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ORE EXTENSIONS OVER σ-RIGID RINGS

Juncheol Han, Yang Lee, and Hyo-Seob Sim∗

Abstract. Let R be a ring with an endomorphism σ and a σ-derivation
δ. R is called (σ, δ)-Baer (resp. (σ, δ)-quasi-Baer, (σ, δ)-p.q.-Baer, (σ,

δ)-p.p.) if the right annihilator of every right (σ, δ)-set (resp., (σ, δ)-ideal,

principal (σ, δ)-ideal, (σ, δ)-element) of R is generated by an idempotent
of R. In this paper, for a given Ore extension A = R[x;σ, δ] of R, the

following properties are investigated: If R is a σ-rigid ring in which σ and

δ commute, then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer
if and only if A is (σ̄, δ̄)-Baer if and only if A is (σ̄, δ̄)-quasi-Baer; (2) R is

(σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if and only if A is (σ̄, δ̄)-p.p.
if and only if A is (σ̄, δ̄)-p.q.-Baer.

1. Introduction

Throughout this paper, R will denote an associative ring with identity and
σ will be an endomorphism of R. We recall the following definition of Ore
extensions for the convenience of the reading (see [9, 15, 19] for details). A map
δ : R→ R is a σ-derivation, i.e.

δ(a+ b) = δ(a) + δ(b) and δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ R.
A denotes the Ore extension R[x;σ, δ] of R, that is, A is the ring of polyno-

mials over R in an indeterminate x with multiplication subject to the relation
xa = σ(a)x+ δ(a) for all a ∈ R. Such a ring always exists and is unique up to
isomorphism (see [9] for details). Since A is a kind of ring extension of R, it is
natural that 1 = 1R will be a multiplicative identity for A as well. So we get
that σ(1) = 1 and δ(1) = 0 from the equality x = 1x = x1 = σ(1)x+ δ(1).

When σ = idR (resp. δ = 0), A is considered as the differential polynomial
ring (resp. the skew polynomial ring) and is simply denoted by R[x; δ] (resp.
R[x;σ]), where idR means the identity map on R. Of course, when σ = idR and
δ = 0, A is considered as the polynomial ring R[x]. Kaplansky [13] introduced
the Baer rings (i.e., rings in which the right annihilator of every nonempty
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subset is generated by an idempotent) to abstract various properties of rings of
operators on a Hilbert spaces (also refer [3]). Clark [8] introduced the quasi-Baer
rings (i.e., rings in which the right annihilator of every right ideal is generated
by an idempotent) which are generalizations of Baer rings and used them to
characterize a finite dimensional twisted matrix units semigroup algebra over
an algebraically closed field. Further works on Baer rings and quasi-Baer rings
appears in [1, 5, 6, 7, 18]. The study of Baer and quasi-Baer rings has its roots
in functional analysis. Birkenmeier, et al. [7] have shown that a ring R is quasi-
Baer if and only if R[x] is quasi-Baer if and only if R[[x]] (power series ring over
R) is quasi-Baer; a reduced ring R is Baer if and only if R[x] is Baer if and only
if R[[x]] is Baer.

Birkenmeier, et al. [7] defined a right (or left) principally quasi-Baer (sim-
ply, called right (or left) p.q.-Baer) ring as a generalization of quasi-Baer ring by
the rings in which the right (or left) annihilator of every right (or left) principal
ideal of R is generated by an idempotent of R. R is called a p.q.-Baer ring if it
is both right p.q.-Baer and left p.q.-Baer. Another generalization of Baer ring
is a p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if the right (resp.
left) annihilator of every element of R is generated by an idempotent of R. R
is called a p.p.-ring if it is both right and left p.p.-ring. Hong, et al. [11] have
extended the results on R[x;σ, δ] by showing that for an σ-ring R, R is Baer
(resp. p.p.) if and only if R[x;σ, δ] is Baer (resp. p.p.).

