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G′p-SPACES FOR MAPS AND HOMOLOGY

DECOMPOSITIONS

Yeon Soo Yoon*

Abstract. For a map p : X → A, we define and study a concept
of G′p-space for a map, which is a generalized one of a G′-space.
Any G′-space is a G′p-space, but the converse does not hold. In

fact, CP 2 is a G′δ-space, but not a G′-space. It is shown that X is
a G′p-space if and only if Gn(X, p,A) = Hn(X) for all n. We also
obtain some results about G′p-spaces and homology decompositions
for spaces. As a corollary, we can obtain a dual result of Haslam’s
result about G-spaces and Postnikov systems.

1. Introduction

The Gottlieb groups Gn(X) of a space X have been defined by Got-
tlieb in [3, 4]. A space X is called a G-space if Gn(X) = πn(X) for all
n. It is well known [4] that any H-space is a G-space, but the converse
does not hold. On the other hand, Haslam in [6] introduced the dual
Gottlieb groups Gn(X) of a space X and the concepts of G′-spaces. A
space X is called G′-space if Gn(X) = Hn(X) for all n. It is known
[6] that any co-H-space is a G′-space, but the converse does not hold.
Moreover, Haslam studied relationships between Postnikov systems and
G-spaces. In [6], He showed that if X is a G-space, then each Xn is
G-space and all the k invariants kn+2

X are G-primitive, and if Xn−1 is a

G-space and the k-invariants kn+1
X is G-primitive, then Xn is a G-space.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Post-
nikov system as follows; A homology decomposition of X consists of a
sequence of spaces and maps {Xn, qn, in} satisfying (1) qn : Xn → X in-
duces an isomorphism (qn)∗ : Hi(Xn)→ Hi(X) for i ≤ n, (2) in : Xn →
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Xn+1 is a cofibration with cofiber M(Hn+1(X), n)( a Moore space of
type (Hn+1(X), n)), and (3) qn ∼ qn+1 ◦ in. It is known by [7] that if X
is a 1-connected space having the homotopy type of CW complex, then
there is a homology decomposition {Xn, qn, in} of X such that in : Xn →
Xn+1 is the principal cofibration induced from ι : M(Hn+1(X), n) →
cM(Hn+1(X), n) by a map κ′n : M(Hn+1(X), n) → Xn which is called
the dual Postnikov invariants. A space X is called a rational space [14]
if X is a 1-connected space having homotopy type of a CW -complex
such that for each n > 0, Hn(X,Z) is a finite dimensional vector space
over Q. It is well known [14] that if X and A are rational spaces and
p : X → A is a based map, then there exist homology decompositions
{Xn, qn, in} and {An, q′n, i′n} for X and A respectively and induced maps
{pn : Xn → An} satisfying :

(1) for each n, the following diagram is homotopy commutative

M(Hn+1(X), n)
p̃∗−−−−→ M(Hn+1(A), n)

k′n(X)

y k′n(A)

y
Xn

pn−−−−→ An,

that is, (k′n(A), k′n(X)) : p̃# → pn is a map,
(2) pn+1 : Xn+1 → An+1 given by pn+1 = p̄n satisfying commute

diagram

Xn
pn−−−−→ An

in(=ιk′n(X))

y i′n(=ιk′n(A))

y
Xn+1

pn+1−−−−→ An+1,

(3) for each n, the following diagram is homotopy commutative

Xn
pn−−−−→ An

qn

y q′n

y
X

p−−−−→ A.

For a map p : X → A, the dual Gottlieb sets Gn(X, p,A) of a map
p : X → A, which are generalized of dual Gottlieb groups Gn(X), are
defined in [20]. In general, Gn(X) ⊂ Gn(X, p,A) ⊂ Hn(X) for any map
p : X → A.

