JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **20**, No. 3, September 2007

LIFTING T-STRUCTURES AND THEIR DUALS

YEON SOO YOON*

ABSTRACT. We define and study a concept of T^f -space for a map, which is a generalized one of a *T*-space, in terms of the Gottlieb set for a map. We show that *X* is a T^f -space if and only if $G(\Sigma B; A, f, X) = [\Sigma B, X]$ for any space *B*. For a principal fibration $E_k \to X$ induced by $k: X \to X'$ from $\epsilon: PX' \to X'$, we obtain a sufficient condition to having a lifting $T^{\bar{f}}$ -structure on E_k of a T^f -structure on *X*. Also, we define and study a concept of co- T^g -space for a map, which is a dual one of T^f -space for a map. We obtain a dual result for a principal cofibration $i_r: X \to C_r$ induced by $r: X' \to X$ from $\iota: X' \to cX'$.

1. Introduction

In [1], Aguade introduced a T-space as a space X having the property that the evaluation fibration $\Omega X \to X^{S^1} \to X$ is fibre homotopically trivial. It is easy to show that any *H*-space is a *T*-space. However, there are many T-spaces which are not H-spaces in [16]. Let ΣX denotes the reduced suspension of X, and ΩX denotes the based loop space of X. Let τ be the adjoint functor from the group $[\Sigma X, Y]$ to the group $[X, \Omega Y]$. The symbols e and e' denote $\tau^{-1}(1_{\Omega X})$ and $\tau(1_{\Sigma X})$ respectively. In [16], Woo and Yoon showed that the concept of T-space is closely related by the Gottlieb set G(A, X), which is the set of homotopy classes of cyclic maps from A to X as follows; X is a T-space if and only if $G(\Sigma B, X) = [\Sigma B, X]$ for any space B. Also, we introduced and showed [16] that a concept of co-T-space as a dual one of T-space, which is closely related by the dual Gottlieb set DG(X, A) which is the set of homotopy classes of cocyclic maps from X to A as follows; X is a co-T-space if and only if $DG(X; \Omega B) = [X, \Omega B]$ for any space B. In [12], Oda introduced the concept of f-cyclic map as a generalization of that

Received June 30, 2007.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: T^f -spaces for maps, co- T^g -spaces for maps .

This work was supported by Hannam University Research Fund, 2006.

of cyclic map. We called [21] the set of all homotopy classes of f-cyclic maps from B to X as the Gottlieb set G(B; A, f, X) for a map $f: A \to X$. In general, $G(B, X) \subset G(B; A, f, X) \subset [B, X]$ for any map $f: A \to X$ and any space B. However, it is known [19] that $G(S^5, S^5 \times S^5) \cong 2Z \oplus 2Z \neq G(S^5; S^5, i_1, S^5 \times S^5) \cong 2Z \oplus Z \neq [S^5, S^5 \times S^5] \cong Z \oplus Z$, where $i_1: S^5 \to S^5 \times S^5$ is the inclusion. In [18], we introduced the set of all homotopy classes of g-cocyclic maps from X to B as the dual Gottlieb set DG(X, g, A; B) for a map $g: X \to A$. In general, $DG(X, B) \subset DG(X, g, A; B) \subset [X, B]$ for any map $g: X \to A$ and any space B. We also showed [20] that $DG(S^n \times S^n, K(Z, n)) \neq DG(S^n \times S^n, p_1, S^n; K(Z, n)) \neq [S^n \times S^n, K(Z, n)]$ for all n, where $p_1: S^n \times S^n \to S^n$ is the projection.

In this paper, we introduce a T^f -space for a map $f: A \to X$ as a space X having the property that $e: \Sigma \Omega X \to X$ is f-cyclic, that is, there is a T^f -structure $F: \Sigma \Omega X \times A \to X$ on X. We show that X is a T^{f} -space if and only if $G(\Sigma B; A, f, X) = [\Sigma B, X]$ for any space B. There is an example which is a T^f -space for a map $f: A \to X$, but not T-space. We can also obtain, from some properties of T^{f} -spaces, that for any $x \in \pi_n(S^2)$, $\alpha \in \pi_k(S^2)$, $[x, \alpha] = 0$ for all $n \ge 3$, $k \ge 1$. It is known [16] that if X dominates A and X is a T-space, then A is a T-space. This fact can be generalized as follows. If X is a T^i -space for a map $i: A \to X$ and $i: A \to X$ has a left homotopy inverse $r: X \to A$, then A is a *T*-space. Moreover, let $p_k : E_k \to X$ be a principal fibration induced by $k : X \to X'$ from $\epsilon : PX' \to X'$. Let $F : \Sigma \Omega X \times A \to X$ be a T^f structure on X. When can we have a $T^{\bar{f}}$ -structure $\bar{F}: \Sigma \Omega E_k \times E_l \to E_k$ on E_k such that $p_k \overline{F} \sim F(\Sigma \Omega p_k \times p_l) : E_k \times E_l \to X$? We can obtain an answer of the above question as follows. If X is a T^{f} -space with T^{f} structure $F: \Sigma \Omega X \times A \to X$ and X' is a $T^{f'}$ -space with $T^{f'}$ -structure $F': \Sigma \Omega X' \times A' \to X'$ such that $kF \sim F'(\Sigma \Omega k \times l): \Sigma \Omega X \times A \to X'$, then there exists a $T^{\bar{f}}$ -structure $\bar{F}: \Sigma \Omega E_k \times E_l \to E_k$ on E_k such that $p_k \bar{F} \sim F(\Sigma \Omega p_k \times p_l) : \Sigma \Omega E_k \times E_l \to X$. As a corollary, we can obtain a sufficient condition to be E_k a T-space when X and X' are T-spaces.