A subset S of a ring R is called a (σ, δ)-set if S is a (σ, δ)-stable set, i.e.,
σ(S) ⊆ S and δ(S) ⊆ S. In particular, if a singleton set S = {a} of R is (σ,
δ)-set, i.e., σ(a) = a and δ(a) = a, then a is called a (σ, δ)-element of R. A
left (right, two-sided) ideal I of R is called a left (right, two-sided) (σ, δ)-ideal
if I is a (σ, δ)-set. By analog, we can define a (σ, δ)-Baer ring (resp. (σ,
δ)-quasi-Baer-ring) by the ring in which the right annihilator of every right (σ,
δ)-set (resp. (σ, δ)-ideal) is generated by an idempotent. Jordan [12] has shown
that if R is a right noetherian Jacobson ring and δ is a derivation on R then
R[x; δ] is a right noetherian Jacobson ring by considering δ-ideal of R. Lam, et
al. [14] have investigated the primeness and semiprimeness of Ore extensions
over a ring R by considering (σ, δ)-ideal of R.

We also define a right (or left) (σ, δ)-p.q.-Baer ring (resp. right (or left)
(σ, δ)-p.p.-ring) by the ring in which the right (or left) annihilator of every
right (or left) principal (σ, δ)-ideal (resp. (σ, δ)-element) is generated by an
idempotent. R is called a (σ, δ)-p.q.-Baer ring (resp. (σ, δ)-p.p.-ring) if it is
both right (σ, δ)-p.q.-Baer and left (σ, δ)-p.q.-Baer (resp. right (σ, δ)-p.p. and
left (σ, δ)-p.p.).

In this paper, we denote the right (resp. left) annihilator of a subset S of a
ring R by rR(S) = {a ∈ R | Sa = 0} (resp. `R(S) = {a ∈ R | aS = 0}). We
recall that R is a σ-rigid (resp. reduced) ring if for some endomorphism σ of
R, aσ(a) = 0 (resp. a2 = 0) implies that a = 0 for each a ∈ R. Now we can
observe the following implications:
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(1) Every Baer ring is a (σ, δ)-Baer ring, and it is true for quasi-Baer rings,
right (or left) p.q.-Baer rings, and right (or left) p.p.-Baer rings, respectively.

(2) Every (σ, δ)-Baer ring is a(σ, δ)-quasi-Baer ring.
(3) Every (σ, δ)-quasi-Baer ring is a (σ, δ)-p.q.-Baer ring.
All the implications are strict by the following examples.

Example 1. We refer to [11, Example 9]. Let Z be the ring of integers, and
consider the ring Z ⊕ Z with the usual addition and multiplication. Then the
subring R = {(a, b) ∈ Z⊕Z | a ≡ b (mod 2) } of Z⊕Z is a commutative reduced
ring which has only two idempotents (0, 0) and (1, 1). Observe that R is not
p.p. (and then R is not Baer, not p.q.-Baer, not quasi-Baer). Let σ : R→ R be
a map defined by σ(a, b) = (b, a) for all (a, b) ∈ R. Then σ is an endomorphism
of R. Clearly, R is not σ-rigid. Note that all σ-sets of R are S ⊕ S for some
subset S of Z. Let T = S⊕S. If T = (0), then rR(T ) = R = (1, 1)R. If T 6= (0),
then rR(T ) = (0) = (0, 0)R. Hence R is σ-Baer, and then R is σ-quasi-Baer
and σ-p.p.. Also, R is (σ, δ)-quasi-Baer, (σ, δ)-quasi-Baer, and σ-p.p. for every
derivation δ on R.

Recall that a ring R with a σ-derivation δ is called σ-rigid (resp. reduced)
if aσ(a) = 0 (resp. a2 = 0) for a ∈ R implies a = 0. Note that σ-rigid rings
are reduced, and this implication is proper as can be seen by σ(a, b) = (b, a) in
Z⊕Z. In section 2, we will show that if R is a σ-rigid ring with a σ-derivation δ,
then (1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer; R is (σ, δ)-p.q.-Baer
if and only if R is (σ, δ)-p.p..