In this paper, for a map p : X → A, we define and study a concept
of G′p-space for a map, which is a generalized one of a G′-space. Any

G′-space is a G′p-space, but the converse does not hold. In fact, CP 2



G′p-spaces for maps and homology decompositions 605

is a G′δ-space, but not a G′-space. It is shown that X is a G′p-space if
and only if Gn(X, p,A) = Hn(X) for all n. It is clear that any co-Hp-
space is a co-T p-space and any co-T p-space is a G′p-space. Moreover, we
show that X is a G′-space if and only if for any space A and any map
p : X → A, X is a G′p-space for a map p : X → A. We can obtain the
following results about G′p-spaces and homology decompositions which
are dual generalizations of the above Haslam’s results about G-spaces
and Postnikov systems. Let X and A be rational spaces and p : X → A
a map, and {Xn, qn, in} and {An, q′n, i′n} homology decompositions for
X and A respectively. (1) If X is a G′p-space for a map p : X → A, then
each Xn is G′pn-space and the all pairs of k′ invariants (k′n(A), k′n(X)) :
p̃∗ → pn are G′pn-primitive. (2) If Xn is a G′pn-space and the pair of k′-
invariants (k′n(A), k′n(X)) : p̃∗ → pn is G′pn-primitive, then Xn is a G′pn-
space. As a corollary, we can obtain a result for G′-spaces as follows.
Let X be rational space and {Xn, qn, in} homology decomposition for X.
(1) If X is a G′-space, then each Xn is G′-space and all the k′ invariants
k′n(X) are G′-primitive. (2) If Xn−1 is a G′-space and the k′-invariants
k′n(X) is G′-primitive, then Xn is a G′-space.

Throughout this paper, space means a space of the homotopy type of
connected locally finite CW complex. We assume also that spaces have
non-degenerate base points. All maps shall mean continuous functions.
All homotopies and maps are to respect base points. The base point as
well as the constant map will be denoted by *. For simplicity, we use
the same symbol for a map and its homotopy class. Also, we denote by
[X,Y ] the set of homotopy classes of pointed maps X → Y . The identity
map of space will be denoted by 1 when it is clear from the context. The
diagonal map ∆: X → X ×X is given by ∆(x) = (x, x) for each x ∈ X,
the folding map ∇ : X ∨X → X is given by ∇(x, ∗) = ∇(∗, x) = x for
each x ∈ X. ΣX denote the reduced suspension of X and ΩX denote
the based loop space of X. The adjoint functor from the group [ΣX,Y ]
to the group [X,ΩY ] will be denoted by τ. The symbols e and e′ denote
τ−1(1ΩX)and τ(1ΣX) respectively.

2. G′p-spaces for maps

Let p : X → A be a map. A based map f : X → B is called p-cocyclic
[13] if there is a map θ : X → A ∨B such that the following diagram is
homotopy commutative;
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X
θ−−−−→ A ∨B

∆

y j

y
X ×X (p×f)−−−−→ A×B,

where j : A ∨ B → A × B is the inclusion and ∆ : X → X ×X is the
diagonal map. We call such a map θ a coassociated map of a p-cocyclic
map f .

In the case p = 1X : X → X, f : X → B is called cocyclic
[16]. Clearly any cocyclic map is a p-cocyclic map and also f : X →
B is p-cocyclic iff p : X → A is f -cocyclic. The dual Gottlieb set
DG(X, p,A;B) for a map p : X → A [20] is the set of all homotopy
classes of p-cocyclic maps from X to B. In the case p = 1X : X → X,
we called such a set DG(X, 1, X;B) the dual Gottlieb set [16] denoted
DG(X;B), that is, the dual Gottlieb set is exactly same with the dual
Gottlieb set for the identity map. We denote DG(X, p,A;K(π, n)) by
Gn(X, p,A;π) andDG(X, p,A;K(Z, n)) byGn(X, p,A), DG(X;K(Z, n))
byGn(X). Haslam [6] introduced and studied the coevaluation subgroups
Gn(X;π) of Hn(X;π). Gn(X;π) is defined to be the set of all homo-
topy classes of cocyclic maps from X to K(π, n). A space X is called
[6] a G′-space if Gn(X) = Hn(X) for all n. The next proposition is an
immediate consequence from the definition.