On the other hand, we introduce a dual one of the above concept, co- T^g -space for a map $g: X \to A$ as a space X having the property that $e': X \to \Omega \Sigma X$ is a g-cocyclic, that is, there is a co- T^g -structure $\theta: X \to \Omega \Sigma X \lor A$. We show that X is a co- T^g -space if and only if $DG(X, g, A; \Omega B) = [X, \Omega B]$ for any space B. It is known [16] that if X dominates A and X is a co-T-space, then A is a co-T-space. This fact can be generalized as follows. If X is a co- T^r -space for a map $r: X \to A$ and $r: X \to A$ has a right homotopy inverse $i: A \to X$, then

A is a co-T-space. Moreover, let $i_r: X \to C_r$ be a principal cofibration induced by $r: X' \to X$ from $\iota: X' \to cX'$. Let $\theta: X \to \Omega \Sigma X \lor A$ be a co- T^g -structure on X. When can we have a co- $T^{\bar{g}}$ -structure on C_r such that $(\Omega \Sigma i_r \lor i_s)\theta \sim \bar{\theta}i_r: X \to \Omega \Sigma C_r \lor C_s$? Then we show that if X is a co- T^g -space with co- T^g -structure $\theta: X \to \Omega \Sigma X \lor A$ and X'is a co- T^g -space with co- T^g -structure $\theta': X' \to \Omega \Sigma X' \lor A'$ such that $(\Omega \Sigma r \lor s)\theta' \sim \theta r: X' \to \Omega \Sigma X \lor A$, then there exists a co- $T^{\bar{g}}$ -structure $\bar{\theta}: C_r \to \Omega \Sigma C_r \lor C_s$ on C_r such that $(\Omega \Sigma i_r \lor i_s)\theta \sim \bar{\theta}i_r: X \to \Omega \Sigma C_r \lor C_s$. As a corollary, we can obtain a sufficient condition to be C_r a co-T-space when X and X' are co-T-spaces.

2. Lifting T^f -structures

Let $f : A \to X$ be a map. A based map $g : B \to X$ is called *f-cyclic* [12] if there is a map $\phi : B \times A \to X$ such that the diagram

$$\begin{array}{ccc} A \times B & \stackrel{\phi}{\longrightarrow} & X \\ i \uparrow & & \nabla \uparrow \\ A \lor B & \stackrel{(f \lor g)}{\longrightarrow} & X \lor X \end{array}$$

is homotopy commute, where $j: A \vee B \to A \times B$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. We call such a map ϕ an associated map of a f-cyclic map g. Clearly, g is f-cyclic iff f is g-cyclic. In the case $f = 1_X : X \to X$, a map $g: B \to X$ is called cyclic [15]. We denote the set of all homotopy classes of f-cyclic maps from B to X by G(B; A, f, X) which is called the Gottlieb set for a map $f: A \to X$. In the case $f = 1_X : X \to X$, we called such a set G(B; X, 1, X) as the Gottlieb set, denoted by G(B; X). In particular, $G(S^n; A, f, X)$ will be denoted by $G_n(A, f, X)$. Gottlieb [3,4] introduced and studied the evaluation subgroups $G_n(X) = G_n(X, 1, X)$ of $\pi_n(X)$.

In general, $G(B; X) \subset G(B; A, f, X) \subset [B, X]$ for any map $f : A \to X$ and any space B. However, there is an example [19] such that $G(B, X) \neq G(B; A, f, X) \neq [B, X]$. Thus we know that for any map $f : A \to X$, any cyclic map $g : B \to X$ is f-cyclic, but the converse does not hold.

The next proposition is an immediate consequence from the definition.

Proposition 2.1.

- (1) For any maps $f : A \to X, \theta : C \to A$ and any space $B, G(B; A, f, X) \subset G(B; C, f\theta, X)$.
- (2) $G(B, X) = G(B; X, 1_X, X) \subset G(B; A, f, X) \subset G(B; A, *, X) = [B, X]$ for any spaces X, A and B.
- (3) $G(B,X) = \cap \{G(B;A,f,X) | f : A \to X \text{ is a map and } A \text{ is a space} \}.$
- (4) If $h : C \to A$ is a homotopy equivalence, then G(B; A, f, X) = G(B; C, fh, X).
- (5) For any map $k: X \to Y$, $k_{\#}(G(B; A, f, X)) \subset G(B; A, kf, Y)$.
- (6) For any map $k: X \to Y$, $k_{\#}(G(B,X)) \subset G(B;X,k,Y)$.
- (7) For any map $s: C \to B, s^{\#}(G(B; A, f, X)) \subset G(C; A, f, X).$

The following proposition says that T-spaces are completely characterized by the Gottlieb sets.

PROPOSITION 2.2. [16] X is a T-space if and only if $G(\Sigma B, X) = [\Sigma B, X]$ for any space B.

Aguade showed [1] that X is a T-space if and only if $e : \Sigma \Omega X \to X$ is cyclic. Now, for a map $f : A \to X$, we would like to introduce new spaces which can be characterized by the Gottlieb sets for a map $f : A \to X$.

DEFINITION 2.3. A space X is called a T^f -space for a map $f : A \to X$ if there is a map, T^f -structure on X, $F : \Sigma \Omega X \times A \to X$ such that $Fj \sim \nabla(e \lor f)$, where $j : \Sigma \Omega X \lor A \to \Sigma \Omega X \times A$ is the inclusion.

Clearly, any *T*-space means a T^1 -space. A space *X* is called an H^f -space for a map $f : A \to X$ [20] if there is a map, H^f -structure on *X*, $F : X \times A \to X$ such that $Fj \sim \nabla(1 \vee f)$, where $j : X \vee A \to X \times A$ is the inclusion. We can easily show that any H^f -space for a map $f : A \to X$ is a T^f -space for a map $f : A \to X$ for we can take a T^f -structure $F' = F(e \times 1) : \Sigma \Omega X \times A \to X$, where $F : X \times A \to X$ is an H^f -structure on *X*.

The following theorem says that a T^f -space can be characterized by the Gottlieb sets for a map $f: A \to X$.

THEOREM 2.4. X is a T^f -space for a map $f : A \to X$ if and only if $G(\Sigma B; A, f, X) = [\Sigma B, X]$ for any space B.