Let R be a ring with a σ-derivation δ and let A = R[x;σ, δ]. Consider maps
σ̄, δ̄ : A → A defined by σ̄(f) =

∑n
j=0 σ(aj)x

j , δ̄(f) =
∑n
j=0 δ(aj)x

j for all

f =
∑n
j=0 ajx

j ∈ A, respectively. Then σ̄ (resp. δ̄) is a well-defined one which

extends σ (resp. δ). Observe that even though σ is an endomorphism of R, but
σ̄ is not necessarily an endomorphism of A.

In 2012, Bergen and Grzeszczuk [4] considered q-skew σ-derivation δ for an
algebra R over a field F where 0 6= q ∈ F defined by δ(σ(r)) = q(σ(δ(r)) for all
r ∈ R. In particular, they proved that for a q-skew σ-derivation δ of R where
1 + q + · · · + qn−1 6= 0 for all positive integers n, if σ has a locally finite order
and δ 6= 0, then q = 1 (equivalently, σ and δ commute) and F has characteristic
0. In section 3, by considering a ring with a σ-derivation δ in which σ and δ
commute (denoted by σδ = δσ), we will show that (1) σ̄ is the unique extended
endomorphism of σ and δ̄ is the unique extended σ̄-derivation; (2) R is (σ, δ)-
Baer if and only if R is (σ, δ)-quasi-Baer if and only if A is (σ̄, δ̄)-Baer if and only
if A is (σ̄, δ̄)-quasi-Baer; (3) R is (σ, δ)-p.p. if and only if R is (σ, δ)-p.q.-Baer if
and only if A is (σ̄, δ̄)-p.p. if and only if A is (σ̄, δ̄)-p.q.-Baer.

2. Preliminaries

Following [7], an idempotent e ∈ R is left (resp. right) semicentral in R
if re = ere (resp. er = ere) for all r ∈ R. Equivalently, an idempotent e ∈ R
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is left (resp. right) semicentral in R if eR (resp. Re) is an ideal of R. Due to
Bell [2], a ring R is called to satisfy the Insertion-of-Factors-Property (simply,
an IFP ring) if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [16] and Shin
[20] used the terms semicommutative and SI for the IFP, respectively. The class
of IFP rings contains commutative rings and reduced rings. There exist many
IFP ring but not reduced as can be seen by the ring of integers modulo mk for
m, k ≥ 2. A ring is usually called Abelian if every idempotent is central. A
simple computation yields that every IFP ring is Abelian.

Theorem 2.1. Let R be an IFP ring with an endomorphism σ and a σ-
derivation δ. Then

(1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer.
(2) R is σ-Baer if and only if R is σ-quasi-Baer.

Proof. (1) It suffices to show the sufficiency. Suppose that R is (σ, δ)-quasi-
Baer. Let S be a (σ, δ)-set of R. Consider the right ideal SR of R generated
by S. Since S be a (σ, δ)-set, SR is a right (σ, δ)-ideal of R. Since R is (σ, δ)-
quasi-Baer, rR(SR) = eR for some idempotent e ∈ R. We will show that
rR(S) = rR(SR). Clearly, rR(SR) ⊆ rR(S). Let a ∈ rR(S). Then Sa = 0. If
R is IFP, then Sa = 0 implies SRa = 0. This yields rR(SR) ⊇ rR(S), entailing
rR(SR) = rR(S). Thus R is (σ, δ)-Baer.

(2) follows (1), by letting δ = 0. �

Every σ-rigid ring is reduced (hence IFP), and so we get the following by
Theorem 2.1.

Corollary 2.2. Let R be a σ-rigid ring with a σ-derivation δ. Then
(1) R is (σ, δ)-Baer if and only if R is (σ, δ)-quasi-Baer.
(2) R is σ-Baer if and only if R is σ-quasi-Baer.

