map $\theta: X \rightarrow A \vee B$ such that the following diagram is homotopy commutative;

where $j: A \vee B \rightarrow A \times B$ is the inclusion and $\Delta: X \rightarrow X \times X$ is the diagonal map. We call such a map θ a coassociated map of a g-cocyclic $\operatorname{map} f$.

In the case $g=1_{X}: X \rightarrow X, f: X \rightarrow B$ is called cocyclic [15]. Clearly any cocyclic map is a g-cocyclic map and also $f: X \rightarrow$ B is g-cocyclic iff $g: X \rightarrow A$ is f-cocyclic. The dual Gottlieb set $D G(X, g, A ; B)$ for a map $g: X \rightarrow A$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g=1_{X}: X \rightarrow X$, we called such a set $D G(X, 1, X ; B)$ as the dual Gottlieb set, denoted by $D G(X ; B)$, that is, the dual Gottlieb set is exactly same with the dual Gottlieb set for the identity map. In particular, $D G(X, g, A ; K(\pi, n))$ will be denoted by $G^{n}(X, g, A ; \pi)$. Haslam [5] introduced and studied the coevaluation subgroups $G^{n}(X ; \pi)$ of $H^{n}(X ; \pi) . G^{n}(X ; \pi)$ is defined to be the set of all homotopy classes of cocyclic maps from X to $K(\pi, n)$.

In general, $D G(X ; B) \subset D G(X, g, A ; B) \subset[X, B]$ for any map g : $X \rightarrow B$ and any space B. However, there is an example in [18] such that $D G(X, B) \neq D G(X, g, A ; B) \neq[X, B]$.

The next proposition is an immediate consequence from the definition.

Proposition 3.1.
(1) For any maps $g: X \rightarrow A, h: A \rightarrow B$ and any space $C, D G(X, g, A ; C)$
$\subset D G(X, h g, B ; C)$.
(2) $D G(X, B)=D G\left(X, 1_{X}, X ; B\right) \subset D G(X, g, A ; B) \subset D G(X, *, A ; B)=$ $[X, B]$ for any spaces X, A and B.
(3) $D G(X, B)=\cap\{D G(X, g, A ; B) \mid g: X \rightarrow A$ is a map and A is a space $\}$.
(4) If $h: A \rightarrow B$ is a homotopy equivalence, then $D G(X, g, A ; C)=$ $D G(X, h g, B ; c)$.
(5) For any map $k: Y \rightarrow X, k^{\#}(D G(X, g, A ; B)) \subset D G(Y, g k, A ; B)$.
(6) For any map $k: Y \rightarrow X, k^{\#}(D G(X ; B)) \subset D G(Y, k, X ; B)$.
(7) For any map $s: B \rightarrow C, s_{\#}(D G(X, g, A ; B)) \subset D G(X, g, A ; C)$.

It is well known [5] that $G^{n}(X ; \pi)$ is a subgroup of $H^{n}(X ; \pi)$. Moreover, it is also shown [10] that if B is an H-group, then $D G(X, B)$ is a subgroup of $[X, B]$.

But we do not know whether $D G(X, g, A ; B)$ is a group.
A space X is called a co- T-space [16] if $e^{\prime}: X \rightarrow \Omega \Sigma X$ is cocyclic. The following proposition says that co- T-spaces are completely characterized by the dual Gottlieb sets.

Proposition 3.2. [16] X is a co- T-space if and only if $D G(X, \Omega B)=$ $[X, \Omega B]$ for any space B.

Now, for a map $g: X \rightarrow A$, we would like to introduce new spaces which can be characterized by the dual Gottlieb sets for a map $g: X \rightarrow$ A.

Definition 3.3. A space X is called a co- T^{g}-space for a map g : $X \rightarrow A$ if there is a map, a co- T^{g}-structure, $\theta: X \rightarrow \Omega \Sigma X \vee A$ such that $j \theta \sim\left(e^{\prime} \times g\right) \Delta$, where $j: \Omega \Sigma X \vee A \rightarrow \Omega \Sigma X \times A$ is the inclusion and $\Delta: X \rightarrow X \times X$ is the diagonal map.

The following proposition says that co- T^{g}-spaces are completely characterized by the dual Gottlieb sets for a map $g: X \rightarrow A$.

Proposition 3.4. [18] X is a co- T^{g}-space for a map $g: X \rightarrow A$ if and only if $D G(X, g, A ; \Omega B)=[X, \Omega B]$ for any space B.