Proof. Suppose that X is a T^f -space for a map $f : A \to X$. Then there is a map $F : \Sigma \Omega X \times A \to X$ such that $Fj \sim \nabla(e \lor f)$, where $j : \Sigma \Omega X \lor A \to \Sigma \Omega X \times A$ is the inclusion. Let $g \in [\Sigma B, X]$. Consider the map $G = F(\Sigma \tau(g) \times 1) : \Sigma B \times A \to X$. Then $Gj \sim \nabla(g \lor f)$ and $g \in G(\Sigma B; A, f, X)$. On the other hand, suppose that $G(\Sigma B; A, f, X) =$

 $[\Sigma B, X]$ for any space B. Take $B = \Omega X$ and consider the map $e : \Sigma \Omega X \to X$. Since $e \in G(\Sigma \Omega X; A, f, X)$, we know that the map e is f-cyclic and X is a T^f -space for a map $f : A \to X$. \Box

It is known [16] that if X dominates A and X is a T-space, then A is a T-space. This fact can be generalized as the following corollary.

COROLLARY 2.5. Let X be a T^i -space for a map $i : A \to X$. (1) If $i : A \to X$ has a left homotopy inverse $r : X \to A$, then A is a T-space.

(2) If $i: A \to X$ has a right homotopy inverse $r: X \to A$, then X is a T-space.

Proof. (1) Let *B* be any space. It is sufficient to show that [ΣB, A] ⊂ G(ΣB, A) for any space *B*. Since *X* is a T^i -space for i : A → X, we know, from Theorem 2.4, that G(ΣB; A, i, X) = [ΣB, X]. Thus we have, from Proposition 2.1(5), that $[ΣB, A] = r_*[ΣB, X] = r_*(G(ΣB; A, i, X)) ⊂ G(ΣB; A, ri, A) = G(ΣB, A, 1, A) = G(ΣB, A)$. Thus *A* is a *T*-space. (2) We show that [ΣB, X] ⊂ G(ΣB, X) for any space *B*. By Theorem 2.4 and Proposition 2.1(1), we can obtain that [ΣB, X] = G(ΣB; A, i, X) ⊂ G(ΣB; X, ir, X) = G(ΣB; X, 1, X) = G(ΣB, X). Thus we know, from Proposition 2.2, that *X* is a *T*-space.

From Proposition 2.1(2),(3), Proposition 2.2 and Theorem 2.4, we have the following corollary.

COROLLARY 2.6. X is a T-space if and only if for any space A and any map $f: A \to X$, X is a T^f -space for a map $f: A \to X$.

DEFINITION 2.7. For a map $f : A \to X$, $P(\Sigma B; A, f, X) = \{\alpha \in [\Sigma B, X] | [f_{\#}(\beta), \alpha] = 0$ for any space C and any map $\beta \in [\Sigma C, A]\}$. A space X is called a GW^f -space for a map $f : A \to X$ if for any space B, $P(\Sigma B; A, f, X) = [\Sigma B, X]$.

PROPOSITION 2.8. $G(\Sigma B; A, f, X) \subset P(\Sigma B; A, f, X)$ for any space B.

Proof. Let $[h] \in G(\Sigma B; A, f, X)$. Then there is a map $H : A \times \Sigma B \to X$ such that $Hj \sim \nabla(f \lor h)$, where $j : A \lor \Sigma B \to A \times \Sigma B$ is the inclusion. Let C be a space and $\beta = [g] \in [\Sigma C, A]$. Then consider the map $F = H(g \times 1) : \Sigma C \times \Sigma B \xrightarrow{(g \times 1)} A \times \Sigma B \xrightarrow{H} X$. Then $Fj' \sim \nabla(fg \lor h)$, where $j' : \Sigma C \lor \Sigma B \to \Sigma C \times \Sigma B$ is the inclusion. Thus we have $[f_{\#}(\beta), [h]] = 0$ and $[h] \in P(\Sigma B; A, f, X)$.

COROLLARY 2.9. If X is a T^f -space for a map $f : A \to X$, then X is a GW^f -space for $f : A \to X$.

Consider the natural pairing $\mu : S^3/S^1 = S^2 \times S^3 \to S^3/S^1 = S^2$. Thus we know that the Hopf map $\eta : S^3 \to S^2$ is cyclic. Thus η is *e*-cyclic and *e* is η -cyclic, that is, S^2 is a T^{η} -space. Thus we know that S^2 is a GW^{η} -space for $\eta : S^3 \to S^2$. On the other hand, it is known [16] that *H*-spaces and *T*-spaces are equivalent in the category of spheres. Thus we know that S^2 is not a *T*-space. Moreover, it is known [14] that $\eta_{\#} : \pi_n(S^3) \to \pi_n(S^2), \ \eta_{\#}(\beta) = \eta \circ \beta$, is an isomorphism for $n \geq 3$. Thus we have the following example.

EXAMPLE 2.10.

- (1) S^2 is a T^{η} -space, but not T-space.
- (2) For any $x \in \pi_n(S^2)$, $\alpha \in \pi_k(S^2)$ $(n \ge 3, k \ge 1)$, $[x, \alpha] = 0$.

Let $f : A \to X$, $f' : A' \to X'$, $l : A \to A'$, $k : X \to X'$ be maps. Then a pair of maps $(k, l) : (X, A) \to (X', A')$ is called a map from f to f' if the following diagram is commutative;

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & X \\ l \downarrow & & k \downarrow \\ A' & \stackrel{f'}{\longrightarrow} & X'. \end{array}$$

It will be denoted by $(k, l) : f \to f'$.

Given maps $f: A \to X$, $f': A' \to X'$, let $(k, l): f \to f'$ be a map from f to f'. Let PX' and PA' be the spaces of paths in X' and A' which begin at * respectively. Let $\epsilon_{X'}: PX' \to X'$ and $\epsilon_{A'}: PA' \to A'$ be the fibrations given by evaluating a path at its end point. Let $p_k: E_k \to X$ be the fibration induced by $k: X \to X'$ from $\epsilon_{X'}$. Let $p_l: E_l \to A$ induced by $l: A \to A'$ from $\epsilon_{A'}$. Then there is a map $\bar{f}: E_l \to E_k$ such that the following diagram is commutative

$$E_{l} \xrightarrow{\bar{f}} E_{k}$$

$$p_{l} \downarrow \qquad p_{k} \downarrow$$

$$A \xrightarrow{f} X,$$

where $E_l = \{(a,\xi) \in A \times PA' | l(a) = \epsilon(\xi)\}$, $E_k = \{(x,\eta) \in X \times PX' | k(x) = \epsilon(\eta)\}$, $\overline{f}(a,\xi) = (f(a), f' \circ \xi)$, $p_k(x,\eta) = x$, $p_l(a,\xi) = a$.