Corollary 2.3. Let R be a reduced ring with a derivation δ. Then
(1) R is δ-Baer if and only if R is δ-quasi-Baer.
(2) R is Baer if and only if R is quasi-Baer.

Proof. (1) follows Theorem 2.1, by letting σ = 1. (2) follows (1), by letting
δ = 0. �

Lemma 2.4. Let R be a σ-rigid ring with a σ-derivation δ. Then the following
statements are equivalent:

(1) R is right (σ, δ)-p.p.;
(2) R is (σ, δ)-p.p.;
(3) R is right (σ, δ)-p.q.-Baer;
(4) R is (σ, δ)-p.q.-Baer;
(5) For every (σ, δ)-element a ∈ R and every positive integer n, rR(anR) =

eR for some idempotent e ∈ R.
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Proof. Since R is σ-rigid, rR(a) = `R(a) = rR(aR) = `R(Ra) = rR(anR) for
every (σ, δ)-element a ∈ R and every positive integer n. Hence we have the
result.

�

Corollary 2.5. Let R be a σ-rigid ring. Then the following statements are
equivalent:

(1) R is a right σ-p.p.-ring;
(2) R is a σ-p.p.-ring;
(3) R is a right σ-p.q.-Baer ring;
(4) R is a σ-p.q.-Baer ring;
(5) For every σ-element a ∈ R and every positive integer n, rR(anR) = eR

for some idempotent e ∈ R.

Proof. The proof follows Lemma 2.4, by letting δ = 0. �

Corollary 2.6. Let R be a reduced ring. Then the following statements are
equivalent:

(1) R is a right p.p.-ring;
(2) R is a p.p.-ring;
(3) R is a right p.q.-Baer ring;
(4) R is a p.q.-Baer ring;
(5) For every (σ, δ)-element a ∈ R and every positive integer n, rR(anR) =

eR for some idempotent e ∈ R.

Proof. It follows from Lemma 2.4 by letting σ = 1 and δ = 0. �

Lemma 2.7. Let R be a ring with a σ-derivation δ. Then we have the follow-
ings:

(1) If I is a right (σ, δ)-ideal of R, then RI is a (σ, δ)-ideal of R;
(2) If I is a left (σ, δ)-ideal of R, then IR is a (σ, δ)-ideal of R.

Proof. (1) Let I be a right (σ, δ)-ideal of R. Clearly RI is a ideal of R. Let
t ∈ RI be arbitrary. Then t =

∑n
i=1 aibi for some ai ∈ R, bi ∈ I and some

positive integer n. Since I is a (σ, δ)-set of R, σ(I) ⊆ I and δ(I) ⊆ I. For
each i, δ(aibi) = σ(ai)δ(bi) + δ(ai)bi ∈ RI, and σ(aibi) = σ(ai)σ(bi) ∈ RI.
Thus σ(t) =

∑n
i=1 σ(aibi) ∈ RI and δ(t) =

∑n
i=1 δ(aibi) ∈ RI. Hence RI is a

(σ, δ)-ideal of R.

(2) follows the similar argument as given in the proof of (1). �

In [11], Hong, et al. obtained the following Lemma:

Lemma 2.8. Let R be a σ-rigid ring with σ-derivation δ and a, b ∈ R. Then
we have the followings.

(1) If ab = 0, then aσn(b) = σn(a)b = 0 for every positive integer n.
(2) If ab = 0, then aδn(b) = δn(a)b = 0 for every positive integer n.
(3) If aσk(b) = σk(a)b = 0 for some positive integer k, then ab = 0.
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3. Main results

Let R be a ring with a σ-derivation δ and let A = R[x;σ, δ]. Consider
maps σ̄, δ̄ : A → A defined by σ̄(f) =

∑n
j=0 σ(aj)x

j , δ̄(f) =
∑n
j=0 δ(aj)x

j for

f =
∑n
j=0 ajx

j ∈ A respectively. Then σ̄ (resp. δ̄) is a well-defined one which

extends σ (resp. δ). Observe that even though σ is an endomorphism of R, but
σ̄ is not necessarily an endomorphism of A. In case that σδ = δσ, we have the
following.

