GENERALIZED ISOMETRY IN NORMED SPACES

Abbas Zivari-Kazempour

Abstract

Let $g: X \longrightarrow Y$ and $f: Y \longrightarrow Z$ be two maps between real normed linear spaces. Then f is called generalized isometry or g-isometry if for each $x, y \in X$,

$$
\|f(g(x))-f(g(y))\|=\|g(x)-g(y)\|
$$

In this paper, under special hypotheses, we prove that each generalized isometry is affine. Some examples of generalized isometry are given as well.

1. Introduction

A map $f: X \longrightarrow Y$ between real normed linear spaces is an isometry if for all $x, y \in X,\|f(x)-f(y)\|=\|x-y\|$, and f is affine if

$$
f(t x+(1-t) y)=t f(x)+(1-t) f(y)
$$

for all $x, y \in X$ and $t \in[0,1]$. This definition turns out to be equivalent to the requirement that f is linear up to a translation, i.e., $x \longrightarrow f(x)-f(0)$ is a linear map [10].

An isometry need not be affine. For example, define $f: \mathbb{R} \longrightarrow \mathbb{R}^{2}$ by $f(x)=$ $(x, \sin x)$, where \mathbb{R}^{2} equipped with the usual normed linear space structure. Then f is an isometry, but it is not affine (see also Example 2.9 below).

There are two basic results that every isometry is affine. The first result, due to Mazur and Ulam [4], states that every bijective isometry $f: X \longrightarrow Y$ between real normed spaces is affine. For different proofs of the Mazur-Ulam theorem, see $[2,6,8]$.

The second result, due to Baker [1], states that every isometry f between real normed spaces is linear up to translation, whenever Y is strictly convex.

Recall that the normed space X is strictly convex if $\|t x+(1-t) y\|<1$ whenever x and y are different points of S_{X} and $0<t<1$, where S_{X} is the unit sphere of X.

There are some equivalent version of this definition [5], such as:
(a) The unit sphere S_{X} contains no line segments;

Received November 28, 2020; Accepted February 16, 2021.
2010 Mathematics Subject Classification. Primary 46H40, 47A10.
Key words and phrases. Isometry, Mazur-Ulam theorem, strictly convex, affine map.
(b) If $x, y \in S_{X}$ and $x \neq y$, then $\|x+y\|<2$;
(c) If $\|x+y\|=\|x\|+\|y\|$ and $y \neq 0$, then $x=t y$ for some $t \geq 0$.

For example, every inner product space and the spaces l^{p} for $1<p<\infty$ are strictly convex, and on the contrary, none of the spaces l^{1}, l^{∞}, c_{0} and \mathbb{R}^{n} for $n \geq 2$ are not strictly convex. For more details, we refer the reader to [5].

A map $f: X \longrightarrow Y$ between normed real linear spaces X and Y preserves equality of distance, if

$$
\|f(x)-f(y)\|=\|f(u)-f(v)\|
$$

for every $x, y, u, v \in X$ satisfying $\|x-y\|=\|u-v\|$. Such maps were first studied by Vogt [9], who extended the Mazur-Ulam theorem by proving that every continuous surjective map which preserves equality of distance and takes 0 to 0 , is a linear isometry multiplied by a nonzero constant.

A different kind of generalization of the Mazur-Ulam theorem was given by Rassias and Semrl in [7]. They proved, under especial hypotheses that every surjective mapping $f: X \longrightarrow Y$ between real normed linear spaces is affine.

In [3], the authors introduce a new notation of isometry. The mapping $f: X \longrightarrow X$ is called a two-isometry if for all $x, y \in X$,

$$
\left\|f^{2}(x)-f^{2}(y)\right\|^{2}-2\|f(x)-f(y)\|^{2}+\|x-y\|^{2}=0 .
$$

They proved under certain conditions that every continuous two-isometry f is affine. Note that every isometry is a two-isometry, but the converse is false, in general [3].

Recently, in [10], the authors adapted the proof of the Mazur-Ulam theorem for Fréchet algebra [10, Theorem 2.3].

In this paper, we study the notation of generalized isometry or g-isometry and we prove the classical Mazur-Ulam theorem and Baker's result for g isometry.

