• 제목/요약/키워드: ${\sigma}$-ideal

검색결과 53건 처리시간 0.021초

LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS

  • Shuliang, Huang
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권1호
    • /
    • pp.87-92
    • /
    • 2010
  • Let R be a 2-torsion free $\sigma$-prime ring with an involution $\sigma$, U a nonzero square closed $\sigma$-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or $U\;{\subseteq}\;Z(R)$ if one of the following conditions holds: (1) $d(xy)\;-\;xy\;{\in}\;Z(R)$ or $d(xy)\;-\;yx\;{\in}Z(R)$ for all x, $y\;{\in}\;U$. (2) $d(x)\;{\circ}\;d(y)\;=\;0$ or $d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$ for all x, $y\;{\in}\;U$ and d commutes with $\sigma$.

CONSECUTIVE CANCELLATIONS IN FILTERED FREE RESOLUTIONS

  • Sharifan, Leila
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.1077-1097
    • /
    • 2019
  • Let M be a finitely generated module over a regular local ring (R, n). We will fix an n-stable filtration for M and show that the minimal free resolution of M can be obtained from any filtered free resolution of M by zero and negative consecutive cancellations. This result is analogous to [10, Theorem 3.1] in the more general context of filtered free resolutions. Taking advantage of this generality, we will study resolutions obtained by the mapping cone technique and find a sufficient condition for the minimality of such resolutions. Next, we give another application in the graded setting. We show that for a monomial order ${\sigma}$, Betti numbers of I are obtained from those of $LT_{\sigma}(I)$ by so-called zero ${\sigma}$-consecutive cancellations. This provides a stronger version of the well-known cancellation "cancellation principle" between the resolution of a graded ideal and that of its leading term ideal, in terms of filtrations defined by monomial orders.

ORE EXTENSIONS OVER σ-RIGID RINGS

  • Han, Juncheol;Lee, Yang;Sim, Hyo-Seob
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.1-12
    • /
    • 2022
  • Let R be a ring with an endomorphism σ and a σ-derivation δ. R is called (σ, δ)-Baer (resp. (σ, δ)-quasi-Baer, (σ, δ)-p.q.-Baer, (σ, δ)-p.p.) if the right annihilator of every right (σ, δ)-set (resp., (σ, δ)-ideal, principal (σ, δ)-ideal, (σ, δ)-element) of R is generated by an idempotent of R. In this paper, for a given Ore extension A = R[x; σ, δ] of R, the following properties are investigated: If R is a σ-rigid ring in which σ and δ commute, then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-quasi-Baer; (2) R is (σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.p. if and only if A is (${\bar{\sigma}},\;{\bar{\delta}}$)-p.q.-Baer.

Some Additive Maps on Sigma Prime Rings

  • Hasnain, Mohammad Mueenul;Khan, Mohd Rais
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.41-50
    • /
    • 2015
  • The purpose of this paper is to prove some results which are of independent interest and related to additive maps on ${\sigma}$-prime rings. Further, examples are given to demonstrate that the restrictions imposed on the hypotheses of these results are not superfluous.

SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE $(\sigma,\tau)$-DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • 제18권2호
    • /
    • pp.195-203
    • /
    • 2002
  • Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contains no nonzero nilpotent right ideal as a ring. For a $(\sigma,\tau)$-derivation d : R$\rightarrow$R, we prove the following results: (1) If d is an endomorphism on R then d=0. (2) If d is an anti-endomorphism on R then d=0. (3) If d(xy)=d(yx), for all x, y$\in$R then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then d=0.

  • PDF

Estimating Non-Ideal Effects within a Top-Down Methodology for the Design of Continuous-Time Delta-Sigma Modulators

  • Na, Seung-in;Kim, Susie;Yang, Youngtae;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.319-329
    • /
    • 2016
  • High-level design aids are mandatory for design of a continuous-time delta-sigma modulator (CTDSM). This paper proposes a top-down methodology design to generate a noise transfer function (NTF) which is compensated for excess loop delay (ELD). This method is applicable to low pass loop-filter topologies. Non-ideal effects including ELD, integrator scaling issue, finite op-amp performance, clock jitter and DAC inaccuracies are explicitly represented in a behavioral simulation of a CTDSM. Mathematical modeling using MATLAB is supplemented with circuit-level simulation using Verilog-A blocks. Behavioral simulation and circuit-level simulation using Verilog-A blocks are used to validate our approach.

14 비트 분해능을 갖는 2차 Sigma-Delta 변조기 설계를 위한 구성요소의 최대에러 허용 범위 조사 (Investigation of miximum permitted error limits for second order sigma-delta modulator with 14-bit resolution)

  • 조병욱;최평;손병기
    • 한국통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.1310-1318
    • /
    • 1998
  • 저주파의 아날로그 신호를 디지털 신호로 변환하기 위해 sigma-delta 아날로그-디지털 변환기의 이용이 용이하다. 이 변환기는 변조기와 디지털 필터로 구성되는데 여기에서는 변조기에 대해 언급한다. 14비트 분해능을 갖는 2차 sigma-delta 변조기를 설계하기 위한 변조기의 구성요소 즉 연산 증폭기, 적분기, 내부 ADC 및 DAC의 최대 허용 에러 범위를 규정하였다. 이를 위하여 먼저 이상적인 변조기를 모델링하고 다음으로 변조기의 성능을 저하시키는 여러 가지 에러 요인 즉 연산증폭기의 최대 출력 제한, DC 이득, slew rate, 축전기의 불일치에 의한 적분기 이득 에러와 내부 ADC 및 DAC의 에러 등을 이상적인 모델에 적용하여 성능을 검증하였다. 이러한 에러 허용 범위에 대한 조사를 바탕으로 sigma-delta 변조기 설계 시 요구되는 구성 요소의 사양을 결정 할 수 있으며, 제조과정에서 나타나는 에러 성분에 대한 한계를 규정하여 최종 제작될 변조기의 성능을 확신 할 수 있다.

  • PDF

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF