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GENERALIZED ISOMETRY IN NORMED SPACES

Abbas Zivari-Kazempour

Abstract. Let g : X −→ Y and f : Y −→ Z be two maps between real

normed linear spaces. Then f is called generalized isometry or g-isometry

if for each x, y ∈ X,

‖f(g(x))− f(g(y))‖ = ‖g(x)− g(y)‖.
In this paper, under special hypotheses, we prove that each generalized
isometry is affine. Some examples of generalized isometry are given as

well.

1. Introduction

A map f : X −→ Y between real normed linear spaces is an isometry if for
all x, y ∈ X, ‖f(x)− f(y)‖ = ‖x− y‖, and f is affine if

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for all x, y ∈ X and t ∈ [0, 1]. This definition turns out to be equivalent to the
requirement that f is linear up to a translation, i.e., x −→ f(x) − f(0) is a
linear map [10].

An isometry need not be affine. For example, define f : R −→ R2 by f(x) =
(x, sinx), where R2 equipped with the usual normed linear space structure.
Then f is an isometry, but it is not affine (see also Example 2.9 below).

There are two basic results that every isometry is affine. The first result,
due to Mazur and Ulam [4], states that every bijective isometry f : X −→ Y
between real normed spaces is affine. For different proofs of the Mazur-Ulam
theorem, see [2, 6, 8].

The second result, due to Baker [1], states that every isometry f between
real normed spaces is linear up to translation, whenever Y is strictly convex.

Recall that the normed space X is strictly convex if ‖tx + (1 − t)y‖ < 1
whenever x and y are different points of SX and 0 < t < 1, where SX is the
unit sphere of X.

There are some equivalent version of this definition [5], such as:
(a) The unit sphere SX contains no line segments;
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(b) If x, y ∈ SX and x 6= y, then ‖x+ y‖ < 2;
(c) If ‖x+ y‖ = ‖x‖+ ‖y‖ and y 6= 0, then x = ty for some t ≥ 0.
For example, every inner product space and the spaces lp for 1 < p <∞ are

strictly convex, and on the contrary, none of the spaces l1, l∞, c0 and Rn for
n ≥ 2 are not strictly convex. For more details, we refer the reader to [5].

A map f : X −→ Y between normed real linear spaces X and Y preserves
equality of distance, if

‖f(x)− f(y)‖ = ‖f(u)− f(v)‖

for every x, y, u, v ∈ X satisfying ‖x − y‖ = ‖u − v‖. Such maps were first
studied by Vogt [9], who extended the Mazur-Ulam theorem by proving that
every continuous surjective map which preserves equality of distance and takes
0 to 0, is a linear isometry multiplied by a nonzero constant.

A different kind of generalization of the Mazur-Ulam theorem was given by
Rassias and Semrl in [7]. They proved, under especial hypotheses that every
surjective mapping f : X −→ Y between real normed linear spaces is affine.

In [3], the authors introduce a new notation of isometry. The mapping
f : X −→ X is called a two-isometry if for all x, y ∈ X,

‖f2(x)− f2(y)‖2 − 2‖f(x)− f(y)‖2 + ‖x− y‖2 = 0.

They proved under certain conditions that every continuous two-isometry f is
affine. Note that every isometry is a two-isometry, but the converse is false, in
general [3].

Recently, in [10], the authors adapted the proof of the Mazur-Ulam theorem
for Fréchet algebra [10, Theorem 2.3].

In this paper, we study the notation of generalized isometry or g-isometry
and we prove the classical Mazur-Ulam theorem and Baker’s result for g-
isometry.

2. Main result

We first introduce the concept of generalized isometry (g-isometry) between
real normed linear spaces.

Definition 2.1. Let g : X −→ Y and f : g(X) ⊆ Y −→ Z be two maps
between real normed linear spaces. We say that f is a generalized isometry or
g-isometry if

(1) ‖f(g(x))− f(g(y))‖ = ‖g(x)− g(y)‖, x, y ∈ X.