2. Main result

We first introduce the concept of generalized isometry (g-isometry) between real normed linear spaces

Definition 2.1. Let $g: X \longrightarrow Y$ and $f: g(X) \subseteq Y \longrightarrow Z$ be two maps between real normed linear spaces. We say that f is a generalized isometry or g-isometry if

$$
\begin{equation*}
\|f(g(x))-f(g(y))\|=\|g(x)-g(y)\|, \quad x, y \in X \tag{1}
\end{equation*}
$$

Clearly, every isometry $f: Y \longrightarrow Z$ is a g-isometry for arbitrary mapping $g: X \longrightarrow Y$, but the converse is fails, in general. The following example illustrates this fact.

Example 2.2. (i) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(t)=|t|, g(s)=-s^{2}$. Then f is a g-isometry, but neither f nor g is isometry.
(ii) Let X be a normed space. Consider $g: X \longrightarrow \mathbb{R}^{2}$ and $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by

$$
g(x)=(\|x\|,-\|x\|) \quad \text { and } \quad f(s, t)=(s,|s|)
$$

for all $x \in X$ and $s, t \in \mathbb{R}$, where \mathbb{R}^{2} equipped with the norm

$$
\|(s, t)\|=\max \{|s|,|t|\}
$$

Then for all $x, y \in X$,

$$
\|f(g(x))-f(g(y))\|=\|g(x)-g(y)\|
$$

Thus, f is a g-isometry, while f and g are not isometry.
However, if $X=Y$ and g is the identity map, then it follows from (1) that $f: X \longrightarrow Z$ is an isometry. Also, if the mapping $g: X \longrightarrow Y$ is surjective, then $g(X)=Y$ and hence $f: Y \longrightarrow Z$ turns into isometry.

Lemma 2.3 ([1, Lemma 2]). Let X be a real normed linear space which is strictly convex and $x, y \in X$. Then $u=\frac{1}{2}(x+y)$ is the unique element of X such that

$$
2\|x-u\|=2\|y-u\|=\|x-y\| .
$$

Theorem 2.4. Let $g: X \longrightarrow Y$ and $f: g(X) \subseteq Y \longrightarrow Z$ be two maps such that
(i) g is linear and continuous,
(ii) f is a g-isometry,
(iii) Z is strictly convex.

Then f is linear on $g(X)$.
Proof. If $f(0) \neq 0$, then the mapping $h: g(X) \longrightarrow Z$ defined by $h(g(x)):=$ $f(g(x))-f(0)$ is a g-isometry and $h(0)=0$. So, without loss of generality we may assume that $f(0)=0$. Since f is a g-isometry we get

$$
2\left\|f\left(g\left(\frac{x+y}{2}\right)\right)-f(g(x))\right\|=2\left\|g\left(\frac{x+y}{2}\right)-g(x)\right\|=\|g(x)-g(y)\| .
$$

Similarly,

$$
2\left\|f\left(g\left(\frac{x+y}{2}\right)\right)-f(g(y))\right\|=\|g(x)-g(y)\|
$$

for all $x, y \in X$. Now it follows from Lemma 2.3 that

$$
f\left(g\left(\frac{x+y}{2}\right)\right)=\frac{1}{2}(f(g(x))+f(g(y))) .
$$

Let $T: X \longrightarrow Z$ be defined by $T(x)=f(g(x))$. Since g is continuous and f is a g-isometry, f and hence T is continuous. As $f(0)=g(0)=0$, it follows from Lemma 2.2 of [10] that T is linear. Consequently, f is linear on $g(X)$.

In Theorem 2.4, if $X=Y$ and $g: X \longrightarrow X$ is the identity map, then we deduce the next result.

Corollary 2.5 ([1]). Suppose that $f: X \longrightarrow Z$ is an isometry between real normed linear spaces. If Z is strictly convex, then f is linear.

The following example was constructed by Baker [1]. Hear we adopt it for g-isometry with minor changes.

It shows that a g-isometry can be not only nonlinear but also homogeneous of degree one. Moreover, it proves that the strict convexity of Z in Theorem 2.4 is essential.

