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LIFTING T -STRUCTURES AND THEIR DUALS

Yeon Soo Yoon*

Abstract. We define and study a concept of T f -space for a map,
which is a generalized one of a T -space, in terms of the Gottlieb
set for a map. We show that X is a T f -space if and only if
G(ΣB; A, f, X) = [ΣB, X] for any space B. For a principal fi-
bration Ek → X induced by k : X → X ′ from ε : PX ′ → X ′, we

obtain a sufficient condition to having a lifting T f̄ -structure on Ek

of a T f -structure on X . Also, we define and study a concept of
co-T g-space for a map, which is a dual one of T f -space for a map.
We obtain a dual result for a principal cofibration ir : X → Cr

induced by r : X ′ → X from ι : X ′ → cX ′.

1. Introduction

In [1], Aguade introduced a T -space as a space X having the property
that the evaluation fibration ΩX → XS1 → X is fibre homotopically
trivial. It is easy to show that any H-space is a T -space. However, there
are many T -spaces which are not H-spaces in [16]. Let ΣX denotes
the reduced suspension of X, and ΩX denotes the based loop space
of X. Let τ be the adjoint functor from the group [ΣX,Y ] to the group
[X,ΩY ]. The symbols e and e′ denote τ−1(1ΩX)and τ(1ΣX) respectively.
In [16], Woo and Yoon showed that the concept of T -space is closely
related by the Gottlieb set G(A,X), which is the set of homotopy classes
of cyclic maps from A to X as follows; X is a T -space if and only if
G(ΣB, X) = [ΣB, X] for any space B. Also, we introduced and showed
[16] that a concept of co-T -space as a dual one of T -space, which is
closely related by the dual Gottlieb set DG(X, A) which is the set of
homotopy classes of cocyclic maps from X to A as follows; X is a co-
T -space if and only if DG(X; ΩB) = [X, ΩB] for any space B. In [12],
Oda introduced the concept of f -cyclic map as a generalization of that
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of cyclic map. We called [21] the set of all homotopy classes of f -
cyclic maps from B to X as the Gottlieb set G(B; A, f, X) for a map
f : A → X. In general, G(B,X) ⊂ G(B; A, f, X) ⊂ [B, X] for any
map f : A → X and any space B. However, it is known [19] that
G(S5, S5×S5) ∼= 2Z⊕2Z 6= G(S5; S5, i1, S

5×S5) ∼= 2Z⊕Z 6= [S5, S5×
S5] ∼= Z ⊕ Z, where i1 : S5 → S5 × S5 is the inclusion. In [18], we
introduced the set of all homotopy classes of g-cocyclic maps from X to
B as the dual Gottlieb set DG(X, g, A; B) for a map g : X → A. In
general, DG(X, B) ⊂ DG(X, g, A;B) ⊂ [X, B] for any map g : X → A
and any space B. We also showed [20] that DG(Sn × Sn,K(Z, n)) 6=
DG(Sn × Sn, p1, S

n;K(Z, n)) 6= [Sn × Sn,K(Z, n)] for all n, where p1 :
Sn × Sn → Sn is the projection.

In this paper, we introduce a T f -space for a map f : A → X as a
space X having the property that e : ΣΩX → X is f -cyclic, that is,
there is a T f -structure F : ΣΩX × A → X on X. We show that X is
a T f -space if and only if G(ΣB; A, f, X) = [ΣB, X] for any space B.
There is an example which is a T f -space for a map f : A → X, but not
T -space. We can also obtain, from some properties of T f -spaces, that for
any x ∈ πn(S2), α ∈ πk(S2), [x, α] = 0 for all n ≥ 3, k ≥ 1. It is known
[16] that if X dominates A and X is a T -space, then A is a T -space.
This fact can be generalized as follows. If X is a T i-space for a map
i : A → X and i : A → X has a left homotopy inverse r : X → A, then A
is a T -space. Moreover, let pk : Ek → X be a principal fibration induced
by k : X → X ′ from ε : PX ′ → X ′. Let F : ΣΩX × A → X be a T f -
structure on X. When can we have a T f̄ -structure F̄ : ΣΩEk×El → Ek

on Ek such that pkF̄ ∼ F (ΣΩpk × pl) : Ek × El → X? We can obtain
an answer of the above question as follows. If X is a T f -space with T f -
structure F : ΣΩX × A → X and X ′ is a T f ′-space with T f ′-structure
F ′ : ΣΩX ′ × A′ → X ′ such that kF ∼ F ′(ΣΩk × l) : ΣΩX × A → X ′,
then there exists a T f̄ -structure F̄ : ΣΩEk × El → Ek on Ek such that
pkF̄ ∼ F (ΣΩpk × pl) : ΣΩEk × El → X. As a corollary, we can obtain
a sufficient condition to be Ek a T -space when X and X ′ are T -spaces.

On the other hand, we introduce a dual one of the above concept,
co-T g-space for a map g : X → A as a space X having the property
that e′ : X → ΩΣX is a g-cocyclic, that is, there is a co-T g-structure
θ : X → ΩΣX ∨ A. We show that X is a co-T g-space if and only if
DG(X, g, A; ΩB) = [X, ΩB] for any space B. It is known [16] that if
X dominates A and X is a co-T -space, then A is a co-T -space. This
fact can be generalized as follows. If X is a co-T r-space for a map
r : X → A and r : X → A has a right homotopy inverse i : A → X, then
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A is a co-T -space. Moreover, let ir : X → Cr be a principal cofibration
induced by r : X ′ → X from ι : X ′ → cX ′. Let θ : X → ΩΣX ∨ A
be a co-T g-structure on X. When can we have a co-T ḡ-structure on Cr

such that (ΩΣir ∨ is)θ ∼ θ̄ir : X → ΩΣCr ∨ Cs? Then we show that
if X is a co-T g-space with co-T g-structure θ : X → ΩΣX ∨ A and X ′

is a co-T g′-space with co-T g′-structure θ′ : X ′ → ΩΣX ′ ∨ A′ such that
(ΩΣr ∨ s)θ′ ∼ θr : X ′ → ΩΣX ∨ A, then there exists a co-T ḡ-structure
θ̄ : Cr → ΩΣCr∨Cs on Cr such that (ΩΣir∨is)θ ∼ θ̄ir : X → ΩΣCr∨Cs.
As a corollary, we can obtain a sufficient condition to be Cr a co-T -space
when X and X ′ are co-T -spaces.

2. Lifting T f -structures

Let f : A → X be a map. A based map g : B → X is called f-cyclic
[12] if there is a map φ : B ×A → X such that the diagram

A×B
φ−−−−→ X

j

x ∇
x

A ∨B
(f∨g)−−−−→ X ∨X

is homotopy commute, where j : A ∨ B → A × B is the inclusion and
∇ : X ∨X → X is the folding map. We call such a map φ an associated
map of a f -cyclic map g. Clearly, g is f -cyclic iff f is g-cyclic. In the
case f = 1X : X → X, a map g : B → X is called cyclic [15]. We
denote the set of all homotopy classes of f -cyclic maps from B to X
by G(B;A, f,X) which is called the Gottlieb set for a map f : A → X.
In the case f = 1X : X → X, we called such a set G(B; X, 1, X) as
the Gottlieb set, denoted by G(B; X). In particular, G(Sn;A, f, X) will
be denoted by Gn(A, f,X). Gottlieb [3,4] introduced and studied the
evaluation subgroups Gn(X) = Gn(X, 1, X) of πn(X).

In general, G(B; X) ⊂ G(B; A, f, X) ⊂ [B,X] for any map f : A →
X and any space B. However, there is an example [19] such that
G(B,X) 6= G(B; A, f, X) 6= [B,X]. Thus we know that for any map
f : A → X, any cyclic map g : B → X is f -cyclic, but the converse does
not hold.

The next proposition is an immediate consequence from the defini-
tion.
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Proposition 2.1.
(1) For any maps f : A → X, θ : C → A and any space B, G(B; A, f, X) ⊂
G(B; C, fθ, X).

(2) G(B, X) = G(B; X, 1X , X) ⊂ G(B; A, f, X) ⊂ G(B; A, ∗, X) = [B, X]
for any spaces X, A and B.

(3) G(B, X) = ∩{G(B; A, f, X)|f : A → X is a map and A is a space}.
(4) If h : C → A is a homotopy equivalence, then G(B; A, f, X) =
G(B; C, fh, X).

(5) For any map k : X → Y , k#(G(B; A, f,X)) ⊂ G(B;A, kf, Y ).
(6) For any map k : X → Y , k#(G(B,X)) ⊂ G(B;X, k, Y ).
(7) For any map s : C → B, s#(G(B; A, f, X)) ⊂ G(C; A, f, X).

The following proposition says that T -spaces are completely charac-
terized by the Gottlieb sets.

Proposition 2.2. [16] X is a T -space if and only if G(ΣB, X) =
[ΣB,X] for any space B.

Aguade showed [1] that X is a T -space if and only if e : ΣΩX → X is
cyclic. Now, for a map f : A → X, we would like to introduce new spaces
which can be characterized by the Gottlieb sets for a map f : A → X.

Definition 2.3. A space X is called a T f -space for a map f : A → X
if there is a map, T f -structure on X, F : ΣΩX × A → X such that
Fj ∼ ∇(e ∨ f), where j : ΣΩX ∨A → ΣΩX ×A is the inclusion.