Clearly, every isometry f : Y −→ Z is a g-isometry for arbitrary mapping
g : X −→ Y , but the converse is fails, in general. The following example
illustrates this fact.

Example 2.2. (i) Let f, g : R −→ R be defined by f(t) = |t|, g(s) = −s2.
Then f is a g-isometry, but neither f nor g is isometry.
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(ii) Let X be a normed space. Consider g : X −→ R2 and f : R2 −→ R2 by

g(x) = (‖x‖,−‖x‖) and f(s, t) = (s, |s|)
for all x ∈ X and s, t ∈ R, where R2 equipped with the norm

‖(s, t)‖ = max{|s|, |t|}.
Then for all x, y ∈ X,

‖f(g(x))− f(g(y))‖ = ‖g(x)− g(y)‖.
Thus, f is a g-isometry, while f and g are not isometry.

However, if X = Y and g is the identity map, then it follows from (1) that
f : X −→ Z is an isometry. Also, if the mapping g : X −→ Y is surjective,
then g(X) = Y and hence f : Y −→ Z turns into isometry.

Lemma 2.3 ([1, Lemma 2]). Let X be a real normed linear space which is
strictly convex and x, y ∈ X. Then u = 1

2 (x + y) is the unique element of X
such that

2‖x− u‖ = 2‖y − u‖ = ‖x− y‖.

Theorem 2.4. Let g : X −→ Y and f : g(X) ⊆ Y −→ Z be two maps such
that

(i) g is linear and continuous,
(ii) f is a g-isometry,
(iii) Z is strictly convex.

Then f is linear on g(X).

Proof. If f(0) 6= 0, then the mapping h : g(X) −→ Z defined by h(g(x)) :=
f(g(x))− f(0) is a g-isometry and h(0) = 0. So, without loss of generality we
may assume that f(0) = 0. Since f is a g-isometry we get

2‖f(g(
x+ y

2
))− f(g(x))‖ = 2‖g(

x+ y

2
)− g(x)‖ = ‖g(x)− g(y)‖.

Similarly,

2‖f(g(
x+ y

2
))− f(g(y))‖ = ‖g(x)− g(y)‖

for all x, y ∈ X. Now it follows from Lemma 2.3 that

f(g(
x+ y

2
)) =

1

2
(f(g(x)) + f(g(y))).

Let T : X −→ Z be defined by T (x) = f(g(x)). Since g is continuous and f is
a g-isometry, f and hence T is continuous. As f(0) = g(0) = 0, it follows from
Lemma 2.2 of [10] that T is linear. Consequently, f is linear on g(X). �

In Theorem 2.4, if X = Y and g : X −→ X is the identity map, then we
deduce the next result.

Corollary 2.5 ([1]). Suppose that f : X −→ Z is an isometry between real
normed linear spaces. If Z is strictly convex, then f is linear.
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The following example was constructed by Baker [1]. Hear we adopt it for
g-isometry with minor changes.

It shows that a g-isometry can be not only nonlinear but also homogeneous
of degree one. Moreover, it proves that the strict convexity of Z in Theorem
2.4 is essential.

Example 2.6. Let φ : R2 −→ R be defined by

φ(x, y) =


y y ∈ [0, x], or y ∈ [x, 0],

x x ∈ [0, y], or x ∈ [y, 0],

0 otherwise.

Then

(i) φ is homogeneous, i.e., φ(λx, λy) = λφ(x, y) for all x, y, λ ∈ R,
(ii) For every (x, y), (a, b) ∈ R2,

|φ(x, y)− φ(a, b)| ≤
√

(x− a)2 + (y − b)2.
(iii) φ is not linear.

Let X = Y = R2 with the usual normed linear space structure, and let Z = R3

with the usual vector space structure. Then, Z with norm

‖(x, y, z)‖ = max{
√
x2 + y2, |z|},

is a normed linear space. Define g : X −→ Y by g(x, y) = (y, x) and f : Y −→
Z via

f(x, y) = (x, y, φ(x, y)).

Then g is linear and it follows from (i), (ii) and (iii) that f is a homogeneous
g-isometry which is not linear.