DEFINITION 2.11. Let X be a T^f -space with T^f -structure $F : \Sigma \Omega X \times A \to X$. A map $(k, l) : f \to f'$ is called a T^f -primitive with respect to

F if there is an associate map $F': \Sigma \Omega X' \times A' \to X'$ of $e_{X'}$ -cyclic map f' such that the following diagram is homotopy commutative;

$$\begin{split} \Sigma \Omega X \times A & \stackrel{F}{\longrightarrow} & X \\ \Sigma \Omega k \times l \downarrow & k \downarrow \\ \Sigma \Omega X' \times A' & \stackrel{F'}{\longrightarrow} & X'. \end{split}$$

The following lemmas are standard.

LEMMA 2.12. A map $l: C \to X$ can be lifted to a map $C \to E_k$ if and only if $kl \sim *$.

LEMMA 2.13. [5] Given maps $g_i : A_i \to E_k$, i = 1, 2 and $g : A_1 \times A_2 \to E_k$ satisfying $p_k g|_{A_i} \sim p_k g_i$, i = 1, 2, then there is a map $h : A_1 \times A_2 \to E_k$ such that $p_k h = p_k g$ and $h|_{A_i} \sim g_i, i = 1, 2$.

THEOREM 2.14. If X is a T^f -space with T^f -structure $F : \Sigma \Omega X \times A \to X$ and $(k, l) : f \to f'$ is a T^f -primitive with respective to F, then there exists a $T^{\bar{f}}$ -structure $\bar{F} : \Sigma \Omega E_k \times E_l \to E_k$ on E_k such that the following diagram is homotopy commutative;

$$\begin{split} \Sigma \Omega E_k \times E_l & \xrightarrow{\bar{F}} & E_k \\ \Sigma \Omega p_k \times p_l & p_k \\ \Sigma \Omega X \times A & \xrightarrow{F} & X. \end{split}$$

Proof. Since $(k,l): f \to f'$ is a T^f -primitive with respect to F, there is a map $F': \Sigma \Omega X' \times A' \to X'$ such that $kF \sim F'(\Sigma \Omega k \times l): \Sigma \Omega X \times A \to X'$. Then $kF(\Sigma \Omega p_k \times p_l) \sim F'(\Sigma \Omega k \times l)(\Sigma \Omega p_k \times p_l) = F'(\Sigma \Omega (k \circ p_k) \times l \circ p_l) \sim F'(* \times *) \sim *: \Sigma \Omega E_k \times E_l \to X'$. From Lemma 2.12, there is a lifting $\tilde{F}: \Sigma \Omega E_k \times E_l \to E_k$ of $F(\Sigma \Omega p_k \times p_l): \Sigma \Omega E_k \times E_l \to X$, that is, $p_k \tilde{F} = F(\Sigma \Omega p_k \times p_l)$. Then $p_k \circ \tilde{F}|_{\Sigma \Omega E_k} \sim F|_{\Sigma \Omega X} \circ \Sigma \Omega p_k \sim p_k \circ e_{E_k}$ and $p_k \circ \tilde{F}|_{E_l} \sim F|_A \circ p_l \sim f \circ p_l = p_k \circ \bar{f}$. Thus we have, from Lemma 2.13, that there is a map $\bar{F}: \Sigma \Omega E_k \times E_l \to E_k$ such that $p_k \bar{F} = p_k \tilde{F} = F(\Sigma \Omega p_k \times p_l)$ and $\bar{F}|_{\Sigma \Omega E_k} \sim e_{E_k}$, $\bar{F}|_{E_l} \sim \bar{f}$. This proves the theorem. \Box

Taking $f = 1_X$, $f' = 1_{X'}$ and l = k, we can obtain the following corollary.

COROLLARY 2.15. Let X and X' be T-spaces with T^1 -structures E: $\Sigma\Omega X \times X \to X$ and $E' : \Sigma\Omega X' \times X' \to X'$ respectively. If $k : X \to X'$ is a map satisfying $kE \sim E'(\Sigma\Omega k \times 1) : \Sigma\Omega X \times X \to X'$, then there is an T^1 structure $\overline{E} : \Sigma\Omega E_k \times E_k \to E_k$ on E_k such that $p_k\overline{E} \sim E(\Sigma\Omega p_k \times p_k) :$ $\Sigma\Omega E_k \times E_k \to X$.

In 1951, Postnikov [13] introduced the notion of the Postnikov system as follows; A Postnikov system for X (or homotopy decomposition of X) $\{X_n, i_n, p_n\}$ consists of a sequence of spaces and maps satisfying (1) $i_n : X \to X_n$ induces an isomorphism $(i_n)_{\#} : \pi_i(X) \to \pi_i(X_n)$ for $i \leq n$. (2) $p_n : X_n \to X_{n-1}$ is a fibration with fiber $K(\pi_n(X), n)$. (3) $p_n i_n \sim i_{n+1}$. It is well known fact [11] that if X is a 1-connected space having a homotopy type of CW-complex, then there is a Postnikov system $\{X_n, i_n, p_n\}$ for X such that $p_{n+1} : X_{n+1} \to X_n$ is the fibration induced from the path space fibration over $K(\pi_{n+1}(X), n+2)$ by a map $k^{n+2} : X_n \to K(\pi_{n+1}(X), n+2)$.