It is clear, from Proposition 3.1(2) and the above propositions, that any co- T-space is a co- T^{g}-space for any map $g: X \rightarrow A$. It is known [18] that if X dominates A and X is a co- T-space, then A is a co- T-space. This fact can be generalized as follows;

Corollary 3.5. Let X be a co- T^{r}-space for a map $r: X \rightarrow A$.
(1) If $r: X \rightarrow A$ has a right homotopy inverse $i: A \rightarrow X$, then A is a co-T-space.
(2) If $r: X \rightarrow A$ has a left homotopy inverse $i: A \rightarrow X$, then X is a co-T-space.

Proof. (1) Let B be any space. It is sufficient to show that $[A, \Omega B] \subset$ $D G(A, \Omega B)$. Since X is a co- T^{r}-space for a map $r: X \rightarrow A$, we have that $D G(X, r, A ; \Omega B)=[X ; \Omega B]$. Thus we know, from Proposition 3.1(5), that $[A, \Omega B]=i^{\#}[X, \Omega B]=i^{\#} D G(X, r, A ; \Omega B) \subset D G(A, r i, A ; \Omega B)=$ $D G(A, 1, A ; \Omega B)=D G(A, \Omega B)$. (2) For any space B, we can obtain, from Proposition 3.4 and Proposition 3.1(1), that $[X, \Omega B]=D G(X, r, A$; $\Omega B) \subset D G(X, i r, X ; \Omega B)=D G(X, 1, X ; \Omega B)=D G(X, \Omega B)$.

Given maps $g: X \rightarrow A, g^{\prime}: X^{\prime} \rightarrow A^{\prime}$, let $(s, r): g^{\prime} \rightarrow g$ be a map from g^{\prime} to g, that is, the following diagram is commutative;

It is a well known fact that $Y \xrightarrow{\iota} c Y \rightarrow \Sigma Y$ is a cofibration, where $\iota(y)=[y, 1]$. Let $i_{r}: X \rightarrow C_{r}$ be the cofibration induced by $r: X^{\prime} \rightarrow X$ from $\iota_{X^{\prime}}: X^{\prime} \rightarrow c X^{\prime}$. Let $i_{s}: A \rightarrow C_{s}$ be the cofibration induced by $s: A^{\prime} \rightarrow A$ from $\iota_{A^{\prime}}: A^{\prime} \rightarrow c A^{\prime}$. Then there is a map $\bar{g}: C_{t} \rightarrow C_{s}$ such that the following diagram is commutative

where $C_{t}=c X^{\prime} \amalg X /\left[x^{\prime}, 1\right] \sim t\left(x^{\prime}\right)$, and $C_{s}=c A^{\prime} \amalg A /\left[a^{\prime}, 1\right] \sim s\left(a^{\prime}\right), \bar{g}:$ $C_{t} \rightarrow C_{s}$ is given by $\bar{g}\left(\left[x^{\prime}, t\right]\right)=\left[g^{\prime}\left(x^{\prime}\right), t\right]$ if $\left[x^{\prime}, t\right] \in c X^{\prime}$ and $\bar{g}(x)=g(x)$ if $x \in X, i_{r}(x)=x, i_{s}(a)=a$.

DEfinition 3.6. Let X be a co- T^{g}-space with co- T^{g}-structure θ : $X \rightarrow \Omega \Sigma X \vee A$. Then a map $(s, r): g^{\prime} \rightarrow g$ is called a co- T^{g}-primitive
with respect to $\theta: X \rightarrow \Omega \Sigma X \vee A$ if there is a coassociate map θ^{\prime} : $X^{\prime} \rightarrow \Omega \Sigma X^{\prime} \vee A^{\prime}$ of e^{\prime}-cocyclic map g^{\prime} such that the following diagram is homotopy commutative;

The following lemmas are standard.
Lemma 3.7. Let $f: X \rightarrow B$ be a map. Then there is a map $h: C_{r} \rightarrow$ B such that hi $=f$ if and only if $f r \sim *$.

Lemma 3.8. [17] Let $g_{t}: C_{r} \rightarrow B_{t}(t=1,2)$ and $g: C_{r} \rightarrow B_{1} \vee B_{2}$ a map such that $p_{t} j g i_{k} \sim g_{t} i_{r}(t=1,2)$, where $j: B_{1} \vee B_{2} \rightarrow B_{1} \times B_{2}$ is the inclusion and $p_{t}: B_{1} \times B_{2} \rightarrow B_{t}, t=1,2$ are projections. Then there is a map $h: C_{r} \rightarrow B_{1} \vee B_{2}$ such that $g i_{r}=h i_{r}$ and $p_{t} j^{\prime} h \sim g_{t}(t=1,2)$, where $j^{\prime}: B_{1} \vee B_{2} \rightarrow B_{1} \times B_{2}$ is the inclusion.