Following [6], let

def(φ) = ‖φ(
x+ y

2
)− 1

2
(φ(x) + φ(y))‖,

denote the possible “affine defect” of φ : X −→ Y .
Next we prove the Mazur-Ulam theorem for g-isometry.

Theorem 2.7. Let g : X −→ Y and f : g(X) ⊆ Y −→ Z be two maps such
that g is affine and f is a surjective g-isometry. Then f is affine on g(X).

Proof. Let x, y ∈ X arbitrary and fixed. For T := f ◦ g, we have

def(T ) ≤ 1

2
‖T (

x+ y

2
)− T (x)‖+

1

2
‖T (

x+ y

2
)− T (y)‖

=
1

2
‖g(

x+ y

2
)− g(x)‖+

1

2
‖g(

x+ y

2
)− g(y)‖ =

1

2
‖g(x)− g(y)‖.

Therefore 1
2‖g(x)− g(y)‖ is uniform bound on the defect. Define h : Z −→ Z

by

h(z) = T (x) + T (y)− z,
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and consider f1 : g(X) −→ g(X) with f1 := f−1 ◦ h ◦ f . Then

f1(g(x)) = f−1 ◦ h ◦ f(g(x)) = f−1 ◦ f(g(y)) = g(y),

and similarly, f1(g(y)) = g(x). Since f is surjective, for z1, z2 ∈ Z there exist
x, y ∈ X such that f(g(x)) = z1 and f(g(y)) = z2. Then

‖z1 − z2‖ = ‖f(g(x))− f(g(y))‖ = ‖g(x)− g(y)‖ = ‖f−1(z1)− f−1(z2)‖.
Thus, f−1 : Z −→ g(X) is an isometry and hence

def(f1 ◦ g) = ‖f1 ◦ g(
x+ y

2
)− 1

2
(f1 ◦ g(y) + f1 ◦ g(x))‖

= ‖f−1 ◦ h ◦ T (
x+ y

2
)− 1

2
(g(x) + g(y))‖

= ‖f−1
(
T (x) + T (y)− T (

x+ y

2
)
)
− f−1

(
T (
x+ y

2
))‖

= ‖T (x) + T (y)− 2T (
x+ y

2
)‖

= 2def(T ).

Now by the same method as in the proof of [6], we get def(T ) = 0. Hence

T (
x+ y

2
) =

1

2
(T (x) + T (y))

for all x, y ∈ X. Therefore, T is affine by Lemma 2.2 of [10]. As g is affine, we
conclude that f is affine on g(X). �

Corollary 2.8 ([4]). Every bijective isometry f : X −→ Z between real normed
linear spaces is affine.

Example 2.9. Let X = c0, the Banach space of all sequences of scalars that
converge to 0, with the norm ‖xj‖∞ = sup{|xj | : j ∈ N} and let f : X −→ X
be defined by

f(x) = f(x1, x2, x3, . . .) = (x1, 1− |x1|, x2, x3, . . .)
for all x ∈ X. Then for x = (x1, x2, x3, . . .), y = (y1, y2, y3, . . .) in X we have

‖f(x)− f(y)‖∞ = ‖f(x1, x2, x3, . . .)− f(y1, y2, y3, . . .)‖∞
= ‖(x1 − y1, |y1| − |x1|, x2 − y2, . . .)‖∞
= ‖(x1 − y1, x2 − y2, . . .)‖∞
= ‖x− y‖∞.

Thus, f is an isometry but it is not affine. Therefore the surjectivity of f
in preceding corollary is essential. Moreover, this example shows that the
assumption Z of being strictly convex in Corollary 2.5 can not be removed.

A mapping f : X −→ Y between two real normed linear spaces satisfies the
distance one preserving property (DOPP ) if for all x, y ∈ X with ‖x− y‖ = 1
it follows that ‖f(x)− f(y)‖ = 1.
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Theorem 2.10. Let g : X −→ Y and f : g(X) ⊆ Y −→ Z be two maps such
that

(i) g is linear and dimX ≥ 1.
(ii) for all x, y ∈ X,

‖f(g(x))− f(g(y))‖ ≤ ‖g(x)− g(y)‖.
(iii) f satisfies the (DOPP ) on g(X).

