REMARKS ON THE REIDEMEISTER NUMBERS FOR COINCIDENCE

  • Seoung Ho Lee (Department of Mathematics, Mokwon University, Taejon 301-729, Korea) ;
  • Sung Do Baek (Department of Mathematics, Mokwon University, Taejon 301-729, Korea)
  • Published : 1998.01.01

Abstract

Let X,Y be connected, locally connected, semilocally simply connected and $f,g : X \to Y$ be a pair of maps. We find an upper bound of the Reidemeister number R(f,g) by using the regular coverig spaces.

Keywords

References

  1. The Lefchetz Fixed Point Theorem R. F. Brown
  2. Pacific J. Math. v.117 Product formular for Nielsen numbers of fibre maps P. R. Heath
  3. J. Korean Math. Soc. v.32 A relative Nielsen number in coincidence theory C. G. Jang;S. Lee
  4. Fund. Math. v.134 The Nielsen number product formula for conicidences J. Jezierski
  5. A relative coincidence Niesen number J. Jezierski
  6. Contempo. Math. Amer. Math. Soc. Lectures on Nielsen Fixed Point Thoery B. J. Jiang
  7. The Theory of Fixed Point Classes T. H. Kiang
  8. J. Korean Math. Soc. v.33 A relative Nielsen coincidence number for the complement, I S. H. Lee
  9. Bull. Korean Math. Soc. v.33 Remarks on the Reidemeister numbers D. Li