Lemma 3.1. Let R be a ring with an endomorphism σ and a σ-derivation δ,
and let A = R[x;σ, δ]. If σδ = δσ, then we have the followings:

(1) xna =
∑n
i=0

(
n
i

)
σn−iδi(a)xn−i for all a ∈ R and all nonnegative integer

n;
(2) xf = σ̄(f)x+ δ̄(f) for all f ∈ A;
(3) σ̄ is an endomorphism of A;
(4) δ̄ is a σ̄-derivation.

Proof. (1) It follows from the induction on n.

(2) Let f =
∑n
j=0 ajx

j ∈ A. Then we have

xf =

n∑
j=0

(xaj)x
j =

n∑
j=0

(σ(aj)x+ δ(aj))x
j

=

 n∑
j=0+

σ(aj)x
j

x+

n∑
j=0

δ(aj)x
j = σ̄(f)x+ δ̄(f).

(3) Let f =
∑n
j=0 ajx

j , g =
∑m
k=0 bkx

k ∈ A. By (1), we have

fg =

n∑
j=0

m∑
k=0

aj(x
jbk)xk =

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
aj σ

j−iδi(bk)xj−i+k.

So we have

σ̄(f)σ̄(g) =

n∑
j=0

σ(aj)x
j

m∑
k=0

σ(bk)xk =

n∑
j=0

m∑
k=0

σ(aj)x
jσ(bk)xk

=

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
σ(aj)σ

j−i+1δi(bk)xj−i+k

=

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
σ
(
aj σ

j−iδi(bk)
)
xj−i+k = σ̄(fg).

This implies that σ̄ is an endomorphism of A.
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(4) Let f =
∑n
j=0 ajx

j , g =
∑m
k=0 bkx

k ∈ A. Then

δ̄(f) =

n∑
j=0

δ(aj)x
j , δ̄(g) =

m∑
j=0

δ(bk)xk,

and so

σ̄(f)δ̄(g) + δ̄(f)g

=
n∑
j=0

σ(aj)x
j
m∑
k=0

δ(bk)xk +
n∑
j=0

δ(aj)x
j
m∑
k=0

bkx
k

=

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
σ(aj)σ

j−iδi+1(bk)xj−i+k

+

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
δ(aj)σ

j−iδi(bk)xj−i+k

=

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
σ(aj)

(
σj−iδi+1(bk) + δ(aj)σ

j−iδi(bk)
)
xj−i+k

=

n∑
j=0

m∑
k=0

j∑
i=0

(
j
i

)
δ(ajσ

j−iδi(bk))xj−i+k

=δ̄

 n∑
j=0

m∑
k=0

aj(x
jbk)xk

 = δ̄(fg).

Thus δ̄ is a σ̄-derivation of A. �

This lemma will do a basic role in the following arguments.

Lemma 3.2. Let A = R[x;σ, δ] be an Ore extension over a ring R with a δ-
derivation δ. If σδ = δσ, then σ̄ is the unique extended endomorphism of σ
such that σ̄(x) = x, and δ̄ is the unique extended σ̄-derivation of δ such that
δ̄(x) = 0.

