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GENERALIZED ISOMETRY IN NORMED SPACES

ABBAS ZIVARI-KAZEMPOUR

ABSTRACT. Let g: X — Y and f: Y — Z be two maps between real
normed linear spaces. Then f is called generalized isometry or g-isometry
if for each z,y € X,

lf(g(z)) — fFa)Il = llg(=) — g(W)|I-

In this paper, under special hypotheses, we prove that each generalized
isometry is affine. Some examples of generalized isometry are given as
well.

1. Introduction

A map f: X — Y between real normed linear spaces is an isometry if for

all z,y € X, |[f(z) = f(y)ll = |z — yl|, and [ is affine if

flz+ (1 =t)y) =tf(x)+ (1 -1)f(y)
for all z,y € X and t € [0,1]. This definition turns out to be equivalent to the
requirement that f is linear up to a translation, i.e., x — f(z) — f(0) is a
linear map [10].

An isometry need not be affine. For example, define f : R — R? by f(z) =
(x,sinz), where R? equipped with the usual normed linear space structure.
Then f is an isometry, but it is not affine (see also Example 2.9 below).

There are two basic results that every isometry is affine. The first result,
due to Mazur and Ulam [4], states that every bijective isometry f: X — Y
between real normed spaces is affine. For different proofs of the Mazur-Ulam
theorem, see [2,6,8].

The second result, due to Baker [1], states that every isometry f between
real normed spaces is linear up to translation, whenever Y is strictly convex.

Recall that the normed space X is strictly convezx if |tz + (1 — t)y|| < 1
whenever z and y are different points of Sx and 0 < ¢t < 1, where Sx is the
unit sphere of X.

There are some equivalent version of this definition [5], such as:

(a) The unit sphere Sx contains no line segments;
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(b) If z,y € Sx and = # y, then ||z + y| < 2;

(¢) I ||z + y|| = ||=|| + |ly|| and y # 0, then = = ty for some ¢ > 0.

For example, every inner product space and the spaces [P for 1 < p < co are
strictly convex, and on the contrary, none of the spaces I', [*°, ¢y and R™ for
n > 2 are not strictly convex. For more details, we refer the reader to [5].

A map f: X — Y between normed real linear spaces X and Y preserves
equality of distance, if

1) = F@l = 1f () = F0)]l

for every z,y,u,v € X satisfying ||z — y|| = ||lu — v||. Such maps were first
studied by Vogt [9], who extended the Mazur-Ulam theorem by proving that
every continuous surjective map which preserves equality of distance and takes
0 to 0, is a linear isometry multiplied by a nonzero constant.

A different kind of generalization of the Mazur-Ulam theorem was given by
Rassias and Semrl in [7]. They proved, under especial hypotheses that every
surjective mapping f : X — Y between real normed linear spaces is affine.

In [3], the authors introduce a new notation of isometry. The mapping
f: X — X is called a two-isometry if for all z,y € X,

1£2(@) = 27 = 201f () = F@I? + |z = yl* = 0.

They proved under certain conditions that every continuous two-isometry f is
affine. Note that every isometry is a two-isometry, but the converse is false, in
general [3].

Recently, in [10], the authors adapted the proof of the Mazur-Ulam theorem
for Fréchet algebra [10, Theorem 2.3].

In this paper, we study the notation of generalized isometry or g-isometry
and we prove the classical Mazur-Ulam theorem and Baker’s result for g-
isometry.

2. Main result

We first introduce the concept of generalized isometry (g-isometry) between
real normed linear spaces.

Definition 2.1. Let g : X — Y and f : g¢(X) C Y — Z be two maps
between real normed linear spaces. We say that f is a generalized isometry or
g-isometry if

(1) 1 (g(2)) = fFlg@)Il = llg(x) —gW)ll,  z,y € X.

Clearly, every isometry f : Y — Z is a g-isometry for arbitrary mapping
g : X — Y, but the converse is fails, in general. The following example
illustrates this fact.

Example 2.2. (i) Let f,g : R — R be defined by f(t) = |t|, g(s) = —s>.
Then f is a g-isometry, but neither f nor g is isometry.
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(ii) Let X be a normed space. Consider g : X — R? and f : R? — R? by

g9(@) = ([lz]l, =ll=l[) and f(s,t) = (s,]s])
for all z € X and s,t € R, where R? equipped with the norm

(s, D) = max{]s|, [¢[}.
Then for all z,y € X,

1£(g(z)) = fg)ll = llg(x) — g()|l-

Thus, f is a g-isometry, while f and g are not isometry.

However, if X =Y and g is the identity map, then it follows from (1) that
f X — Z is an isometry. Also, if the mapping g : X — Y is surjective,
then g(X) =Y and hence f : Y — Z turns into isometry.