Proposition 2.1. [22]

(1) For any maps g : X → A, h : A→ B and any space C, DG(X, g,A;
C) ⊂ DG(X,hg,B;C).

(2) DG(X,B) = DG(X, 1X , X; B) ⊂ DG(X, g,A;B) ⊂ DG(X, ∗, A;
B) = [X,B] for any spaces X,A and B.

(3) DG(X,B) = ∩{DG(X, g,A;B)|g : X → A is a map and A is a
space}.

(4) If h : A → B is a homotopy equivalence, then DG(X, g,A;C) =
DG(X,hg,B; c).

(5) For any map k : Y → X, k∗(DG(X, g,A;B)) ⊂ DG(Y, gk,A;B).
(6) For any map k : Y → X, k∗(DG(X;B)) ⊂ DG(Y, k,X;B).
(7) For any map s : B → C, s∗(DG(X, g,A;B)) ⊂ DG(X, g,A;C).

In general, DG(X;B) ⊂ DG(X, p,A;B) ⊂ [X,B] for any map p :
X → B and any space B. It is known [20] that for any n, Gn(Sn ×
Sn;Z) 6= Gn(Sn × Sn, p1, S

n;Z) 6= Hn(Sn × Sn;Z).
A based map g : X → A is called weakly cocyclic [18] if g∗(Hn(X)) ⊂

Gn(X) for all n. Any cocyclic map is an weakly cocyclic map, but the
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converse does not holds. It is known [6] that RP 2 is a G′-space, but
not co-H-space. Thus we know that the identity map 1RP 2 is an weakly
cocyclic map, but not cocyclic map.

Proposition 2.2. [18] X is a G′-space if and only if e′ : X → ΩΣX
is weakly cocyclic.

Definition 2.3. Let p : X → A be a based map. A based map
g : X → B is called an weakly p-cocyclic if g∗(Hn(B)) ⊂ Gn(X, p,A) for
all n.

The next proposition is an immediate consequence from the defini-
tion.

Proposition 2.4. (1) If g : X → B is an weakly cocyclic map
and θ : B → C is an arbitrary map, then θg : X → C is weakly
cocyclic.

(2) For a map p : X → A, any weakly cocyclic map g : X → B is
weakly p-cocyclic.

(3) For a map p : X → A, if g : X → B is an weakly p-cocyclic map
and θ : B → C is an arbitrary map, then θg : X → C is weakly
p-cocyclic.

The following proposition says that co-H-spaces are completely char-
acterized by the dual Gottlieb sets.

Proposition 2.5. [11] X is a co-H-space if and only if DG(X,B) =
[X,B] for any space B.

A space X is called [22] a co-Hp-space for a map p : X → A if there is
a map θ : X → X∨A such that jθ ∼ (1×p)∆, where j : X∨A→ X×A
is the inclusion and ∆ : X → X × X is the diagonal map, that is,
1X : X → X is p-cocyclic.

Proposition 2.6. [22] X is a co-Hp-space for a map p : X → A if
and only if DG(X, p,A;B) = [X,B] for any space B.

A space X is called a co-T -space [18] if e′ : X → ΩΣX is cocyclic. The
following proposition says that co-T -spaces are completely characterized
by the dual Gottlieb sets.

Proposition 2.7. [18] X is a co-T -space if and only if DG(X,ΩB) =
[X,ΩB] for any space B.

A space X is called [23] a co-T p-space for a map p : X → A if
there is a map θ : X → ΩΣX ∨ A such that jθ ∼ (e′ × p)∆, where
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j : ΩΣX ∨ A → ΩΣX × A is the inclusion and ∆ : X → X ×X is the
diagonal map, that is, e′ : X → ΩΣX is p-cocyclic.

Proposition 2.8. [23] X is a co-T p-space for a map p : X → A if
and only if DG(X, p,A; ΩB) = [X,ΩB] for any space B.

It is clear, from Proposition 2.1(2) and the above propositions, that
any co-T -space is a co-T p-space for any map p : X → A.

Definition 2.9. A space X is called a G′p-space for a map p : X → A
if e′ : X → ΩΣX is weakly p-cocyclic.