Example 2.6. Let $\phi: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
\phi(x, y)=\left\{\begin{array}{lll}
y & y \in[0, x], & \text { or } y \in[x, 0] \\
x & x \in[0, y], & \text { or } x \in[y, 0] \\
0 & \text { otherwise } . &
\end{array}\right.
$$

Then
(i) ϕ is homogeneous, i.e., $\phi(\lambda x, \lambda y)=\lambda \phi(x, y)$ for all $x, y, \lambda \in \mathbb{R}$,
(ii) For every $(x, y),(a, b) \in \mathbb{R}^{2}$,

$$
|\phi(x, y)-\phi(a, b)| \leq \sqrt{(x-a)^{2}+(y-b)^{2}} .
$$

(iii) ϕ is not linear.

Let $X=Y=\mathbb{R}^{2}$ with the usual normed linear space structure, and let $Z=\mathbb{R}^{3}$ with the usual vector space structure. Then, Z with norm

$$
\|(x, y, z)\|=\max \left\{\sqrt{x^{2}+y^{2}},|z|\right\}
$$

is a normed linear space. Define $g: X \longrightarrow Y$ by $g(x, y)=(y, x)$ and $f: Y \longrightarrow$ Z via

$$
f(x, y)=(x, y, \phi(x, y)) .
$$

Then g is linear and it follows from (i), (ii) and (iii) that f is a homogeneous g-isometry which is not linear.

Following [6], let

$$
\operatorname{def}(\phi)=\left\|\phi\left(\frac{x+y}{2}\right)-\frac{1}{2}(\phi(x)+\phi(y))\right\|,
$$

denote the possible "affine defect" of $\phi: X \longrightarrow Y$.
Next we prove the Mazur-Ulam theorem for g-isometry.
Theorem 2.7. Let $g: X \longrightarrow Y$ and $f: g(X) \subseteq Y \longrightarrow Z$ be two maps such that g is affine and f is a surjective g-isometry. Then f is affine on $g(X)$.
Proof. Let $x, y \in X$ arbitrary and fixed. For $T:=f \circ g$, we have

$$
\begin{aligned}
\operatorname{def}(T) & \leq \frac{1}{2}\left\|T\left(\frac{x+y}{2}\right)-T(x)\right\|+\frac{1}{2}\left\|T\left(\frac{x+y}{2}\right)-T(y)\right\| \\
& =\frac{1}{2}\left\|g\left(\frac{x+y}{2}\right)-g(x)\right\|+\frac{1}{2}\left\|g\left(\frac{x+y}{2}\right)-g(y)\right\|=\frac{1}{2}\|g(x)-g(y)\| .
\end{aligned}
$$

Therefore $\frac{1}{2}\|g(x)-g(y)\|$ is uniform bound on the defect. Define $h: Z \longrightarrow Z$ by

$$
h(z)=T(x)+T(y)-z,
$$

and consider $f_{1}: g(X) \longrightarrow g(X)$ with $f_{1}:=f^{-1} \circ h \circ f$. Then

$$
f_{1}(g(x))=f^{-1} \circ h \circ f(g(x))=f^{-1} \circ f(g(y))=g(y),
$$

and similarly, $f_{1}(g(y))=g(x)$. Since f is surjective, for $z_{1}, z_{2} \in Z$ there exist $x, y \in X$ such that $f(g(x))=z_{1}$ and $f(g(y))=z_{2}$. Then

$$
\left\|z_{1}-z_{2}\right\|=\|f(g(x))-f(g(y))\|=\|g(x)-g(y)\|=\left\|f^{-1}\left(z_{1}\right)-f^{-1}\left(z_{2}\right)\right\|
$$

Thus, $f^{-1}: Z \longrightarrow g(X)$ is an isometry and hence

$$
\begin{aligned}
\operatorname{def}\left(f_{1} \circ g\right) & =\left\|f_{1} \circ g\left(\frac{x+y}{2}\right)-\frac{1}{2}\left(f_{1} \circ g(y)+f_{1} \circ g(x)\right)\right\| \\
& =\left\|f^{-1} \circ h \circ T\left(\frac{x+y}{2}\right)-\frac{1}{2}(g(x)+g(y))\right\| \\
& =\left\|f^{-1}\left(T(x)+T(y)-T\left(\frac{x+y}{2}\right)\right)-f^{-1}\left(T\left(\frac{x+y}{2}\right)\right)\right\| \\
& =\left\|T(x)+T(y)-2 T\left(\frac{x+y}{2}\right)\right\| \\
& =2 \operatorname{def}(T) .
\end{aligned}
$$