Clearly, any T -space means a T 1-space. A space X is called an Hf -
space for a map f : A → X [20] if there is a map, Hf -structure on X,
F : X×A → X such that Fj ∼ ∇(1∨f), where j : X∨A → X×A is the
inclusion. We can easily show that any Hf -space for a map f : A → X
is a T f -space for a map f : A → X for we can take a T f -structure
F ′ = F (e × 1) : ΣΩX × A → X, where F : X × A → X is an Hf -
structure on X.

The following theorem says that a T f -space can be characterized by
the Gottlieb sets for a map f : A → X.

Theorem 2.4. X is a T f -space for a map f : A → X if and only if
G(ΣB;A, f, X) = [ΣB, X] for any space B.

Proof. Suppose that X is a T f -space for a map f : A → X. Then
there is a map F : ΣΩX × A → X such that Fj ∼ ∇(e ∨ f), where
j : ΣΩX ∨ A → ΣΩX × A is the inclusion. Let g ∈ [ΣB, X]. Consider
the map G = F (Στ(g) × 1) : ΣB × A → X. Then Gj ∼ ∇(g ∨ f) and
g ∈ G(ΣB;A, f,X). On the other hand, suppose that G(ΣB; A, f, X) =
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[ΣB,X] for any space B. Take B = ΩX and consider the map e :
ΣΩX → X. Since e ∈ G(ΣΩX;A, f,X), we know that the map e is
f -cyclic and X is a T f -space for a map f : A → X.

It is known [16] that if X dominates A and X is a T -space, then A
is a T -space. This fact can be generalized as the following corollary.

Corollary 2.5. Let X be a T i-space for a map i : A → X.
(1) If i : A → X has a left homotopy inverse r : X → A, then A is a
T -space.

(2) If i : A → X has a right homotopy inverse r : X → A, then X is a
T -space.

Proof. (1) Let B be any space. It is sufficient to show that [ΣB,A] ⊂
G(ΣB, A) for any space B. Since X is a T i-space for i : A → X, we
know, from Theorem 2.4, that G(ΣB; A, i, X) = [ΣB, X]. Thus we have,
from Proposition 2.1(5), that [ΣB, A] = r∗[ΣB,X] = r∗(G(ΣB; A, i, X))
⊂ G(ΣB; A, ri, A) = G(ΣB, A, 1, A) = G(ΣB, A). Thus A is a T -space.
(2) We show that [ΣB, X] ⊂ G(ΣB, X) for any space B. By Theorem 2.4
and Proposition 2.1(1), we can obtain that [ΣB, X] = G(ΣB; A, i, X) ⊂
G(ΣB;X, ir,X) = G(ΣB;X, 1, X) = G(ΣB,X). Thus we know, from
Proposition 2.2, that X is a T -space.

From Proposition 2.1(2),(3), Proposition 2.2 and Theorem 2.4, we
have the following corollary.

Corollary 2.6. X is a T -space if and only if for any space A and
any map f : A → X, X is a T f -space for a map f : A → X.

Definition 2.7. For a map f : A → X, P (ΣB;A, f,X) = {α ∈
[ΣB,X]| [f#(β), α] = 0 for any space C and any map β ∈ [ΣC,A]}. A

space X is called a GW f -space for a map f : A → X if for any space B,
P (ΣB;A, f,X) = [ΣB, X].

Proposition 2.8. G(ΣB;A, f,X) ⊂ P (ΣB;A, f,X) for any space
B.

Proof. Let [h] ∈ G(ΣB;A, f,X). Then there is a map H : A×ΣB →
X such that Hj ∼ ∇(f∨h), where j : A∨ΣB → A×ΣB is the inclusion.
Let C be a space and β = [g] ∈ [ΣC,A]. Then consider the map F =

H(g × 1) : ΣC ×ΣB
(g×1)→ A×ΣB

H→ X. Then Fj′ ∼ ∇(fg ∨ h), where
j′ : ΣC∨ΣB → ΣC×ΣB is the inclusion. Thus we have [f#(β), [h]] = 0
and [h] ∈ P (ΣB;A, f, X).
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Corollary 2.9. If X is a T f -space for a map f : A → X, then X is
a GW f -space for f : A → X.

Consider the natural pairing µ : S3/S1 = S2 × S3 → S3/S1 = S2.
Thus we know that the Hopf map η : S3 → S2 is cyclic. Thus η is
e-cyclic and e is η-cyclic, that is, S2 is a T η-space. Thus we know that
S2 is a GW η-space for η : S3 → S2. On the other hand, it is known [16]
that H-spaces and T -spaces are equivalent in the category of spheres.
Thus we know that S2 is not a T -space. Moreover, it is known [14] that
η# : πn(S3) → πn(S2), η#(β) = η ◦ β, is an isomorphism for n ≥ 3.
Thus we have the following example.