Lemma 2.3 ([1, Lemma 2]). Let X be a real normed linear space which is
strictly conver and x,y € X. Then u = %(x + y) is the unique element of X
such that
2/|lz — ull = 2|y — ull = llz — yl|.

Theorem 2.4. Let g: X — Y and f: g(X) CY — Z be two maps such
that

(i) g is linear and continuous,

(ii) f is a g-isometry,

(iil) Z is strictly convez.
Then f is linear on g(X).

Proof. If f(0) # 0, then the mapping h : g(X) — Z defined by h(g(z)) :=
f(g(z)) — f(0) is a g-isometry and h(0) = 0. So, without loss of generality we
may assume that f(0) = 0. Since f is a g-isometry we get

201 (952 = Fla@@)ll = 2lg(* ) — g(@)] = lgtw) - 9(v)]|

Similarly,

201 (92 = Fla)l = llg(w) — (o))

for all z,y € X. Now it follows from Lemma 2.3 that
r+y 1
Fla(=57)) = 5(f(g(2)) + Flg(y))).
Let T : X — Z be defined by T'(x) = f(g(z)). Since g is continuous and f is
a g-isometry, f and hence T is continuous. As f(0) = ¢g(0) = 0, it follows from
Lemma 2.2 of [10] that T is linear. Consequently, f is linear on g(X). d

In Theorem 2.4, if X =Y and g : X — X is the identity map, then we
deduce the next result.

Corollary 2.5 ([1]). Suppose that f : X — Z is an isometry between real
normed linear spaces. If Z is strictly convez, then f is linear.
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The following example was constructed by Baker [1]. Hear we adopt it for
g-isometry with minor changes.

It shows that a g-isometry can be not only nonlinear but also homogeneous
of degree one. Moreover, it proves that the strict convexity of Z in Theorem
2.4 is essential.

Example 2.6. Let ¢ : R?> — R be defined by
y  ye[0a], or y€lz0]

d(z,y) =z z € [0,y], or x¢€[y,0],
0 otherwise.

Then

(i) ¢ is homogeneous, i.e., ¢(Ax, \y) = Ap(x,y) for all z,y, A € R,
(i) For every (x,v), (a,b) € R?,

[6(x,y) — éla,b)| < /(2 —a)? + (y — b)2.

(iii) ¢ is not linear.

Let X =Y = R? with the usual normed linear space structure, and let Z = R3
with the usual vector space structure. Then, Z with norm

12,9, 2)[| = max{v/z? +y?, |z]},

is a normed linear space. Define g : X — Y by g(x,y) = (y,2) and [ : Y —
Z via

f(@,y) = (z,y, 9(z,y))-
Then g is linear and it follows from (i), (ii) and (iii) that f is a homogeneous
g-isometry which is not linear.

r+y 1

Following [6], let
def(¢) = [6(=57) = 5(6(2) + eI,

denote the possible “affine defect” of ¢ : X — Y.
Next we prove the Mazur-Ulam theorem for g-isometry.

Theorem 2.7. Let g: X — Y and f: g(X) CY — Z be two maps such
that g is affine and f is a surjective g-isometry. Then f is affine on g(X).
Proof. Let x,y € X arbitrary and fixed. For T := f o g, we have
z+y 1 z+y

) 1@+ T - 7))

Tt I — gl = 3le) - 9tw)

def(T) < 2T

S0y 9@l + g lla( " !

Therefore 3|lg(z) — g(y)|| is uniform bound on the defect. Define h: Z — Z
by

1
= 5”9(

hz) =T(x)+T(y) - 2,
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and consider f; : g(X) — g(X) with f; :== f=' o ho f. Then
filg(@)) = f~ o ho fg(x)) = f~" o flg(y)) = 9(y),

and similarly, f1(g(y)) = g(z). Since f is surjective, for 21,29 € Z there exist
x,y € X such that f(g(x)) = 21 and f(g(y)) = 22. Then
)

21 = 22/l = 1 f(9(x)) = Fla@)l = lg(@) = gl = If " (21) = F (=2l

Thus, f~!: Z — g(X) is an isometry and hence

def(fr0.9) = Ifi 0 o("5Y) ~ 5(fr 0 9w) + i 0 ()]

T+y
2

=5 ono(TiY) - §<<>+g< Nl
= I (@) + Tw) - ) - (D)
= IT(@) + T(y) - 2112

= 2def(T).
Now by the same method as in the proof of [6], we get def(T") = 0. Hence

r+y 1
T 1Y) = S(T() +T()
for all z,y € X. Therefore, T is affine by Lemma 2.2 of [10]. As g is affine, we
conclude that f is affine on g(X). O

Corollary 2.8 ([4]). Every bijective isometry f : X — Z between real normed
linear spaces is affine.