Now by the same method as in the proof of [6], we get $\operatorname{def}(T)=0$. Hence

$$
T\left(\frac{x+y}{2}\right)=\frac{1}{2}(T(x)+T(y))
$$

for all $x, y \in X$. Therefore, T is affine by Lemma 2.2 of [10]. As g is affine, we conclude that f is affine on $g(X)$.
Corollary 2.8 ([4]). Every bijective isometry $f: X \longrightarrow Z$ between real normed linear spaces is affine.
Example 2.9. Let $X=c_{0}$, the Banach space of all sequences of scalars that converge to 0 , with the norm $\left\|x_{j}\right\|_{\infty}=\sup \left\{\left|x_{j}\right|: j \in \mathbb{N}\right\}$ and let $f: X \longrightarrow X$ be defined by

$$
f(x)=f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 1-\left|x_{1}\right|, x_{2}, x_{3}, \ldots\right)
$$

for all $x \in X$. Then for $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right), y=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ in X we have

$$
\begin{aligned}
\|f(x)-f(y)\|_{\infty} & =\left\|f\left(x_{1}, x_{2}, x_{3}, \ldots\right)-f\left(y_{1}, y_{2}, y_{3}, \ldots\right)\right\|_{\infty} \\
& =\left\|\left(x_{1}-y_{1},\left|y_{1}\right|-\left|x_{1}\right|, x_{2}-y_{2}, \ldots\right)\right\|_{\infty} \\
& =\left\|\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots\right)\right\|_{\infty} \\
& =\|x-y\|_{\infty} .
\end{aligned}
$$

Thus, f is an isometry but it is not affine. Therefore the surjectivity of f in preceding corollary is essential. Moreover, this example shows that the assumption Z of being strictly convex in Corollary 2.5 can not be removed.

A mapping $f: X \longrightarrow Y$ between two real normed linear spaces satisfies the distance one preserving property $(D O P P)$ if for all $x, y \in X$ with $\|x-y\|=1$ it follows that $\|f(x)-f(y)\|=1$.

Theorem 2.10. Let $g: X \longrightarrow Y$ and $f: g(X) \subseteq Y \longrightarrow Z$ be two maps such that
(i) g is linear and $\operatorname{dim} X \geq 1$.
(ii) for all $x, y \in X$,

$$
\|f(g(x))-f(g(y))\| \leq\|g(x)-g(y)\| .
$$

(iii) f satisfies the $(D O P P)$ on $g(X)$.

Then f is a g-isometry.
Proof. Let $x, y \in X$ with $\|g(y)-g(x)\|<1$. This is possible, because let $a, b \in X$ with $a \neq b$. Take $\alpha=\|g(a)\|$ and $\beta=\|g(b)\|$. Since g is linear, there exist $x, y \in X$ such that $g(x)=\frac{1}{4 \alpha} g(a)$ and $g(y)=\frac{1}{4 \beta} g(b)$. So

$$
\|g(y)-g(x)\| \leq\|g(y)\|+\|g(x)\| \leq \frac{1}{4}+\frac{1}{4}<1
$$

Suppose that

$$
\begin{equation*}
\|f(g(x))-f(g(y))\|<\|g(x)-g(y)\| . \tag{2}
\end{equation*}
$$

Since g is linear, we have

$$
g(x)+\frac{1}{\|g(x)-g(y)\|}(g(y)-g(x)) \in g(X)
$$

Thus, there exists $z \in X$ such that

$$
g(z)=g(x)+\frac{1}{\|g(x)-g(y)\|}(g(y)-g(x))
$$

Hence

$$
\|g(z)-g(x)\|=1, \quad\|g(z)-g(y)\|=1-\|g(y)-g(x)\| .
$$

From (iii) we get

$$
\begin{aligned}
1=\|f(g(z))-f(g(x))\| & \leq\|f(g(z))-f(g(y))\|+\|f(g(y))-f(g(x))\| \\
& <\|g(z)-g(y)\|+\|g(y)-g(x)\| \\
& =1-\|g(y)-g(x)\|+\|g(y)-g(x)\|=1,
\end{aligned}
$$

which is not possible. Therefore the equality in (2) holds, i.e.,

$$
\|f(g(x))-f(g(y))\|=\|g(x)-g(y)\|, \quad x, y \in X
$$

and hence f is a g-isometry.
Example 2.11. Let $f, g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be defined by $g(x, y)=(y, x)$ and $f(x, y)=(x,|x|)$. Then for all $a, b, x, y \in \mathbb{R}$,

$$
\begin{aligned}
\|f(g(x, y))-f(g(a, b))\| & =\|(y,|y|)-(b,|b|)\| \\
& =\max \{|y-b|,|y|-|b|\} \\
& =|y-b| \\
& \leq\|g(x, y)-g(a, b)\| .
\end{aligned}
$$

Consequently, the conditions (i) and (ii) of above theorem are fulfilled. However, f is not g-isometry, because the condition (iii) is false, in general.