THEOREM 2.16. Let A and X be spaces having the homotopy type of 1-connected countable CW-complexes, and $\{A_n, i'_n, p'_n\}$ and $\{X_n, i_n, p_n\}$ be Postnikov systems for A and X respectively. If X is a T^f -space with T^f -structure $F : \Sigma \Omega X \times A \to X$, then there exists a T^{f_n} -structure $F_n : \Sigma \Omega X_n \times A_n \to X_n$ for each stage X_n such that

$$\begin{split} \Sigma \Omega X_n \times A_n & \xrightarrow{F_n} X_n \\ \Sigma \Omega p_n \times p'_n \downarrow & p_n \downarrow \\ \Sigma \Omega X_{n-1} \times A_{n-1} & \xrightarrow{F_{n-1}} X_{n-1}, \end{split}$$

where f_n is an induced map from f, and all the pair of k-invariants $(k_X^{n+2}, k_A^{n+2}) : f_n \to \tilde{f}_{\#}$ are T^{f_n} -primitive with respect to F_n , where $\tilde{f}_{\#} : K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ is the induced map by $f : A \to X$.

Proof. Clearly $\{\Sigma\Omega X_n \times A_n, \Sigma\Omega i_n \times i'_n, \Sigma\Omega p_n \times p'_n\}$ is a Postnikov system for $\Sigma\Omega X \times A$. Then we have, by Kahn's result [7,Theorem 2.2], that there are families of maps $f_n : A_n \to X_n$ and $F_n : \Sigma\Omega X_n \times A_n \to X_n$ such that $p_n f_n = f_{n-1}p'_n$ and $i_n f \sim f_n i'_n$, and $p_n F_n =$ $F_{n-1}(\Sigma\Omega p_n \times p'_n)$ and $i_n F \sim F_n(\Sigma\Omega i_n \times i'_n)$ for $n = 2, 3, \cdots$ respectively, and $k_X^{n+2} f_n \sim \tilde{f}_{\#} k_A^{n+2} : A_n \to K(\pi_{n+1}(X), n+2)$ and $k_X^{n+2} F_n \sim$ $\tilde{F}_{\#}(k_{\Sigma\Omega X}^{n+2} \times k_A^{n+2}) : X_n \times A_n \to K(\pi_{n+1}(X), n+2)$, where $k_A^{n+2} :$ $A_n \to K(\pi_{n+1}(A), n+2), k_X^{n+2} : X_n \to K(\pi_{n+1}(X), n+2)$ and $k_{\Sigma\Omega X}^{n+2} :$ $\Sigma\Omega X_n \to K(\pi_{n+1}(\Sigma\Omega X), n+2)$ are k-invariants of A, X and $\Sigma\Omega X$ respectively, $\tilde{f}_{\#} : K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ and $\tilde{F}_{\#} :$ $K(\pi_{n+1}(\Sigma\Omega X), n+2) \times K(\pi_{n+1}(A), n+2) \approx K(\pi_{n+1}(\Sigma\Omega X \times A), n+2) \to K(\pi_{n+1}(X), n+2)$ are the induced maps by $f : A \to X$ and $F : X \times A \to X$ respectively. Since $F|_{\Sigma\Omega X} \sim e$ and $F_n|_{A_n} \sim f_n$, we know, from Kahn's another result [8, Theorem 1.2], that $F_n|_{\Sigma\Omega X_n}$

 $(F|_{\Sigma\Omega X})_n \sim e$ and $F_{n|A_n} = (F|_A)_n \sim f_n$. Thus there exists an T^{f_n} -structure $F_n : \Sigma\Omega X_n \times A_n \to X_n$ for each stage X_n such that

$$\begin{split} \Sigma \Omega X_n \times A_n & \xrightarrow{F_n} & X_n \\ \Sigma \Omega p_n \times p'_n \downarrow & p_n \downarrow \\ \Sigma \Omega X_{n-1} \times A_{n-1} & \xrightarrow{F_{n-1}} & X_{n-1}, \end{split}$$

where f_n is an induced map from f, and all the pair of k-invariants $(k_X^{n+2}, k_A^{n+2}) : f_n \to \tilde{f}_{\#}$ are T^{f_n} -primitive with respect to F_n , where $\tilde{f}_{\#} : K(\pi_{n+1}(A), n+2) \to K(\pi_{n+1}(X), n+2)$ is the induced map by $f : A \to X$.

In fact, the above theorem follows from Theorem 2.14 if we can show that all the pair of k-invariants $(k_X^{n+2}, k_A^{n+2}) : f_n \to \tilde{f}_{\#}$ are T^{f_n} -primitive with respect to F_n .

We can obtain an equivalent condition for E_k is a T^f -space for \bar{f} .

THEOREM 2.17. Let $(k, l) : f \to f'$ be a map. Then E_k is a T^f -space for $\overline{f} : E_l \to E_k$ if and only if there is a map $G : \Sigma \Omega E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \circ e \lor p_k \circ \overline{f})$ and $kG \sim *$, where $j : \Sigma \Omega E_k \lor E_l \to \Sigma \Omega E_k \times E_l$ is the inclusion.

Proof. Suppose that E_k is a T^f -space for $\overline{f} : E_l \to E_k$. Then there is a map $\overline{F} : \Sigma \Omega E_k \times E_l \to E_k$ such that $\overline{F}j' \sim \nabla(e \vee \overline{f})$. Let $G = p_k \overline{F} : \Sigma \Omega E_k \times E_l \to X$. Then $Gj \sim \nabla(p_k \circ e \vee p_k \circ \overline{f})$, where $j : \Sigma \Omega E_k \vee E_l \to \Sigma \Omega E_k \times E_l$ is the inclusion. Since G has a lifting \overline{F} , by Lemma 2.12, we know that $kG \sim *$. On the other hand, suppose there is a map $G : \Sigma \Omega E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \circ e \vee p_k \circ \overline{f})$ and $kG \sim *$, where $j : \Sigma \Omega E_k \vee E_l \to \Sigma \Omega E_k \times E_l$ is the inclusion. Since $kG \sim *$, there is a map $H : \Sigma \Omega E_k \times E_l \to E_k$ such that $p_k H \sim G$. For maps $e : \Sigma \Omega E_k \to E_k$ and $\overline{f} : E_l \to E_k$, we can easily know that $p_k H_{|\Sigma \Omega E_k} \sim p_k \circ e_{E_k}$ and $p_k H_{|E_l} \sim p_k \circ \overline{f}$. Thus we have, from Lemma 2.13, that there is a map $\overline{F} : \Sigma \Omega E_k \times E_l \to E_k$ such that $p_k \overline{F} = p_k H$ and $\overline{F}_{|\Sigma \Omega E_k} \sim e$ and $\overline{F}_{E_l} \sim \overline{f}$. Thus we know that E_k is a $T^{\overline{f}}$ -space for $\overline{f} : E_l \to E_k$.