Proof. It is obvious that σ̄ is the unique extended endomorphism of σ such that
σ̄(x) = x. Let δ∗ be an extended σ̄-derivation of δ such that δ∗(x) = 0. Then
by using the induction on n, it follows that δ∗(xn) = 0, and δ∗(axn) = δ(a)xn

for all a in R. Let f = anx
n + · · ·+ a1x+ a0 in R. Then

δ∗(f) = δ∗ (anx
n + · · ·+ a1x+ a0) = δ(an)xn + · · ·+ δ(a1)x+ δ(a0) = δ̄(f)

Consequently, δ∗ = δ̄. �

Lemma 3.3. Let R be a ring with an endomorphism σ and a σ-derivation δ
and let A = R[x;σ, δ]. Then R is σ-rigid if and only if A is σ̄-rigid. In this
case, σ(e) = e and δ(e) = 0 for every idempotent e ∈ R.
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Proof. Assume that R is σ-rigid and A is not σ̄-rigid. Then there exists a
nonzero f ∈ A such that fσ̄(f) = 0. Since R is σ-rigid, f /∈ R. Let f =∑n
i=0 aix

i where ai ∈ R, and an 6= 0. It follows that anσ
2(an) = 0 since

fσ̄(f) = 0. Since R is σ-rigid, a2
n = 0 by Lemma 2.8, and then an = 0 because

R is reduced, a contradiction. Hence A is σ̄-rigid. The converse is true by the
definition of extended endomorphism σ̄ of σ. Let e be an idempotent of R. In
case that A is σ̄-reduced (and then A is reduced), e is a central idempotent in
A, and so ex = xe = σ(e)x + δ(e), which implies that σ(e) = e and δ(e) = 0.
(Also refer [11, Proposition 5].) �

If J is an ideal of A = R[x;σ, δ], we denote by Jc the set of all coefficients of
polynomials in J .

Lemma 3.4. Let R be a ring with an endomorphism σ and a σ-derivation δ
and let A = R[x;σ, δ]. Assume that σδ = δσ. Then we have the followings:

(1) If J is a σ̄-ideal of A, then J is a δ̄-ideal of A.
(2) If J is a σ̄-ideal of A, then Jc is a (σ, δ)-ideal of R.
(3) If I is a (σ, δ)-ideal of R, then IA is a σ̄-ideal of A.

Proof. (1) Let J be a σ̄-ideal of A. Then for every f ∈ J , xf−σ̄(f)x = δ̄(f) ∈ J ,
and so J is a δ̄-ideal of A.

(2) Let J be a σ̄-ideal of A. Clearly, Jc is an ideal of R. To show Jc is
(σ, δ)-ideal of R, let f = a0 + a1x + + · · · + anx

n ∈ J be arbitrary. Then
a0, a1, . . . , an ∈ Jc. Since J is a σ̄-ideal of A, xf − σ̄(f)x ∈ J . By Lemma 3.1,
we get

xf − σ̄(f)x = δ̄(f) = δ(a0) + δ(a1)x+ · · ·+ δ(an)xn ∈ J,
and so δ(a0), δ(a1) . . . , δ(an) ∈ Jc. Thus Jc is a δ-ideal of R. Since σ̄(f) =
σ(a0) + σ(a1)x + · · ·+ σ(an)xn ∈ J , and so σ(a0), σ(a1), . . . , σ(ab) ∈ Jc. Thus
Jc is a σ-ideal of R. Therefore Jc is (σ, δ)-ideal of R.

(3) Clearly, IA is a right ideal of A. Since I is a (σ, δ)-ideal of R, fb ∈ I[x;σ, δ]
for all b ∈ I and all f ∈ A. Thus AI ⊆ I[x;σ, δ]. Since I is a (σ, δ)-ideal of R,
I[x;σ, δ]A ⊆ IA, and so IA is a left ideal of R. On the other hand, since I is a
σ-ideal of R, σ̄(bf) = σ(b)σ̄(f) ∈ IA for all b ∈ I and all f ∈ A, and so IA is a
σ̄-ideal of A.

�

Theorem 3.5. Let R be a σ-rigid ring with a σ-derivation δ and let A =
R[x;σ, δ]. Assume that σδ = δσ. Then the followings are equivalent:

(1) R is (σ, δ)-quasi-Baer;
(2) A is σ̄-quasi-Baer;
(3) A is (σ̄, δ̄)-quasi-Baer.