The following theorem says that a G′p-space can be characterized by
the dual Gottlieb sets for a map p : X → A.

Theorem 2.10. X is a G′p-space for a map p : X → A if and only if
Gn(X, p,A) = Hn(X) for all n.

Proof. Suppose that X is a G′p-space for a map p : X → A. Let

g : X → K(Z, n) = K(Z, n+1) be any map. Since g = Ωτ−1(g)e′ : X →
ΩK(Z, n+ 1) and e′ : X → ΩΣX is weakly p-cocyclic, g : X → K(Z, n)
is weakly p-cocyclic. On the other hand, suppose that Gn(X, p,A) =
Hn(X) for all n. Since 1X : X → X is weakly p-cocyclic, we know that
the map e′ = e′1X is weakly p-cocyclic and X is a G′p-space for a map
p : X → A.

Since Gn(X) = DG(X;K(Z, n)) ⊂ DG(X, p,A;K(Z, n)) = Gn(X, p,
A) ⊂ [X,K(Z, n)] = Hn(X), any G′-space is a G′p-space for any map
p : X → A.

Moreover, we can easily obtain, from the fact K(Z, n) ' ΩK(Z, n+1)
and Proposition 2.6 and Proposition 2.8, the following corollary.

Corollary 2.11. Any co-Hp-space is a co-T p-space and any co-T p-
space is a G′p-space.

Corollary 2.12. Let X be a G′r-space for a map r : X → A.

(1) If r : X → A has a right homotopy inverse i : A→ X, then A is a
G′-space.

(2) If r : X → A has a left homotopy inverse i : A → X, then X is a
G′-space.

Proof. (1) It is sufficient to show that Hn(A) = Gn(A) for all n.
Since X is a G′r-space, Hn(X) = Gn(X, r,A). Moreover, we know, from
the fact ri ∼ 1 : A→ A, that i∗ : Hn(X)→ Hn(A) is an epimorphism.
Thus we have, from Proposition 2.1(5), that Hn(A) = i∗(Hn(X)) =
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i∗(Gn(X, r,A)) ⊂ Gn(A, ri, A) = Gn(A) and A is a G′-space. (2) We
show that Hn(X) ⊂ Gn(X) for all n. We obtain, from Proposition
2.1(1), that Hn(X) = Gn(X, r,A) ⊂ Gn(X, ir,X) = Gn(X, 1, X) =
Gn(X). Thus we know that X is a G′-space.

From the above corollary, we know that if X dominates A and X is a
G′-space, then A is also a G′-space. Moreover, we can clearly obtain,
from Proposition 2.1(2),(3), the following corollary.

Corollary 2.13. X is a G′-space if and only if for any space A and
any map p : X → A, X is a G′p-space for a map p : X → A.

It is well known fact [20, Theorem 2.8] that p : X → A is a cocyclic
map if and only if DG(X, p,A;B) = [X,B] for any space B. It is also

known [7, Proposition 15.8] that for any cofibration sequence B
i→ E

q→
F

δ→ ΣB→· · · , δ : F → ΣB is cocyclic. Thus we have that for any cofi-

bration sequence B
i→ E

q→ F
δ→ ΣB→· · · ,

Gn(F, δ,ΣB;π) = Hn(F ;π) for all n. The cuplength, cup(X), [12] is
the length of the longest nontrivial product in the reduced cohomology
H̃∗(X). Let R be a ring. let Pn(X;R) = {α ∈ Hn(X;R)|β ∪ α = 0 for

all β ∈ H̃∗(X,R)}. Then it is known [6] that Gn(X;R) ⊂ Pn(X;R) for
all n and R. Now we have an example which is a G′p-space, but not a
G′-space.

Example 2.14. Consider the complex projective space CP 2. There

is a cofibration of the unitary groups U(2, 1)
i→ U(3)

q→ CP 2 [17]. From

the cofibration sequence U(2, 1)
i→ U(3)

q→ CP 2 δ→ ΣU(2, 1)→· · · , we
know that Gn(CP 2, δ,ΣU(2, 1)) = Hn(CP 2) for all n and CP 2 is a G′δ-
space. However, it is known [12] that cup(CP 2) = 2. Thus, from the
the above fact of that Gn(X) ⊂ Pn(X), we know that CP 2 is not a
G′-space.