Example 2.10.
(1) S2 is a T η-space, but not T -space.
(2) For any x ∈ πn(S2), α ∈ πk(S2) (n ≥ 3, k ≥ 1), [x, α] = 0.

Let f : A → X, f ′ : A′ → X ′, l : A → A′, k : X → X ′ be maps.
Then a pair of maps (k, l) : (X, A) → (X ′, A′) is called a map from f to
f ′ if the following diagram is commutative;

A
f−−−−→ X

l

y k

y

A′ f ′−−−−→ X ′.
It will be denoted by (k, l) : f → f ′.

Given maps f : A → X, f ′ : A′ → X ′, let (k, l) : f → f ′ be a map
from f to f ′. Let PX ′ and PA′ be the spaces of paths in X ′ and A′ which
begin at ∗ respectively. Let εX′ : PX ′ → X ′ and εA′ : PA′ → A′ be the
fibrations given by evaluating a path at its end point. Let pk : Ek → X
be the fibration induced by k : X → X ′ from εX′ . Let pl : El → A
induced by l : A → A′ from εA′ . Then there is a map f̄ : El → Ek such
that the following diagram is commutative

El
f̄−−−−→ Ek

pl

y pk

y
A

f−−−−→ X,

where El = {(a, ξ) ∈ A × PA′|l(a) = ε(ξ)} , Ek = {(x, η) ∈ X ×
PX ′|k(x) = ε(η)}, f̄(a, ξ) = (f(a), f ′ ◦ ξ), pk(x, η) = x, pl(a, ξ) = a.

Definition 2.11. Let X be a T f -space with T f -structure F : ΣΩX×
A → X. A map (k, l) : f → f ′ is called a T f -primitive with respect to
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F if there is an associate map F ′ : ΣΩX ′ × A′ → X ′ of eX′-cyclic map
f ′ such that the following diagram is homotopy commutative;

ΣΩX ×A
F−−−−→ X

ΣΩk×l

y k

y
ΣΩX ′ ×A′ F ′−−−−→ X ′.

The following lemmas are standard.

Lemma 2.12. A map l : C → X can be lifted to a map C → Ek if
and only if kl ∼ ∗.

Lemma 2.13. [5] Given maps gi : Ai → Ek, i = 1, 2 and g : A1 ×
A2 → Ek satisfying pkg|Ai ∼ pkgi, i = 1, 2, then there is a map h :
A1 ×A2 → Ek such that pkh = pkg and h|Ai ∼ gi, i = 1, 2.

Theorem 2.14. If X is a T f -space with T f -structure F : ΣΩX×A →
X and (k, l) : f → f ′ is a T f -primitive with respective to F , then there

exists a T f̄ -structure F̄ : ΣΩEk×El → Ek on Ek such that the following
diagram is homotopy commutative;

ΣΩEk × El
F̄−−−−→ Ek

ΣΩpk×pl

y pk

y
ΣΩX ×A

F−−−−→ X.

Proof. Since (k, l) : f → f ′ is a T f -primitive with respect to F , there
is a map F ′ : ΣΩX ′×A′ → X ′ such that kF ∼ F ′(ΣΩk×l) : ΣΩX×A →
X ′. Then kF (ΣΩpk × pl) ∼ F ′(ΣΩk× l)(ΣΩpk × pl) = F ′(ΣΩ(k ◦ pk)×
l ◦ pl) ∼ F ′(∗× ∗) ∼ ∗ : ΣΩEk ×El → X ′. From Lemma 2.12, there is a
lifting F̃ : ΣΩEk ×El → Ek of F (ΣΩpk × pl) : ΣΩEk ×El → X, that is,
pkF̃ = F (ΣΩpk×pl). Then pk ◦ F̃ |ΣΩEk

∼ F |ΣΩX ◦ΣΩpk ∼ pk ◦ eEk
and

pk◦F̃ |El
∼ F |A◦pl ∼ f◦pl = pk◦f̄ . Thus we have, from Lemma 2.13, that

there is a map F̄ : ΣΩEk×El → Ek such that pkF̄ = pkF̃ = F (ΣΩpk×pl)
and F̄ |ΣΩEk

∼ eEk
, F̄ |El

∼ f̄ . This proves the theorem.

Taking f = 1X , f ′ = 1X′ and l = k, we can obtain the following
corollary.