Theorem 3.9. If X is a co- T^{g}-space with co- T^{g}-structure $\theta: X \rightarrow$ $\Omega \Sigma X \vee A$ and $(s, r): g^{\prime} \rightarrow g$ is a co-T T^{g}-primitive with respect to θ, then there exists a co- $T^{\bar{g}}$-structure $\bar{\theta}: C_{r} \rightarrow \Omega \Sigma C_{r} \vee C_{s}$ on C_{r} satisfying commutative diagram

$$
\begin{gathered}
C_{r} \xrightarrow{\bar{\theta}} \Omega \Sigma C_{r} \vee C_{s} \\
i_{r} \uparrow \xrightarrow{i_{r}} \begin{array}{c}
\Omega i_{r} \vee i_{s} \uparrow \\
X \xrightarrow{\theta} \Omega \Sigma X \vee A .
\end{array} .
\end{gathered}
$$

Proof. Since $(s, r): g^{\prime} \rightarrow g$ is a co- T^{g}-primitive with respect to θ, then there is a map $\theta^{\prime}: X^{\prime} \rightarrow \Omega \Sigma X^{\prime} \vee A^{\prime}$ satisfying commutative diagram

Then we have that $\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta r \sim\left(\Omega \Sigma i_{r} \vee i_{s}\right)(\Omega \Sigma r \vee s) \theta^{\prime} \sim\left(\Omega \Sigma\left(i_{r}\right.\right.$ 。 $\left.r) \vee i_{s} \circ s\right) \theta \sim *$. Thus we know, from Lemma 3.7, that there is a $\operatorname{map} \tilde{\theta}: C_{r} \rightarrow \Omega \Sigma C_{r} \vee C_{s}$ such that $\tilde{\theta} i_{r}=\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta$. Then $p_{1} j \tilde{\theta} i_{r}=$ $p_{1} j\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta \sim p_{1}\left(\Omega \Sigma i_{r} \times i_{s}\right)\left(e^{\prime} \times g\right) \Delta \sim e_{C_{r}}^{\prime} \circ i_{r}$ and $p_{2} j \tilde{\theta} i_{r} \sim p_{2}\left(\Omega \Sigma i_{r} \times\right.$ $\left.i_{s}\right)\left(e^{\prime} \times g\right) \Delta \sim i_{s} \circ g=\bar{g} \circ i_{r}$. Thus we have, from Lemma 3.8, that there is a map $\bar{\theta}: C_{r} \rightarrow \Omega \Sigma C_{r} \vee C_{s}$ such that $\bar{\theta} i_{r}=\tilde{\theta} i_{r}=\left(\Omega \Sigma i_{r} \vee i_{s}\right) \theta$
and $p_{1} j \bar{\theta} \sim e^{\prime}, p_{2} j \bar{\theta} \sim \bar{g}$, where $j: \Omega \Sigma C_{r} \vee C_{s} \rightarrow \Omega \Sigma C_{r} \times C_{s}$ is the inclusion.