Now we can obtain the converse of Theorem 2.14 under some conditions as follows;

THEOREM 2.18. Suppose that there are maps $s_k : X \to E_k$ and $s_l : A \to E_l$ such that $p_k s_k \sim 1_X$ and $p_l s_l \sim 1_A$. If there exists a $T^{\bar{f}}$ -structure $\bar{F} : \Sigma \Omega E_k \times E_l \to E_k$ on E_k such that the following diagram

is homotopy commutative;

$$\begin{split} \Sigma \Omega E_k \times E_l & \xrightarrow{\bar{F}} E_k \\ \Sigma \Omega p_k \times p_l & p_k \\ \Sigma \Omega X \times A & \xrightarrow{F} X, \end{split}$$

then X is a T^f -space with T^f -structure $F: \Sigma \Omega X \times A \to X$.

Proof. Since E_k is a $T^{\bar{f}}$ -space for $\bar{f}: E_l \to E_k$, there is a map $G: \Sigma\Omega E_k \times E_l \to X$ such that $Gj \sim \nabla(p_k \circ e \lor p_k \circ \bar{f})$ and $kG \sim *$, where $j: \Sigma\Omega E_k \lor E_l \to \Sigma\Omega E_k \times E_l$ is the inclusion. Consider the map $F = G(\Sigma\Omega s_k \times s_l): \Sigma\Omega X \times A \to X$. Then $Fj' \sim \nabla(e \lor f)$ and $kF(\Sigma\Omega p_k \times p_l) \sim *$, where $j': \Sigma\Omega X \lor A \to \Sigma\Omega X \times A$ is the inclusion. Thus we know that X is a T^f -space with T^f -structure $F: \Sigma\Omega X \times A \to X$.

3. Extending $co-T^g$ -structures

Let $g: X \to A$ be a map. A based map $f: X \to B$ is called *g*-coclic [12] if there is a map $\theta: X \to A \lor B$ such that the following diagram is homotopy commutative;

$$\begin{array}{cccc} X & \stackrel{\theta}{\longrightarrow} & A \lor B \\ \Delta & & j \\ X \times X & \stackrel{(g \times f)}{\longrightarrow} & A \times B, \end{array}$$

where $j : A \lor B \to A \times B$ is the inclusion and $\Delta : X \to X \times X$ is the diagonal map. We call such a map θ a *coassociated map* of a *g*-cocyclic map f.

In the case $g = 1_X : X \to X$, $f : X \to B$ is called *cocyclic* [15]. Clearly any cocyclic map is a g-cocyclic map and also $f : X \to B$ is g-cocyclic iff $g : X \to A$ is f-cocyclic. The dual Gottlieb set DG(X, g, A; B) for a map $g : X \to A$ is the set of all homotopy classes of g-cocyclic maps from X to B. In the case $g = 1_X : X \to X$, we called such a set DG(X, 1, X; B) as the dual Gottlieb set, denoted by DG(X; B), that is, the dual Gottlieb set is exactly same with the dual Gottlieb set for the identity map. In particular, $DG(X, g, A; K(\pi, n))$ will be denoted by $G^n(X, g, A; \pi)$. Haslam [5] introduced and studied the coevaluation subgroups $G^n(X; \pi)$ of $H^n(X; \pi)$. $G^n(X; \pi)$ is defined to be the set of all homotopy classes of cocyclic maps from X to $K(\pi, n)$.

In general, $DG(X; B) \subset DG(X, g, A; B) \subset [X, B]$ for any map $g : X \to B$ and any space B. However, there is an example in [18] such that $DG(X, B) \neq DG(X, g, A; B) \neq [X, B]$.

The next proposition is an immediate consequence from the definition.

Proposition 3.1.

(1) For any maps $g: X \to A, h: A \to B$ and any space $C, DG(X, g, A; C) \subset DG(X, hg, B; C).$

(2) $DG(X,B) = DG(X,1_X,X;B) \subset DG(X,g,A;B) \subset DG(X,*,A;B) = [X,B]$ for any spaces X, A and B.

(3) $DG(X,B) = \bigcap \{ DG(X,g,A;B) | g : X \to A \text{ is a map and } A \text{ is a space} \}.$

(4) If $h : A \to B$ is a homotopy equivalence, then DG(X, g, A; C) = DG(X, hg, B; c).

(5) For any map $k: Y \to X, k^{\#}(DG(X, g, A; B)) \subset DG(Y, gk, A; B).$

(6) For any map $k: Y \to X, k^{\#}(DG(X;B)) \subset DG(Y,k,X;B).$

(7) For any map $s: B \to C, s_{\#}(DG(X, g, A; B)) \subset DG(X, g, A; C).$

It is well known [5] that $G^n(X; \pi)$ is a subgroup of $H^n(X; \pi)$. Moreover, it is also shown [10] that if B is an H-group, then DG(X, B) is a subgroup of [X, B].

But we do not know whether DG(X, g, A; B) is a group.

A space X is called a *co-T-space* [16] if $e' : X \to \Omega \Sigma X$ is cocyclic. The following proposition says that co-*T*-spaces are completely characterized by the dual Gottlieb sets.

PROPOSITION 3.2. [16] X is a co-T-space if and only if $DG(X, \Omega B) = [X, \Omega B]$ for any space B.

Now, for a map $g: X \to A$, we would like to introduce new spaces which can be characterized by the dual Gottlieb sets for a map $g: X \to A$.

DEFINITION 3.3. A space X is called a $co-T^g$ -space for a map $g : X \to A$ if there is a map, a $co-T^g$ -structure, $\theta : X \to \Omega \Sigma X \lor A$ such that $j\theta \sim (e' \times g)\Delta$, where $j : \Omega \Sigma X \lor A \to \Omega \Sigma X \times A$ is the inclusion and $\Delta : X \to X \times X$ is the diagonal map.