Then f is a g-isometry.

Proof. Let x, y ∈ X with ‖g(y) − g(x)‖ < 1. This is possible, because let
a, b ∈ X with a 6= b. Take α = ‖g(a)‖ and β = ‖g(b)‖. Since g is linear, there
exist x, y ∈ X such that g(x) = 1

4αg(a) and g(y) = 1
4β g(b). So

‖g(y)− g(x)‖ ≤ ‖g(y)‖+ ‖g(x)‖ ≤ 1

4
+

1

4
< 1.

Suppose that

(2) ‖f(g(x))− f(g(y))‖ < ‖g(x)− g(y)‖.
Since g is linear, we have

g(x) +
1

‖g(x)− g(y)‖
(g(y)− g(x)) ∈ g(X).

Thus, there exists z ∈ X such that

g(z) = g(x) +
1

‖g(x)− g(y)‖
(g(y)− g(x)).

Hence

‖g(z)− g(x)‖ = 1, ‖g(z)− g(y)‖ = 1− ‖g(y)− g(x)‖.
From (iii) we get

1 = ‖f(g(z))− f(g(x))‖ ≤ ‖f(g(z))− f(g(y))‖+ ‖f(g(y))− f(g(x))‖
< ‖g(z)− g(y)‖+ ‖g(y)− g(x)‖
= 1− ‖g(y)− g(x)‖+ ‖g(y)− g(x)‖ = 1,

which is not possible. Therefore the equality in (2) holds, i.e.,

‖f(g(x))− f(g(y))‖ = ‖g(x)− g(y)‖, x, y ∈ X,
and hence f is a g-isometry. �

Example 2.11. Let f, g : R2 −→ R2 be defined by g(x, y) = (y, x) and
f(x, y) = (x, |x|). Then for all a, b, x, y ∈ R,

‖f(g(x, y))− f(g(a, b))‖ = ‖(y, |y|)− (b, |b|)‖
= max{|y − b|, |y| − |b|}
= |y − b|
≤ ‖g(x, y)− g(a, b)‖.
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Consequently, the conditions (i) and (ii) of above theorem are fulfilled. How-
ever, f is not g-isometry, because the condition (iii) is false, in general.

Let f : X −→ X be an f -isometry, i.e., for all x, y ∈ X,

‖f2(x)− f2(y)‖ = ‖f(x)− f(y)‖.

Then, f need not be isometry or affine. Of course, f is an isometry whenever
it is surjective and hence in this case f is affine by Corollary 2.8.

Proposition 2.12. Suppose that f : X −→ X is an f -isometry. If f is
continuous with dense range, then f is an isometry.

Proof. For x, y ∈ X, there exist sequences (xn), (yn) in X such that f(xn) −→
x and f(yn) −→ y. Now it follows from the continuity of norm that

‖f(xn)− f(yn)‖ −→ ‖x− y‖.

On the other hand, by the continuity of f , f2(xn) and f2(yn) tends to f(x)
and f(y), respectively. Hence

‖f2(xn)− f2(yn)‖ −→ ‖f(x)− f(y)‖.

Since f is an f -isometry, we get ‖f(x)− f(y)‖ = ‖x− y‖ for all x, y ∈ X. �

The continuity and the condition that f has a dense range in above result
are essential as is shown the following example.

Example 2.13. (i) Define f : R −→ R by f(t) = |t|. Then f is an f -isometry
and it is continuous, but the range of f is not dense in R. However, f is not
isometry.

(ii) Let f : R −→ R be defined by

f(x) =

{
x x ∈ Q,
0 x /∈ Q.

Then f is an f -isometry and its range is dense in R, but it is false to be
continuous. However, f is not isometry.

Is f : X −→ X affine with the same hypotheses of Proposition 2.12? More
generally, the following question can be raised.

Question 2.14. Is every dense range isometry f : X −→ Y between real
normed linear spaces affine?
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