Proof. (1) ⇒ (2): Suppose that R is (σ, δ)-quasi-Baer. Let J be an arbitrary
σ̄-ideal of A. If g ∈ rA(J), then fg = 0 for all f ∈ J . Let f =

∑n
i=0 aix

i and
g =

∑m
j=0 bjx

j . Then aibj = 0 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m by [11, Proposition
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6]. Consider the set Jc of all coefficients of polynomials in J . Then Jc is a
(σ, δ)-ideal of R. Since aibj = 0 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m, bj ∈ rR(Jc) for
all 0 ≤ j ≤ m. Since R is (σ, δ)-quasi-Baer, rR(Jc) = e1R for some idempotent
e1 ∈ R. We will show that rA(J) = e1A. Since ai ∈ Jc and aibj = 0 for all
0 ≤ i ≤ n, 0 ≤ j ≤ m, bj ∈ rR(Jc) = e1R for all j, and so bj = e1cj for some
cj ∈ R for all j. Hence g = e1

∑m
j=0 cjx

j ∈ e1A, yielding that rA(J) ⊆ e1A. To

show e1A ⊆ rA(J), let h ∈ e1A be arbitrary. Then h =
∑`
k=0(e1dk)xk for some∑`

k=0 dkx
k ∈ A. Since ai ∈ Jc for all 0 ≤ i ≤ n and e1 ∈ rR(J), aie1 = 0 for

all 0 ≤ i ≤ n, and so ai(e1dk) = 0 for all 0 ≤ i ≤ n, 0 ≤ k ≤ `. Thus fh = 0 by
[11, Proposition 6], yielding e1A ⊆ rA(J).

(2) ⇒ (3): It is clear.

(3) ⇒ (1): Suppose that (3) holds. Let I be a (σ, δ)-ideal of R. Then
IA = I[x;σ, δ] is a (σ̄, δ̄)-ideal of A by Lemma 3.4. Since A is (σ̄, δ̄)-quasi-
Baer, rA(IA) = e(x)A for some idempotent e(x) ∈ A. We will show that
e(x) ∈ R. To show this, let e(x) = e0 + e1x + · · · + enx

n. If n ≥ 1, then we
have enσ(en) = 0 from e(x)2 = e(x). Since R is σ-rigid, en = 0. Continuing
in this way, we get en = en−1 = · · · = e1 = 0. Hence e(x) = e0 ∈ R. Since
rR(I) = R ∩ rA(IA) = R ∩ e(x)A = R ∩ e0A = e0R, R is (σ, δ)-Baer. �

The following is shown by combining Theorem 3.5 and the results above.

Corollary 3.6. Let R be a σ-rigid ring with a σ-derivation δ and let A =
R[x;σ, δ]. Assume that σδ = δσ. Then the followings are equivalent:

(1) R is (σ, δ)-Baer;
(2) R is (σ, δ)-quasi-Baer;
(3) A is σ̄-Baer;
(4) A is σ̄-quasi-Baer;
(5) A is (σ̄, δ̄)-Baer;
(6) A is (σ̄, δ̄)-quasi-Baer.

Proof. (2) ⇔ (4) ⇔ (6) follows from Theorem 3.5, (1) ⇔ (2) follows from
Theorem 2.1. (3) ⇔ (4) and (5) ⇔ (6) follow from Theorem 2.1 and Lemma
3.4. �

Next we consider the case of p.p. rings.

Theorem 3.7. Let R be a σ-rigid ring with a σ-derivation δ and let A =
R[x;σ, δ]. Assume that σδ = δσ. Then the followings are equivalent:

(1) R is (σ, δ)-p.p.;
(2) A is σ̄-p.p.;
(3) A is (σ̄, δ̄)-p.p..