Taking $g=1_{X}, g^{\prime}=1_{X^{\prime}}$ and $s=r$, we can get the following corollary.
Corollary 3.10. Let X and X^{\prime} be co- T-spaces with co- T^{1}-structures $\theta: X \rightarrow \Omega \Sigma X \vee X$ and $\theta^{\prime}: X^{\prime} \rightarrow \Omega \Sigma X^{\prime} \vee X^{\prime}$ respectively. If $r: X^{\prime} \rightarrow X$ is a map satisfying $(\Omega \Sigma r \vee r) \theta^{\prime} \sim \theta r: X^{\prime} \rightarrow \Omega \Sigma X \vee X$, then there is a co- T^{1}-structure $\bar{\theta}: C_{r} \rightarrow \Omega \Sigma C_{r} \vee C_{r}$ on C_{r} such that $\left(\Omega \Sigma i_{r} \vee i_{r}\right) \theta \sim$ $\bar{\theta} i_{r}: X \rightarrow \Omega \Sigma C_{r} \vee C_{r}$.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Postnikov system as follows; A homology decomposition of X consists of a sequence of spaces and maps $\left\{X_{n}, q_{n}, i_{n}\right\}$ satisfying (1) $q_{n}: X_{n} \rightarrow X$ induces an isomorphism $\left(q_{n}\right)_{*}: H_{i}\left(X_{n}\right) \rightarrow H_{i}(X)$ for $i \leq n$. (2) $i_{n}: X_{n} \rightarrow X_{n+1}$ is a cofibration with cofiber $M\left(H_{n+1}(X), n\right)$ (a Moore space of type $\left.\left(H_{n+1}(X), n\right)\right)$. (3) $q_{n} \sim q_{n+1} \circ i_{n}$. It is known by [6] that if X be a 1-connected space having the homotopy type of CW complex, then there is a homology decomposition $\left\{X_{n}, q_{n}, i_{n}\right\}$ of X such that $i_{n}: X_{n} \rightarrow X_{n+1}$ is the principal cofibration induced from $\iota: M\left(H_{n+1}(X), n\right) \rightarrow c M\left(H_{n+1}(X), n\right)$ by a map $r: M\left(H_{n+1}(X), n\right) \rightarrow$ X_{n} which is called the dual Postnikov invariants.

From Theorem 3.9, we have the following corollary.
Corollary 3.11. Let X and A be spaces having the homotopy type of 1-connected countable $C W$-complexes, and $\left\{X_{n}, q_{n}, i_{n}\right\}$ and $\left\{A_{n}, q_{n}^{\prime}\right.$, $\left.i_{n}^{\prime}\right\}$ be homology decompositions for X and A respectively. If X is a co- T^{g}-space with co- T^{g}-structure $\theta: X \rightarrow \Omega \Sigma X \vee A$ and for each $n \geq 2$, the pair of r daul invariants $\left(r_{A}^{n}, r_{X}^{n}\right): \tilde{g}_{*} \rightarrow g_{n}$ are co- $T^{g_{n}}$-primitive with respect to $\theta_{n}: X_{n} \rightarrow \Omega \Sigma X_{n} \vee A_{n}$, where $\tilde{g}_{*}: M\left(H_{n+1}(X), n\right) \rightarrow$ $M\left(H_{n+1}(A), n\right)$ and g_{n} are induced maps from $g: X \rightarrow A$, then there exists a co- $T^{g_{n+1}}$-structure on X_{n+1} such that $\left(i_{n+1}^{\prime}, i_{n+1}\right): g_{n} \rightarrow g_{n+1}$ is a co- $T^{g_{n+1}}$-primitive with respect to $\theta_{n}: X_{n} \rightarrow X_{n} \vee A_{n}$.

References

[1] J. Aguade, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955.
[2] B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, ibid, 248 (1959), 2054-2558.
[3] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
[4] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.
[5] H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
[6] P. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Pub., 1965.
[7] D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
[8] D. W. Kahn, A note on H-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300-307.
[9] K. L. Lim, On cyclic maps, J. Austral. Math. Soc.,(Series A) 32 (1982), 349357.
[10] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
[11] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper \& Row, New York, 1968.
[12] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
[13] M. Postnikov, On the homotopy type of polyhedra, Dokl. Akad. Nauk. SSSR 76 (6)(1951), 789-791.
[14] H. Toda, Composition Methods in Homotopy groupsa of Spheres, Princeton, New Jersey, Princeton Univ. Press, 1962.
[15] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
[16] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc., (Series A) 59 (1995), 193-203.
[17] Y. S. Yoon, Lifting Gottlieb sets and duality, Proc. Amer. Math. Soc. 119 (4)(1993), 1315-1321.
[18] Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001),173181.
[19] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci.Math. Japon. 55(1)(2002),139-148.
[20] Y. S. Yoon, H^{f}-spaces for maps and their duals, appear in J. Korea Soc. Math. Edu. Series B 14 (4).
[21] Y. S. Yoon and J. O. Yu, v-semicyclic maps and fuction spaces, J. Chungcheong Math. Soc., 9 (1996), 77-87.

Department of Mathematics Education
Hannam University
Daejeon 306-791, Republic of Korea
E-mail: yoon@hannam.ac.kr

[^0]: Received June 30, 2007.
 2000 Mathematics Subject Classification: Primary 55P45, 55P35.
 Key words and phrases: T^{f}-spaces for maps, co- T^{g}-spaces for maps .
 This work was supported by Hannam University Research Fund, 2006.

