• Title/Summary/Keyword: $0.18{\mu}m$ CMOS

Search Result 599, Processing Time 0.021 seconds

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.

An I/Q Channel 12bit 40MS/s Pipeline A/D Converter with DLL Based Duty-Correction Circuit for WLAN (DLL 기반의 듀티 보정 회로를 적용한 무선랜용 I/Q 채널 12비트 40MS/s 파이프라인 A/D변환기)

  • Lee, Jae-Yong;Cho, Sung-Il;Park, Hyun-Mook;Lee, Sang-Min;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.395-402
    • /
    • 2008
  • In this paper, an I/Q channel 12bits 40MS/s Pipeline Analog to Digital Converter that is able to apply to WLAN/WMAN system is proposed. The proposed ADC integrates DLL based duty-correction circuit which corrects the fluctuations in the duksty cycle caused by miniaturization of CMOS devices and faster operating speeds. It is designed as a 1% to 99% input clock duty cycle could be corrected to 50% output duty cycle. The prototype ADC is implemented in a $0.18{\mu}m$ CMOS n-well 1-poly 6-metal process and dissipates 184mW at 1.8V single supply The SNDR of the proposed 12bit ADC is 52dB and SFDR of 59dBc(@Fs=20MHz, Fin=1MHz) is measured.

A Power-Efficient CMOS Adaptive Biasing Operational Transconductance Amplifier

  • Torfifard, Jafar;A'ain, Abu Khari Bin
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.226-233
    • /
    • 2013
  • This paper presents a two-stage power-efficient class-AB operational transconductance amplifier (OTA) based on an adaptive biasing circuit suited to low-power dissipation and low-voltage operation. The OTA shows significant improvements in driving capability and power dissipation owing to the novel adaptive biasing circuit. The OTA dissipates only $0.4{\mu}W$ from a supply voltage of ${\pm}0.6V$ and exhibits excellent high driving, which results in a slew rate improvement of more than 250 times that of the conventional class-AB amplifier. The design is fabricated using $0.18-{\mu}m$ CMOS technology.

A Design of Frequency Synthesizer for T-DMB and Mobile-DTV Applications (T-DMB 및 mobile-DTV 응용을 위한 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • A Frequency synthesizer for T-DMB and mobile-DTV applications was designed using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors were chosen for VCO core to reduce phase noise. The VCO range is 920MHz-2100MHz using switchable inductors, capacitors and varactors. Varactor biases that improve varactor acitance characteristics were minimized as two, and $K_{VCO}$(VCO gain) value was aintained by switchable varactor. Additionally, VCO was designed that VCO gain and the interval of VCO gain were maintained using VCO gain compensation logic. VCO, PFD, CP and LF were verified by Cadence Spectre, and divider was simulated using Matlab Simulink, ModelSim and HSPICE. VCO consumes 10mW power, and is 56.3% tuning range. VCO phase noise is -127dBc/Hz at 1MHz offset for 1.58GHz output frequency. Total power consumption of the frequency synthesizer is 18mW, and lock time is about $140{\mu}s$.

Design of CMOS LC VCO with Fast AFC Technique for IEEE 802.11a/b/g Wireless LANs (IEEE 802.11a/b/g 무선 랜을 위한 고속 AFC 기법의 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Yoon Chan-Geun;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.17-22
    • /
    • 2006
  • CMOS LC VCO with fast response adaptive frequency calibration (AFC) technique for IEEE 802.11a/b/g WLANs is designed in 1.8V $0.18{\mu}m$ CMOS process. The possible operation is verified for 5.8GHz band, 5.2GHz band, and 2.4GHz band using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing tecknique is used. In order to operate in each band frequency range with reduced VCO gain, 4-bit digitally controlled switched- capacitor bank is used and a wide-range digital logic quadricorrelator (WDLQ) is implemented for fast frequency detector.

CMOS Power Amplifier Using Mode Changeable Autotransformer (모드변환 가능한 단권변압기를 이용한 CMOS 전력증폭기)

  • Ryu, Hyunsik;Nam, Ilku;Lee, Dong-Ho;Lee, Ockgoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • In this paper, in order to improve efficiency performance of power amplifiers, a mode changeable autotransformer is proposed. Efficiency performance at the low-power mode can be improved by adopting the mode changeable autotransformer. A dual-mode autotransfomrer CMOS power amplifier using a standard 0.18-${\mu}m$ CMOS process is designed in this work. Number of turns in a primary winding is re-configurated according to mode change between the high-power mode and the low-power mode. Thus, the efficiency performance of the power amplifier at each mode is optimized. EM and total circuit simulation results verify that low-power mode power added efficiency(PAE) at 24dBm output power is improved from 10.4% to 26.1% using the proposed multi-mode operation.