Let $f: X \longrightarrow X$ be an f-isometry, i.e., for all $x, y \in X$,

$$
\left\|f^{2}(x)-f^{2}(y)\right\|=\|f(x)-f(y)\|
$$

Then, f need not be isometry or affine. Of course, f is an isometry whenever it is surjective and hence in this case f is affine by Corollary 2.8.

Proposition 2.12. Suppose that $f: X \longrightarrow X$ is an f-isometry. If f is continuous with dense range, then f is an isometry.

Proof. For $x, y \in X$, there exist sequences $\left(x_{n}\right),\left(y_{n}\right)$ in X such that $f\left(x_{n}\right) \longrightarrow$ x and $f\left(y_{n}\right) \longrightarrow y$. Now it follows from the continuity of norm that

$$
\left\|f\left(x_{n}\right)-f\left(y_{n}\right)\right\| \longrightarrow\|x-y\| .
$$

On the other hand, by the continuity of $f, f^{2}\left(x_{n}\right)$ and $f^{2}\left(y_{n}\right)$ tends to $f(x)$ and $f(y)$, respectively. Hence

$$
\left\|f^{2}\left(x_{n}\right)-f^{2}\left(y_{n}\right)\right\| \longrightarrow\|f(x)-f(y)\| .
$$

Since f is an f-isometry, we get $\|f(x)-f(y)\|=\|x-y\|$ for all $x, y \in X$.
The continuity and the condition that f has a dense range in above result are essential as is shown the following example.

Example 2.13. (i) Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(t)=|t|$. Then f is an f-isometry and it is continuous, but the range of f is not dense in \mathbb{R}. However, f is not isometry.
(ii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

Then f is an f-isometry and its range is dense in \mathbb{R}, but it is false to be continuous. However, f is not isometry.

Is $f: X \longrightarrow X$ affine with the same hypotheses of Proposition 2.12? More generally, the following question can be raised.

Question 2.14. Is every dense range isometry $f: X \longrightarrow Y$ between real normed linear spaces affine?

Acknowledgments. The author gratefully acknowledges the helpful comments of the anonymous referees.

References

[1] J. A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971), 655-658. https://doi.org/10.2307/2316577
[2] T. Figiel, P. Semrl, and J. Väisälä, Isometries of normed spaces, Colloq. Math. 92 (2002), no. 1, 153-154. https://doi.org/10.4064/cm92-1-13
[3] H. Khodaei and A. Mohammadi, Generalizations of Alesandrov problem and MazurUlam theorem for two-isometries and two-expansive mappings, Commun. Korean Math. Soc. 34 (2019), no. 3, 771-782. https://doi.org/10.4134/CKMS.c180200
[4] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris. 194 (1932), 946-948.
[5] R. E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, 183, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4612-0603-3
[6] B. Nica, The Mazur-Ulam theorem, Expo. Math. 30 (2012), no. 4, 397-398. https: //doi.org/10.1016/j.exmath. 2012.08.010
[7] T. M. Rassias and P. Semrl, On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), no. 3, 919925. https://doi.org/10.2307/2160142
[8] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly 110 (2003), no. 7, 633-635. https://doi.org/10.2307/3647749
[9] A. Vogt, Maps which preserve equality of distance, Studia Math. 45 (1973), 43-48. https://doi.org/10.4064/sm-45-1-43-48
[10] A. Zivari-Kazempour and M. R. Omidi, On the Mazur-Ulam theorem for Fréchet algebras, Proyecciones 39 (2020), no. 6, 1647-1654.

Abbas Zivari-Kazempour
Department of Mathematics
Ayatollah Borujerdi University
Borujerd, Iran
Email address: zivari@abru.ac.ir, zivari6526@gmail.com