3. G′p-spaces for maps and homology decompositions

Given maps p : X → A, p′ : X ′ → A′, let (s, r) : p′ → p be a map
from p′ to p, that is, the following diagram is commutative;

X ′
p′−−−−→ A′

r

y s

y
X

p−−−−→ A.
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It is a well known fact that Y
ι→ cY → ΣY is a cofibration, where

ι(y) = [y, 1]. Let ir : X → Cr be the cofibration induced by r : X ′ → X
from ιX′ : X ′ → cX ′. Let is : A → Cs be the cofibration induced by
s : A′ → A from ιA′ : A′ → cA′. Then there is a map p̄ : Ct → Cs such
that the following diagram is commutative

X
p−−−−→ A

ir

y is

y
Cr

p̄−−−−→ Cs,

where Cr = cX ′ qX/[x′, 1] ∼ r(x′), and Cs = cA′ qA/[a′, 1] ∼ s(a′), p̄ :
Cr → Cs is given by p̄([x′, t]) = [p′(x′), t] if [x′, t] ∈ cX ′ and p̄(x) = p(x)
if x ∈ X, ir(x) = x, is(a) = a.

Definition 3.1. Let X be a G′p-space for a map p : X → A. A map
(s, r) : p′ → p is called a G′p-primitive if for each map g : ΩΣX →
K(Z,m), m arbitrary, there is a map G : X → A ∨K(Z,m) such that
jG ∼ (p × g ◦ e′X)∆ and (is ∨ 1)Gr ∼ ∗ : X ′ → Cs ∨ K(Z,m), where
j : A ∨K(Z,m)→ A×K(Z,m) is the inclusion and e′X : X → ΩΣX is
the adjoint functor image, τ(1ΣX), of 1ΣX .

The following lemmas are standard.

Lemma 3.2. Let f : X → B be a map. Then there is a map h : Cr →
B such that hir = f if and only if fr ∼ ∗.

Lemma 3.3. [19] Let gt : Cr → Bt(t = 1, 2) and g : Cr → B1 ∨B2 be
maps such that ptjgir ∼ gtir(t = 1, 2), where j : B1 ∨ B2 → B1 × B2 is
the inclusion and pt : B1×B2 → Bt, t = 1, 2 are projections. Then there
is a map h : Cr → B1 ∨B2 such that gir = hir and ptj

′h ∼ gt(t = 1, 2).

Theorem 3.4. If X is a G′p-space for a map p : X → A and (s, r) :
p′ → p is G′p-primitive, then Cr is a G′p̄-space for a map p̄ : Cr → Cs.

Proof. It is sufficient to show that Hm(Cr) ⊂ Gm(Cr, p̄, Cs) for all
m. For each m, let f : Cr → K(Z,m) = ΩK(Z,m + 1) be any map.
Then clearly we have the following homotopy commutative diagram;

X
ir−−−−→ Cr

f−−−−→ ΩK(Z,m+ 1)

e′X

y e′Cr

y ∥∥∥
ΩΣX

ΩΣir−−−−→ ΩΣCr
Ωτ−1(f)−−−−−→ ΩK(Z,m+ 1).
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Since (s, r) : p′ → p is a G′p-primitive, for a map ΩΣir ◦ Ωτ−1(f) :
ΩΣX → K(Z,m), there is a map G : X → A∨K(Z,m) such that jG ∼
(p×ΩΣir◦Ωτ−1(f)◦e′X)∆ and (is∨1)Gr ∼ ∗ : X ′ → Cs∨K(Z,m), where
j : A ∨K(Z,m)→ A×K(Z,m) is the inclusion and e′X : X → ΩΣX is
the adjoint functor image, τ(1ΣX), of 1ΣX . From Lemma 3.2, there is
an extending G′ : Cr → Cs∨K(Z,m) of (is∨1)◦G : X → Cs∨K(Z,m),
that is, G′◦ir = (is∨1)◦G. Then we have that p1jG