Sigma-Delta Modulator using a novel FDPA(Feedback Delay Path Addition) Technique (새로운 FDPA 기법을 사용한 시그마-델타 변조기)

  • Jung, Eui-Hoon;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2013
  • This paper presents a SDM using the FDPA technique. The FDPA technique is the added feedback path which is the delayed path of DAC output. The designed SDM increases the SNR by adding the delayed digital feedback path. The proposed SDM is easily implemented by eliminating the analog feedback path. Through the MATLAB modeling, the optimized coefficients are obtained to design the SDM. The designed SDM has a power consumption of $220{\mu}W$ and SNR(signal to noise ratio) of 81dB at the signal-bandwidth of 20KHz and sampling frequency of 2.56MHz. The SDM is designed using the $0.18{\mu}m$ standard CMOS process.

CMOS true-time delay IC for wideband phased-array antenna

  • Kim, Jinhyun;Park, Jeongsoo;Kim, Jeong-Geun
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.693-698
    • /
    • 2018
  • This paper presents a true-time delay (TTD) using a commercial $0.13-{\mu}m$ CMOS process for wideband phased-array antennas without the beam squint. The proposed TTD consists of four wideband distributed gain amplifiers (WDGAs), a 7-bit TTD circuit, and a 6-bit digital step attenuator (DSA) circuit. The T-type attenuator with a low-pass filter and the WDGAs are implemented for a low insertion loss error between the reference and time-delay states, and has a flat gain performance. The overall gain and return losses are >7 dB and >10 dB, respectively, at 2 GHz-18 GHz. The maximum time delay of 198 ps with a 1.56-ps step and the maximum attenuation of 31.5 dB with a 0.5-dB step are achieved at 2 GHz-18 GHz. The RMS time-delay and amplitude errors are <3 ps and <1 dB, respectively, at 2 GHz-18 GHz. An output P1 dB of <-0.5 dBm is achieved at 2 GHz-18 GHz. The chip size is $3.3{\times}1.6mm^2$, including pads, and the DC power consumption is 370 mW for a 3.3-V supply voltage.

A CMOS Frequency Synthesizer Block for MB-OFDM UWB Systems

  • Kim, Chang-Wan;Choi, Sang-Sung;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • A CMOS frequency synthesizer block for multi-band orthogonal frequency division multiplexing ultra-wideband systems is proposed. The proposed frequency synthesizer adopts a double-conversion architecture for simplicity and to mitigate spur suppression requirements for out-of-band interferers in 2.4 and 5 GHz bands. Moreover, the frequency synthesizer can consist of the fewest nonlinear components, such as divide-by-Ns and a mixer with the proposed frequency plan, leading to the generation of less spurs. To evaluate the feasibility of the proposed idea, the frequency synthesizer block is implemented in 0.18-${\mu}m$ CMOS technology. The measured sideband suppression ratio is about 32 dBc, and the phase noise is -105 dBc/Hz at an offset of 1 MHz. The fabricated chip consumes 17.6 mA from a 1.8 V supply, and the die-area including pads is $0.9{\times}1.1\;mm^2$.

  • PDF

Open-Loop Pipeline ADC Design Techniques for High Speed & Low Power Consumption (고속 저전력 동작을 위한 개방형 파이프라인 ADC 설계 기법)

  • Kim Shinhoo;Kim Yunjeong;Youn Jaeyoun;Lim Shin-ll;Kang Sung-Mo;Kim Suki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1A
    • /
    • pp.104-112
    • /
    • 2005
  • Some design techniques for high speed and low power pipelined 8-bit ADC are described. To perform high-speed operation with relatively low power consumption, open loop architecture is adopted, while closed loop architecture (with MDAC) is used in conventional pipeline ADC. A distributed track and hold amplifier and a cascading structure are also adopted to increase the sampling rate. To reduce the power consumption and the die area, the number of amplifiers in each stage are optimized and reduced with proposed zero-crossing point generation method. At 500-MHz sampling rate, simulation results show that the power consumption is 210mW including digital logic with 1.8V power supply. And the targeted ADC achieves ENOB of about 8-bit with input frequency up to 200-MHz and input range of 1.2Vpp (Differential). The ADC is designed using a $0.18{\mu}m$ 6-Metal 1-Poly CMOS process and occupies an area of $900{\mu}m{\times}500{\mu}m$