Corollary 2.15. Let X and X ′ be T -spaces with T 1-structures E :
ΣΩX×X → X and E′ : ΣΩX ′×X ′ → X ′ respectively. If k : X → X ′ is a
map satisfying kE ∼ E′(ΣΩk×1) : ΣΩX×X → X ′, then there is an T 1-
structure Ē : ΣΩEk ×Ek → Ek on Ek such that pkĒ ∼ E(ΣΩpk × pk) :
ΣΩEk ×Ek → X.
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In 1951, Postnikov [13] introduced the notion of the Postnikov system
as follows; A Postnikov system for X( or homotopy decomposition of
X) {Xn, in, pn} consists of a sequence of spaces and maps satisfying
(1) in : X → Xn induces an isomorphism (in)# : πi(X) → πi(Xn) for
i ≤ n. (2) pn : Xn → Xn−1 is a fibration with fiber K(πn(X), n).
(3) pnin ∼ in+1. It is well known fact [11] that if X is a 1-connected
space having a homotopy type of CW-complex, then there is a Postnikov
system {Xn, in, pn} for X such that pn+1 : Xn+1 → Xn is the fibration
induced from the path space fibration over K(πn+1(X), n+2) by a map
kn+2 : Xn → K(πn+1(X), n + 2).

Theorem 2.16. Let A and X be spaces having the homotopy type of
1-connected countable CW -complexes, and {An, i′n, p′n} and {Xn, in, pn}
be Postnikov systems for A and X respectively. If X is a T f -space with
T f -structure F : ΣΩX × A → X, then there exists a T fn-structure
Fn : ΣΩXn ×An → Xn for each stage Xn such that

ΣΩXn ×An
Fn−−−−→ Xn

ΣΩpn×p′n

y pn

y

ΣΩXn−1 ×An−1
Fn−1−−−−→ Xn−1,

where fn is an induced map from f , and all the pair of k-invariants
(kn+2

X , kn+2
A ) : fn → f̃# are T fn-primitive with respect to Fn, where

f̃# : K(πn+1(A), n + 2) → K(πn+1(X), n + 2) is the induced map by
f : A → X.

Proof. Clearly {ΣΩXn × An, ΣΩin × i′n, ΣΩpn × p′n} is a Postnikov
system for ΣΩX ×A. Then we have, by Kahn’s result [7,Theorem 2.2],
that there are families of maps fn : An → Xn and Fn : ΣΩXn ×
An → Xn such that pnfn = fn−1p

′
n and inf ∼ fni′n, and pnFn =

Fn−1(ΣΩpn × p′n) and inF ∼ Fn(ΣΩin × i′n) for n = 2, 3, · · · respec-
tively, and kn+2

X fn ∼ f̃#kn+2
A : An → K(πn+1(X), n + 2) and kn+2

X Fn ∼
F̃#(kn+2

ΣΩX × kn+2
A ) : Xn × An → K(πn+1(X), n + 2), where kn+2

A :
An → K(πn+1(A), n + 2), kn+2

X : Xn → K(πn+1(X), n + 2) and kn+2
ΣΩX :

ΣΩXn → K(πn+1(ΣΩX), n + 2) are k-invariants of A, X and ΣΩX

respectively, f̃# : K(πn+1(A), n + 2) → K(πn+1(X), n + 2) and F̃# :
K(πn+1(ΣΩX), n + 2) ×K(πn+1(A), n + 2) ≈ K(πn+1(ΣΩX × A), n +
2) → K(πn+1(X), n + 2) are the induced maps by f : A → X and
F : X × A → X respectively. Since F |ΣΩX ∼ e and Fn|An ∼ fn, we
know, from Kahn’s another result [8, Theorem 1.2], that Fn|ΣΩXn

=



Lifting T -structures and their duals 253

(F |ΣΩX)n ∼ e and Fn|An
= (F |A)n ∼ fn. Thus there exists an T fn-

structure Fn : ΣΩXn ×An → Xn for each stage Xn such that

ΣΩXn ×An
Fn−−−−→ Xn

ΣΩpn×p′n

y pn

y

ΣΩXn−1 ×An−1
Fn−1−−−−→ Xn−1,

where fn is an induced map from f , and all the pair of k-invariants
(kn+2

X , kn+2
A ) : fn → f̃# are T fn-primitive with respect to Fn, where

f̃# : K(πn+1(A), n + 2) → K(πn+1(X), n + 2) is the induced map by
f : A → X.

In fact, the above theorem follows from Theorem 2.14 if we can show
that all the pair of k-invariants (kn+2

X , kn+2
A ) : fn → f̃# are T fn-primitive

with respect to Fn.
We can obtain an equivalent condition for Ek is a T f̄ -space for f̄ .

Theorem 2.17. Let (k, l) : f → f ′ be a map. Then Ek is a T f̄ -space
for f̄ : El → Ek if and only if there is a map G : ΣΩEk × El → X such
that Gj ∼ ∇(pk◦e∨pk◦f̄) and kG ∼ ∗, where j : ΣΩEk∨El → ΣΩEk×El

is the inclusion.