′ir = p1j(is∨1)G =
p1(is× 1)jG ∼ p1(is× 1)(p×ΩΣir ◦Ωτ−1(f) ◦ e′)∆ = is ◦ p ∼ p̄ ◦ ir and
p2jG

′ir = p2j(is ∨ 1)G = p2(is× 1)jG ∼ p2(is× 1)(p×ΩΣir ◦Ωτ−1(f) ◦
e′)∆ ∼ ΩΣir◦Ωτ−1(f)◦e′X ∼ f◦ir. Thus we have, from Lemma 3.3, that
there is a map Ḡ : Cr → Cs ∨K(Z,m) such that Ḡir = G′ir = (is ∨ 1)G
and p1j

′Ḡ ∼ p̄ and p2j
′Ḡ ∼ f . Thus we know that f : Cr → K(Z,m) is

p̄-cocyclic and Cr is a G′p̄-space for a map p̄ : Cr → Cs.

In 1959, Eckmann and Hilton [2] introduced a dual concept of Post-
nikov system as follows; A homology decomposition of X consists of a
sequence of spaces and maps {Xn, qn, in} satisfying (1) qn : Xn → X in-
duces an isomorphism (qn)∗ : Hi(Xn)→ Hi(X) for i ≤ n, (2) in : Xn →
Xn+1 is a cofibration with cofiber M(Hn+1(X), n)( a Moore space of
type (Hn+1(X), n)), (3) qn ∼ qn+1 ◦ in. It is known by [7] that if X
be a 1-connected space having the homotopy type of CW complex, then
there is a homology decomposition {Xn, qn, in} of X such that in : Xn →
Xn+1 is the principal cofibration induced from ι : M(Hn+1(X), n) →
cM(Hn+1(X), n) by a map κ′n : M(Hn+1(X), n) → Xn which is called
the dual Postnikov invariants. A space X is called a rational space [14]
if X is a 1-connected space having homotopy type of a CW -complex
such that for each n > 0, Hn(X,Z) is a finite dimensional vector space
over Q. It is well known [14] that if X and A are rational spaces and
p : X → A is a based map, then there exist homology decompositions
{Xn, qn, in} and {An, q′n, i′n} for X and A respectively and induced maps
{pn : Xn → An} satisfying

(1) for each n, the following diagram is homotopy commutative

M(Hn+1(X), n)
p̃∗−−−−→ M(Hn+1(A), n)

k′n(X)

y k′n(A)

y
Xn

pn−−−−→ An,

that is, (k′n(A), k′n(X)) : p̃# → pn is a map,

(2) pn+1 : Xn+1 → An+1 given by pn+1 = p̄n satisfying commute
diagram
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Xn
pn−−−−→ An

in(=ιk′n(X))

y i′n(=ιk′n(A))

y
Xn+1

pn+1−−−−→ An+1,

(3) for each n, the following diagram is homotopy commutative

Xn
pn−−−−→ An

qn

y q′n

y
X

p−−−−→ A.

Theorem 3.5. Let X and A be rational spaces and p : X → A a
map, and {Xn, qn, in} and {An, q′n, i′n} homology decompositions for X
and A respectively.

(1) If X is a G′p-space for a map p : X → A, then each Xn is G′pn-
space and the all pair of k′ invariants (k′n(A), k′n(X)) : p̃∗ → pn
are G′pn-primitive.

(2) If Xn is a G′pn-space and the pair of k′-invariants (k′n(A), k′n(X)) :
p̃∗ → pn is G′pn-primitive, then Xn is a G′pn-space.