The following proposition says that co- T^g -spaces are completely characterized by the dual Gottlieb sets for a map $g: X \to A$.

PROPOSITION 3.4. [18] X is a co- T^g -space for a map $g : X \to A$ if and only if $DG(X, g, A; \Omega B) = [X, \Omega B]$ for any space B.

It is clear, from Proposition 3.1(2) and the above propositions, that any co-*T*-space is a co- T^g -space for any map $g: X \to A$. It is known [18] that if X dominates A and X is a co-*T*-space, then A is a co-*T*-space. This fact can be generalized as follows;

COROLLARY 3.5. Let X be a co- T^r -space for a map $r: X \to A$. (1) If $r: X \to A$ has a right homotopy inverse $i: A \to X$, then A is a co-T-space.

(2) If $r: X \to A$ has a left homotopy inverse $i: A \to X$, then X is a co-T-space.

Proof. (1) Let B be any space. It is sufficient to show that $[A, \Omega B] \subset DG(A, \Omega B)$. Since X is a co- T^r -space for a map $r: X \to A$, we have that $DG(X, r, A; \Omega B) = [X; \Omega B]$. Thus we know, from Proposition 3.1(5), that $[A, \Omega B] = i^{\#}[X, \Omega B] = i^{\#}DG(X, r, A; \Omega B) \subset DG(A, ri, A; \Omega B) = DG(A, 1, A; \Omega B) = DG(A, \Omega B)$. (2) For any space B, we can obtain, from Proposition 3.4 and Proposition 3.1(1), that $[X, \Omega B] = DG(X, r, A; \Omega B) \subset DG(X, ir, X; \Omega B) = DG(X, 1, X; \Omega B) = DG(X, \Omega B)$. \Box

Given maps $g: X \to A$, $g': X' \to A'$, let $(s, r): g' \to g$ be a map from g' to g, that is, the following diagram is commutative;

$$\begin{array}{cccc} X' & \stackrel{g'}{\longrightarrow} & A' \\ r \downarrow & & s \downarrow \\ X & \stackrel{g}{\longrightarrow} & A. \end{array}$$

It is a well known fact that $Y \xrightarrow{\iota} cY \to \Sigma Y$ is a cofibration, where $\iota(y) = [y, 1]$. Let $i_r : X \to C_r$ be the cofibration induced by $r : X' \to X$ from $\iota_{X'} : X' \to cX'$. Let $i_s : A \to C_s$ be the cofibration induced by $s : A' \to A$ from $\iota_{A'} : A' \to cA'$. Then there is a map $\overline{g} : C_t \to C_s$ such that the following diagram is commutative

$$\begin{array}{ccc} X & \stackrel{g}{\longrightarrow} & A \\ i_r \downarrow & & i_s \downarrow \\ C_r & \stackrel{\bar{g}}{\longrightarrow} & C_s \end{array}$$

where $C_t = cX' \amalg X/[x', 1] \sim t(x')$, and $C_s = cA' \amalg A/[a', 1] \sim s(a')$, $\bar{g} : C_t \to C_s$ is given by $\bar{g}([x', t]) = [g'(x'), t]$ if $[x', t] \in cX'$ and $\bar{g}(x) = g(x)$ if $x \in X$, $i_r(x) = x$, $i_s(a) = a$.

DEFINITION 3.6. Let X be a co- T^g -space with co- T^g -structure θ : $X \to \Omega \Sigma X \lor A$. Then a map $(s, r) : g' \to g$ is called a co- T^g -primitive

with respect to $\theta : X \to \Omega \Sigma X \lor A$ if there is a coassociate map $\theta' : X' \to \Omega \Sigma X' \lor A'$ of e'-cocyclic map g' such that the following diagram is homotopy commutative;

$$\begin{array}{cccc} X' & \stackrel{\theta'}{\longrightarrow} & \Omega \Sigma X' \lor A' \\ r & & & \\ r & & & \\ & & & \\ X & \stackrel{\theta}{\longrightarrow} & \Omega \Sigma X \lor A. \end{array}$$

The following lemmas are standard.

LEMMA 3.7. Let $f: X \to B$ be a map. Then there is a map $h: C_r \to B$ such that $hi_r = f$ if and only if $fr \sim *$.

LEMMA 3.8. [17] Let $g_t : C_r \to B_t(t=1,2)$ and $g : C_r \to B_1 \lor B_2$ a map such that $p_t j g i_k \sim g_t i_r(t=1,2)$, where $j : B_1 \lor B_2 \to B_1 \times B_2$ is the inclusion and $p_t : B_1 \times B_2 \to B_t, t=1,2$ are projections. Then there is a map $h : C_r \to B_1 \lor B_2$ such that $g i_r = h i_r$ and $p_t j' h \sim g_t(t=1,2)$, where $j' : B_1 \lor B_2 \to B_1 \times B_2$ is the inclusion.

THEOREM 3.9. If X is a co- T^g -space with co- T^g -structure $\theta : X \to \Omega \Sigma X \vee A$ and $(s,r) : g' \to g$ is a co- T^g -primitive with respect to θ , then there exists a co- $T^{\bar{g}}$ -structure $\bar{\theta} : C_r \to \Omega \Sigma C_r \vee C_s$ on C_r satisfying commutative diagram

$$C_r \xrightarrow{\overline{\theta}} \Omega \Sigma C_r \vee C_s$$
$$i_r \uparrow \qquad \Omega \Sigma i_r \vee i_s \uparrow$$
$$X \xrightarrow{\theta} \Omega \Sigma X \vee A.$$

Proof. Since $(s, r) : g' \to g$ is a co- T^g -primitive with respect to θ , then there is a map $\theta' : X' \to \Omega \Sigma X' \lor A'$ satisfying commutative diagram

$$\begin{array}{ccc} X' & \stackrel{\theta'}{\longrightarrow} & \Omega \Sigma X' \lor A' \\ r & & & \Omega \Sigma r \lor s \\ X & \stackrel{\theta}{\longrightarrow} & \Omega \Sigma X \lor A. \end{array}$$