Proof. Suppose that Ek is a T f̄ -space for f̄ : El → Ek. Then there
is a map F̄ : ΣΩEk × El → Ek such that F̄ j′ ∼ ∇(e ∨ f̄). Let G =
pkF̄ : ΣΩEk × El → X. Then Gj ∼ ∇(pk ◦ e ∨ pk ◦ f̄), where j :
ΣΩEk ∨ El → ΣΩEk × El is the inclusion. Since G has a lifting F̄ , by
Lemma 2.12, we know that kG ∼ ∗. On the other hand, suppose there
is a map G : ΣΩEk × El → X such that Gj ∼ ∇(pk ◦ e ∨ pk ◦ f̄) and
kG ∼ ∗, where j : ΣΩEk ∨ El → ΣΩEk × El is the inclusion. Since
kG ∼ ∗, there is a map H : ΣΩEk × El → Ek such that pkH ∼ G.
For maps e : ΣΩEk → Ek and f̄ : El → Ek, we can easily know that
pkH|ΣΩEk

∼ pk ◦ eEk
and pkH|El

∼ pk ◦ f̄ . Thus we have, from Lemma
2.13, that there is a map F̄ : ΣΩEk × El → Ek such that pkF̄ = pkH

and F̄|ΣΩEk
∼ e and F̄El

∼ f̄ . Thus we know that Ek is a T f̄ -space for
f̄ : El → Ek.

Now we can obtain the converse of Theorem 2.14 under some condi-
tions as follows;

Theorem 2.18. Suppose that there are maps sk : X → Ek and

sl : A → El such that pksk ∼ 1X and plsl ∼ 1A. If there exists a T f̄ -
structure F̄ : ΣΩEk × El → Ek on Ek such that the following diagram
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is homotopy commutative;

ΣΩEk × El
F̄−−−−→ Ek

ΣΩpk×pl

y pk

y
ΣΩX ×A

F−−−−→ X,

then X is a T f -space with T f -structure F : ΣΩX ×A → X.

Proof. Since Ek is a T f̄ -space for f̄ : El → Ek, there is a map G :
ΣΩEk × El → X such that Gj ∼ ∇(pk ◦ e ∨ pk ◦ f̄) and kG ∼ ∗,
where j : ΣΩEk ∨ El → ΣΩEk × El is the inclusion. Consider the
map F = G(ΣΩsk × sl) : ΣΩX × A → X. Then Fj′ ∼ ∇(e ∨ f) and
kF (ΣΩpk × pl) ∼ ∗, where j′ : ΣΩX ∨ A → ΣΩX × A is the inclusion.
Thus we know that X is a T f -space with T f -structure F : ΣΩX ×A →
X.

3. Extending co-T g-structures

Let g : X → A be a map. A based map f : X → B is called g-coclic
[12] if there is a map θ : X → A ∨B such that the following diagram is
homotopy commutative;

X
θ−−−−→ A ∨B

∆

y j

y

X ×X
(g×f)−−−−→ A×B,

where j : A ∨ B → A × B is the inclusion and ∆ : X → X ×X is the
diagonal map. We call such a map θ a coassociated map of a g-cocyclic
map f .

In the case g = 1X : X → X, f : X → B is called cocyclic
[15]. Clearly any cocyclic map is a g-cocyclic map and also f : X →
B is g-cocyclic iff g : X → A is f -cocyclic. The dual Gottlieb set
DG(X, g, A; B) for a map g : X → A is the set of all homotopy classes
of g-cocyclic maps from X to B. In the case g = 1X : X → X, we
called such a set DG(X, 1, X; B) as the dual Gottlieb set, denoted by
DG(X; B), that is, the dual Gottlieb set is exactly same with the dual
Gottlieb set for the identity map. In particular, DG(X, g, A; K(π, n))
will be denoted by Gn(X, g, A; π). Haslam [5] introduced and studied
the coevaluation subgroups Gn(X; π) of Hn(X; π). Gn(X;π) is defined
to be the set of all homotopy classes of cocyclic maps from X to K(π, n).
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In general, DG(X; B) ⊂ DG(X, g,A; B) ⊂ [X,B] for any map g :
X → B and any space B. However, there is an example in [18] such
that DG(X,B) 6= DG(X, g, A;B) 6= [X, B].

The next proposition is an immediate consequence from the defini-
tion.

Proposition 3.1.
(1) For any maps g : X → A, h : A → B and any space C, DG(X, g,A; C)
⊂ DG(X,hg, B; C).

(2) DG(X, B) = DG(X, 1X , X;B) ⊂ DG(X, g, A;B) ⊂ DG(X, ∗, A;B) =
[X,B] for any spaces X, A and B.

(3) DG(X, B) = ∩{DG(X, g, A; B)|g : X → A is a map and A is a
space}.

(4) If h : A → B is a homotopy equivalence, then DG(X, g,A; C) =
DG(X,hg, B; c).