Proof. (1) Let f : Xn → K(Z,m) = ΩK(Z,m+1) be any map. Since
(qn)∗ : Hi(Xn) → Hi(X) for i ≤ n and Hi(Xn) = 0 for i > n, there is
a map f ′ : X → K(Z,m) such that f ′qn ∼ f . Since X is a G′p-space
for a map p : X → A, there is a map G : X → A ∨K(Z,m) such that
jG ∼ (p× f ′)∆, where j : A∨K(Z,m)→ A×K(Z,m) is the inclusion.
Let {Bn, q′′n, i′′n} be a homology decomposition for K(Z,m). Then {An∨
Bn, q

′
n∨ q′′n, i′n∨ i′′n} is a homology decomposition for A∨K(Z,m). Then

we have, by Toomer’s result [15,Theorem 4], that there are families of
maps pn : Xn → An and Gn : Xn → An ∨ Bn such that i′npn = pn+1in
and q′npn ∼ pqn, and (i′n∨i′′n)Gn = Gn+1in and (q′n∨q′′n)Gn ∼ Gqn for n =
2, 3, · · · respectively, and k′n(A)p̃∗ ∼ pnk

′
n(X) : M(Hn+1(X), n) → An

and (k′n(A)∨ k′n(K(Z,m))G̃∗ ∼ Gnk′n(X) : M(Hn+1(X), n)→ An ∨Bn,
where k′n(A) : M(Hn+1(A), n) → An, k′n(X) : M(Hn+1(X), n) → Xn

and k′n(K(Z,m)) : M(Hn+1(K(Z,m)), n) → Bn are k′-invariants of A,
X and K(Z,m) respectively, p̃∗ : M(Hn+1(X), n) → M(Hn+1(A), n)

and G̃∗ : M(Hn+1(X), n)→M(Hn+1(A∨K(Z,m)), n) ≈M(Hn+1(A⊕
Hn+1(K(Z,m)), n) ≈ M(Hn+1(A), n) ∨M(Hn+1(K(Z,m)), n) are the
induced maps by p : X → A and G : X → A ∨ K(Z,m) respectively.
Consider the composition G′ = (1 ∨ q′′n)Gn : Xn → An ∨K(Z,m). It is
clear that p1jG

′ = p1jGn ∼ pn and p2jG
′ = p2j(1 ∨ q′′n)Gn ∼ p2jGqn =
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f ′qn ∼ f . Thus [f ] ∈ Gm(Xn, pn, An) and Xn is a G′pn-space for a map
pn : Xn → An. Moreover, to show that (k′n(A), k′n(X)) : p̃∗ → pn is
G′pn-primitive, let g′′ : ΩΣXn → K(Z,m) be any map and m arbitrary.
Since g′′e′Xn : Xn → K(Z,m) ∈ Hm(Xn) is a map, by taking f =
g′′e′Xn from the above proof, we have a map G′ = (1 ∨ q′′n)Gn : Xn →
An ∨ K(Z,m) such that jG′ ∼ (pn × g′′e′Xn)∆ : Xn → An × K(Z,m),
where j : An ∨K(Z,m) → An ×K(Z,m) is the inclusion. Since (i′n ∨
1)G′ = (i′n ∨ 1)(1 ∨ q′′n)Gn = (i′n ∨ q′′n)Gn ∼ (1 ∨ q′′n+1)Gn+1in : Xn →
An+1 ∨K(Z,m), (i′n ∨ 1)G′ : Xn → An+1 ∨K(Z,m) has an extending
(1 ∨ q′′n+1)Gn+1 : Xn+1 → An+1 ∨ K(Z,m) and (i′n ∨ 1)G′k′n(X) ∼ ∗.
Thus (k′n(A), k′n(X)) : p̃∗ → pn are G′pn-primitive.

(2) It follows from Theorem 3.4.

Taking p = 1X , p
′ = 1X′ , s = r, we can obtain the following corollary

which is a dual result of Haslam’s results about G-spaces and Postnikov
systems [6].

Corollary 3.6. Let X be rational space and {Xn, qn, in} homology
decomposition for X.

(1) IfX is aG′-space, then eachXn isG′-space and all the k′ invariants
k′n(X) are G′-primitive.

(2) If Xn−1 is a G′-space and the k′-invariants k′n(X) is G′-primitive,
then Xn is a G′-space.
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