Example 2.9. Let X = ¢y, the Banach space of all sequences of scalars that
converge to 0, with the norm ||z;||oc = sup{|z;| : j € N} and let f: X — X
be defined by

f(x) = f(x1,20,23,...) = (1,1 — |21], 22, 23, .. .)

for all x € X. Then for = (21,22, 23,...), ¥ = (Y1,¥2,¥3,...) in X we have

1 (@) = fW)lloo = 1f (21, 22,23, ..) = f(y1, 92,3, - )lloo
= [[(z1 —y1, [y1] = [z1], 22 — 2, .. ) [loo
= [[(z1 —y1, 22 — ¥2,.. )|l
=z = ylloo-

Thus, f is an isometry but it is not affine. Therefore the surjectivity of f
in preceding corollary is essential. Moreover, this example shows that the
assumption Z of being strictly convex in Corollary 2.5 can not be removed.

A mapping f: X — Y between two real normed linear spaces satisfies the
distance one preserving property (DOPP) if for all z,y € X with ||z —y|| =1
it follows that || f(z) — f(y)]| = 1.
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Theorem 2.10. Let g: X — Y and f: g(X) CY — Z be two maps such
that

(i) g is linear and dim X > 1.
(ii) for allz,y € X,

1F(g(2)) = Flg@Il < llg(x) = g(w)]-
(iii) f satisfies the (DOPP) on g(X).
Then f is a g-isometry.

Proof. Let x,y € X with ||g(y) — g(x)|| < 1. This is possible, because let
a,b € X with a #0b. Take o = ||g(a)|| and 8 = ||g(b)||. Since g is linear, there
exist 2,y € X such that g(z) = ;-g(a) and g(y) = ﬁg(b). So

lo(y) ~ 9@ < o)l + o) < 3 + 7 <1

Suppose that

(2) 1£(g(x)) = flg)Il <llg(x) —g(y)l-

Since g is linear, we have

1

9@ @ — g

Thus, there exists z € X such that

(9(y) — g(z)) € g(X).

1
9(2) = g(z) + 9@ =@l

Hence
lg(z) —g(@)ll =1,  llg(z) =gl =1—llg(y) — g(@)|.
From (iii) we get
L= f(g(2)) = flg@)l < 1f(g(2)) = fFlgDIl + 11 (9(y)) — f(g(@))]l

<llg(z) =gl + llg(y) — g(2)]l
=1—1lg(y) —g@) + llg(y) — g(=)]| =1,

which is not possible. Therefore the equality in (2) holds, i.e.,

1f(g(@)) = Fla@W)ll = llg(x) —gW)ll, ¥ € X,
and hence f is a g-isometry. O

Example 2.11. Let f,g : R?> — R? be defined by g(z,y) = (y,7) and
f(z,y) = (x,|x]). Then for all a,b,x,y € R,

1f(g(z,y)) — f(g(a, b)) = [I(y, ly]) — (b, [b])]|
= max{|y — b|, [y| — |b|}
=y —b|
<llg(z,y) — g(a,b)|.
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Consequently, the conditions (i) and (ii) of above theorem are fulfilled. How-
ever, f is not g-isometry, because the condition (iii) is false, in general.

Let f: X — X be an f-isometry, i.e., for all z,y € X,
1£2(x) = W)l = 1 f () = f)l.

Then, f need not be isometry or affine. Of course, f is an isometry whenever
it is surjective and hence in this case f is affine by Corollary 2.8.

Proposition 2.12. Suppose that f : X — X is an f-isometry. If f is
continuous with dense range, then f is an isometry.

Proof. For z,y € X, there exist sequences (), (y,) in X such that f(z,) —
z and f(yn) — y. Now it follows from the continuity of norm that

1f (@) = f )| — Nz = yll.

On the other hand, by the continuity of f, f?(z,) and f?(y,) tends to f(z)
and f(y), respectively. Hence

1£2(@n) = f2 ()l — [1£(z) = F»)I.
Since f is an f-isometry, we get || f(z) — f(y)|| = ||z —y|| for all z,y € X. O

The continuity and the condition that f has a dense range in above result
are essential as is shown the following example.

Example 2.13. (i) Define f : R — R by f(t) = |t|. Then f is an f-isometry
and it is continuous, but the range of f is not dense in R. However, f is not

isometry.
(ii) Let f: R — R be defined by

) x € Q,
f(x)—{o Py

Then f is an f-isometry and its range is dense in R, but it is false to be
continuous. However, f is not isometry.

Is f: X — X affine with the same hypotheses of Proposition 2.127 More
generally, the following question can be raised.

Question 2.14. Is every dense range isometry f : X — Y between real
normed linear spaces affine?
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