(5) For any map k : Y → X, k#(DG(X, g, A;B)) ⊂ DG(Y, gk,A; B).
(6) For any map k : Y → X, k#(DG(X;B)) ⊂ DG(Y, k,X; B).
(7) For any map s : B → C, s#(DG(X, g, A; B)) ⊂ DG(X, g, A; C).

It is well known [5] that Gn(X; π) is a subgroup of Hn(X; π). More-
over, it is also shown [10] that if B is an H-group, then DG(X, B) is a
subgroup of [X,B].

But we do not know whether DG(X, g, A; B) is a group.
A space X is called a co-T -space [16] if e′ : X → ΩΣX is cocyclic. The

following proposition says that co-T -spaces are completely characterized
by the dual Gottlieb sets.

Proposition 3.2. [16] X is a co-T -space if and only if DG(X, ΩB) =
[X,ΩB] for any space B.

Now, for a map g : X → A, we would like to introduce new spaces
which can be characterized by the dual Gottlieb sets for a map g : X →
A.

Definition 3.3. A space X is called a co-T g-space for a map g :
X → A if there is a map, a co-T g-structure, θ : X → ΩΣX ∨ A such
that jθ ∼ (e′ × g)∆, where j : ΩΣX ∨ A → ΩΣX × A is the inclusion
and ∆ : X → X ×X is the diagonal map.

The following proposition says that co-T g-spaces are completely char-
acterized by the dual Gottlieb sets for a map g : X → A.

Proposition 3.4. [18] X is a co-T g-space for a map g : X → A if
and only if DG(X, g,A; ΩB) = [X, ΩB] for any space B.



256 Yeon Soo Yoon

It is clear, from Proposition 3.1(2) and the above propositions, that
any co-T -space is a co-T g-space for any map g : X → A. It is known [18]
that if X dominates A and X is a co-T -space, then A is a co-T -space.
This fact can be generalized as follows;

Corollary 3.5. Let X be a co-T r-space for a map r : X → A.
(1) If r : X → A has a right homotopy inverse i : A → X, then A is a
co-T -space.

(2) If r : X → A has a left homotopy inverse i : A → X, then X is a
co-T -space.

Proof. (1) Let B be any space. It is sufficient to show that [A, ΩB] ⊂
DG(A, ΩB). Since X is a co-T r-space for a map r : X → A, we have that
DG(X, r,A; ΩB) = [X; ΩB]. Thus we know, from Proposition 3.1(5),
that [A,ΩB] = i#[X, ΩB] = i#DG(X, r,A; ΩB) ⊂ DG(A, ri, A; ΩB) =
DG(A, 1, A; ΩB) = DG(A, ΩB). (2) For any space B, we can obtain,
from Proposition 3.4 and Proposition 3.1(1), that [X, ΩB] = DG(X, r,A;
ΩB) ⊂ DG(X, ir,X; ΩB) = DG(X, 1, X; ΩB) = DG(X, ΩB).

Given maps g : X → A, g′ : X ′ → A′, let (s, r) : g′ → g be a map
from g′ to g, that is, the following diagram is commutative;

X ′ g′−−−−→ A′

r

y s

y
X

g−−−−→ A.

It is a well known fact that Y
ι→ cY → ΣY is a cofibration, where

ι(y) = [y, 1]. Let ir : X → Cr be the cofibration induced by r : X ′ → X
from ιX′ : X ′ → cX ′. Let is : A → Cs be the cofibration induced by
s : A′ → A from ιA′ : A′ → cA′. Then there is a map ḡ : Ct → Cs such
that the following diagram is commutative

X
g−−−−→ A

ir

y is

y
Cr

ḡ−−−−→ Cs,

where Ct = cX ′ qX/[x′, 1] ∼ t(x′), and Cs = cA′ qA/[a′, 1] ∼ s(a′), ḡ :
Ct → Cs is given by ḡ([x′, t]) = [g′(x′), t] if [x′, t] ∈ cX ′ and ḡ(x) = g(x)
if x ∈ X, ir(x) = x, is(a) = a.

Definition 3.6. Let X be a co-T g-space with co-T g-structure θ :
X → ΩΣX ∨ A. Then a map (s, r) : g′ → g is called a co-T g-primitive
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with respect to θ : X → ΩΣX ∨ A if there is a coassociate map θ′ :
X ′ → ΩΣX ′ ∨ A′ of e′-cocyclic map g′ such that the following diagram
is homotopy commutative;

X ′ θ′−−−−→ ΩΣX ′ ∨A′

r

y ΩΣr∨s

y
X

θ−−−−→ ΩΣX ∨A.

The following lemmas are standard.

Lemma 3.7. Let f : X → B be a map. Then there is a map h : Cr →
B such that hir = f if and only if fr ∼ ∗.