Then we have that $(\Omega\Sigma i_r \vee i_s)\theta r \sim (\Omega\Sigma i_r \vee i_s)(\Omega\Sigma r \vee s)\theta' \sim (\Omega\Sigma (i_r \circ r) \vee i_s \circ s)\theta \sim *$. Thus we know, from Lemma 3.7, that there is a map $\tilde{\theta}: C_r \to \Omega\Sigma C_r \vee C_s$ such that $\tilde{\theta}i_r = (\Omega\Sigma i_r \vee i_s)\theta$. Then $p_1j\tilde{\theta}i_r = p_1j(\Omega\Sigma i_r \vee i_s)\theta \sim p_1(\Omega\Sigma i_r \times i_s)(e' \times g)\Delta \sim e'_{C_r} \circ i_r$ and $p_2j\tilde{\theta}i_r \sim p_2(\Omega\Sigma i_r \times i_s)(e' \times g)\Delta \sim i_s \circ g = \bar{g} \circ i_r$. Thus we have, from Lemma 3.8, that there is a map $\bar{\theta}: C_r \to \Omega\Sigma C_r \vee C_s$ such that $\bar{\theta}i_r = \tilde{\theta}i_r = (\Omega\Sigma i_r \vee i_s)\theta$

and $p_1 j \bar{\theta} \sim e', \ p_2 j \bar{\theta} \sim \bar{g}$, where $j : \Omega \Sigma C_r \vee C_s \to \Omega \Sigma C_r \times C_s$ is the inclusion. \Box

Taking $g = 1_X$, $g' = 1_{X'}$ and s = r, we can get the following corollary.

COROLLARY 3.10. Let X and X' be co-T-spaces with co-T¹-structures $\theta: X \to \Omega \Sigma X \vee X$ and $\theta': X' \to \Omega \Sigma X' \vee X'$ respectively. If $r: X' \to X$ is a map satisfying $(\Omega \Sigma r \vee r)\theta' \sim \theta r: X' \to \Omega \Sigma X \vee X$, then there is a co-T¹-structure $\bar{\theta}: C_r \to \Omega \Sigma C_r \vee C_r$ on C_r such that $(\Omega \Sigma i_r \vee i_r)\theta \sim \bar{\theta}i_r: X \to \Omega \Sigma C_r \vee C_r$.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Postnikov system as follows; A homology decomposition of X consists of a sequence of spaces and maps $\{X_n, q_n, i_n\}$ satisfying (1) $q_n : X_n \to X$ induces an isomorphism $(q_n)_* : H_i(X_n) \to H_i(X)$ for $i \leq n$. (2) $i_n : X_n \to X_{n+1}$ is a cofibration with cofiber $M(H_{n+1}(X), n)$ (a Moore space of type $(H_{n+1}(X), n)$). (3) $q_n \sim q_{n+1} \circ i_n$. It is known by [6] that if X be a 1-connected space having the homotopy type of CW complex, then there is a homology decomposition $\{X_n, q_n, i_n\}$ of X such that $i_n : X_n \to X_{n+1}$ is the principal cofibration induced from $\iota : M(H_{n+1}(X), n) \to cM(H_{n+1}(X), n)$ by a map $r : M(H_{n+1}(X), n) \to X_n$ which is called the dual Postnikov invariants.

From Theorem 3.9, we have the following corollary.

COROLLARY 3.11. Let X and A be spaces having the homotopy type of 1-connected countable CW-complexes, and $\{X_n, q_n, i_n\}$ and $\{A_n, q'_n, i'_n\}$ be homology decompositions for X and A respectively. If X is a co- T^g -space with co- T^g -structure $\theta: X \to \Omega \Sigma X \lor A$ and for each $n \ge 2$, the pair of r daul invariants $(r^n_A, r^n_X) : \tilde{g}_* \to g_n$ are co- T^{g_n} -primitive with respect to $\theta_n: X_n \to \Omega \Sigma X_n \lor A_n$, where $\tilde{g}_*: M(H_{n+1}(X), n) \to M(H_{n+1}(A), n)$ and g_n are induced maps from $g: X \to A$, then there exists a co- $T^{g_{n+1}}$ -structure on X_{n+1} such that $(i'_{n+1}, i_{n+1}): g_n \to g_{n+1}$ is a co- $T^{g_{n+1}}$ -primitive with respect to $\theta_n: X_n \to X_n \lor A_n$.

References

- [1] J. Aguade, Decomposable free loop spaces, Canad. J. Math. 39 (1987), 938-955.
- B. Eckmann and P. Hilton, Decomposition homologique d'un polyedre simplement connexe, ibid, 248 (1959), 2054-2558.
- [3] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- [4] D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756.

- [5] H. B. Haslam, *G-spaces and H-spaces*, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- [6] P. Hilton, *Homotopy Theory and Duality*, Gordon and Breach Science Pub., 1965.
- [7] D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
- [8] D. W. Kahn, A note on H-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300-307.
- [9] K. L. Lim, On cyclic maps, J. Austral. Math. Soc., (Series A) 32 (1982), 349-357.
- [10] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [11] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, New York, 1968.
- [12] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856-868.
- [13] M. Postnikov, On the homotopy type of polyhedra, Dokl. Akad. Nauk. SSSR 76 (6)(1951), 789-791.
- [14] H. Toda, Composition Methods in Homotopy groupsa of Spheres, Princeton, New Jersey, Princeton Univ. Press, 1962.
- [15] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
- [16] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc., (Series A) **59** (1995), 193-203.
- [17] Y. S. Yoon, *Lifting Gottlieb sets and duality*, Proc. Amer. Math. Soc. **119** (4)(1993), 1315-1321.
- [18] Y. S. Yoon, The generalized dual Gottlieb sets, Topology Appl. 109 (2001),173-181.
- [19] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci.Math. Japon. 55(1)(2002),139-148.
- [20] Y. S. Yoon, H^f-spaces for maps and their duals, appear in J. Korea Soc. Math. Edu. Series B 14 (4).
- [21] Y. S. Yoon and J. O. Yu, v-semicyclic maps and fuction spaces, J. Chungcheong Math. Soc., 9 (1996), 77-87.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: yoon@hannam.ac.kr