Lemma 3.8. [17] Let gt : Cr → Bt(t = 1, 2) and g : Cr → B1 ∨ B2 a
map such that ptjgik ∼ gtir(t = 1, 2), where j : B1 ∨ B2 → B1 × B2 is
the inclusion and pt : B1×B2 → Bt, t = 1, 2 are projections. Then there
is a map h : Cr → B1 ∨B2 such that gir = hir and ptj

′h ∼ gt(t = 1, 2),
where j′ : B1 ∨B2 → B1 ×B2 is the inclusion.

Theorem 3.9. If X is a co-T g-space with co-T g-structure θ : X →
ΩΣX ∨ A and (s, r) : g′ → g is a co-T g-primitive with respect to θ,
then there exists a co-T ḡ-structure θ̄ : Cr → ΩΣCr ∨Cs on Cr satisfying
commutative diagram

Cr
θ̄−−−−→ ΩΣCr ∨ Cs

ir

x ΩΣir∨is

x
X

θ−−−−→ ΩΣX ∨A.

Proof. Since (s, r) : g′ → g is a co-T g-primitive with respect to θ, then
there is a map θ′ : X ′ → ΩΣX ′ ∨A′ satisfying commutative diagram

X ′ θ′−−−−→ ΩΣX ′ ∨A′

r

y ΩΣr∨s

y
X

θ−−−−→ ΩΣX ∨A.

Then we have that (ΩΣir ∨ is)θr ∼ (ΩΣir ∨ is)(ΩΣr ∨ s)θ′ ∼ (ΩΣ(ir ◦
r) ∨ is ◦ s)θ ∼ ∗. Thus we know, from Lemma 3.7, that there is a
map θ̃ : Cr → ΩΣCr ∨ Cs such that θ̃ir = (ΩΣir ∨ is)θ. Then p1jθ̃ir =
p1j(ΩΣir∨is)θ ∼ p1(ΩΣir×is)(e′×g)∆ ∼ e′Cr

◦ir and p2jθ̃ir ∼ p2(ΩΣir×
is)(e′× g)∆ ∼ is ◦ g = ḡ ◦ ir. Thus we have, from Lemma 3.8, that there
is a map θ̄ : Cr → ΩΣCr ∨ Cs such that θ̄ir = θ̃ir = (ΩΣir ∨ is)θ
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and p1jθ̄ ∼ e′, p2jθ̄ ∼ ḡ, where j : ΩΣCr ∨ Cs → ΩΣCr × Cs is the
inclusion.

Taking g = 1X , g′ = 1X′ and s = r, we can get the following corollary.

Corollary 3.10. Let X and X ′ be co-T -spaces with co-T 1-structures
θ : X → ΩΣX ∨X and θ′ : X ′ → ΩΣX ′∨X ′ respectively. If r : X ′ → X
is a map satisfying (ΩΣr ∨ r)θ′ ∼ θr : X ′ → ΩΣX ∨ X , then there is
a co-T 1-structure θ̄ : Cr → ΩΣCr ∨ Cr on Cr such that (ΩΣir ∨ ir)θ ∼
θ̄ir : X → ΩΣCr ∨ Cr.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Post-
nikov system as follows; A homology decomposition of X consists of a
sequence of spaces and maps {Xn, qn, in} satisfying (1) qn : Xn → X
induces an isomorphism (qn)∗ : Hi(Xn) → Hi(X) for i ≤ n. (2)
in : Xn → Xn+1 is a cofibration with cofiber M(Hn+1(X), n)( a Moore
space of type (Hn+1(X), n)). (3) qn ∼ qn+1 ◦ in. It is known by [6]
that if X be a 1-connected space having the homotopy type of CW
complex, then there is a homology decomposition {Xn, qn, in} of X
such that in : Xn → Xn+1 is the principal cofibration induced from
ι : M(Hn+1(X), n) → cM(Hn+1(X), n) by a map r : M(Hn+1(X), n) →
Xn which is called the dual Postnikov invariants.

From Theorem 3.9, we have the following corollary.

Corollary 3.11. Let X and A be spaces having the homotopy type
of 1-connected countable CW -complexes, and {Xn, qn, in} and {An, q′n,
i′n} be homology decompositions for X and A respectively. If X is a
co-T g-space with co-T g-structure θ : X → ΩΣX ∨A and for each n ≥ 2,
the pair of r daul invariants (rn

A, rn
X) : g̃∗ → gn are co-T gn-primitive

with respect to θn : Xn → ΩΣXn ∨ An, where g̃∗ : M(Hn+1(X), n) →
M(Hn+1(A), n) and gn are induced maps from g : X → A, then there
exists a co-T gn+1-structure on Xn+1 such that (i′n+1, in+1) : gn → gn+1

is a co-T gn+1-primitive with respect to θn : Xn → Xn ∨An.
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