Proof. (1) ⇒ (2): Suppose that R is a (σ, δ)-p.p.. Let f =
∑n
i=0 aix

i be an
arbitrary σ̄-element of A. Then σ(ai) = ai for each i = 0, · · · , n, i.e., each ai
is σ-element of R. Since R is (σ, δ)-p.p., there exists some idempotent ei ∈ R
such that rR(ai) = eiR for each i. Let e = e1 · e2 · · · en. Then e2 = e ∈ R,
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and then eR = ∩ni=0rR(ai). By Lemma 3.3, σ(e) = e and δ(e) = 0, and thus
fe =

∑n
i=0 aix

i = 0. Hence eA ⊆ rA(f). Let g =
∑m
j=0 bjx

j ∈ rA(f) be

arbitrary. Then fg = 0, and so aibj = 0 for all 0 ≤ i ≤ n, 0 ≤ j ≤ m by [[11],
Proposition 6]. Thus bj ∈ ∩ni=0rR(ai) = eR for all j, which implies that g ∈ eA,
and thus rA(f) ⊆ eA. So we have eA = rA(f). Therefore, A is σ̄-p.p..

(2) ⇒ (3): It is clear.

(3)⇒ (1): Suppose that A is (σ̄, δ̄)-p.p.. Let a be an arbitrary (σ, δ)-element
of R, i.e., σ(a) = a and δ(a) = a. Note σ̄(a) = σ(a) and δ̄(a) = δ(a), i.e., a
is (σ̄, δ̄)-element of A. Since A is (σ̄, δ̄)-p.p., rA(a) = eA for some idempotent
e ∈ A. By the similar argument given in the proof of Theorem 3.5, e ∈ R. Since
rR(a) = R ∩ rA(a) = R ∩ eA = eR, R is (σ, δ)-p.p.. �

The following is shown by combining Theorem 3.7 and the results above.

Corollary 3.8. Let R be a σ-rigid ring with σ-derivation δ and let A =
R[x;σ, δ]. Assume that σδ = δσ. Then the followings are equivalent:

(1) R is (σ, δ)-p.p.;
(2) R is (σ, δ)-p.q.-Baer;
(3) A is σ̄-p.p.;
(4) A is σ̄-p.q.-Baer;
(5) A is (σ̄, δ̄)-p.p.;
(6) A is (σ̄, δ̄)-p.q.-Baer.

Proof. (1)⇔ (3)⇔ (5) follows from Theorem 3.7. Meanwhile (1)⇔ (2) and (5)
⇔ (6) follow from Lemma 2.4 and Lemma 3.3. (3)⇔ (4) follows from Corollary
2.5 and Lemma 3.3. �

Let R be a ring with an endomorphism σ. The set {xj}j≥0 is easily seen
to be a left Ore subset of R[x;σ], so that one can localize R[x;σ] and form an
extension ring that is usually called the skew Laurent polynomial ring, written by
R[x, x−1;σ]. Note that every element of R[x, x−1;σ] is a finite sum of elements
of the form x−jrxi, where r ∈ R and i, j are nonnegative integers. A ring R is
σ-rigid if and only if R[x, x−1;σ] is reduced by [17, Theorem 3].

Let B = R[x, x−1;σ]. Consider maps σ̄ : B → B defined by σ̄(f) =∑
finite x

−jσ(r)xi for f =
∑

finite x
−jrxi ∈ B. Then σ̄ is a well-defined one

which extends σ to B.
Now we can obtain the following, by applying the arguments related to Corol-

laries 3.6,3.8, and the results in [17]. The following is similar to Corollary 3.6.

Proposition 3.9. Let R be a σ-rigid ring and B = R[x, x−1;σ]. Then the
following conditions are equivalent:

(1) R is σ-Baer;
(2) R is σ-quasi-Baer;
(3) B is σ̄-Baer;
(4) B is σ̄-quasi-Baer.
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The following is similar to Corollary 3.8.

Proposition 3.10. Let R be a σ-rigid ring and B = R[x, x−1;σ]. Then the
following conditions are equivalent:

(1) R is σ-p.p.;
(2) R is σ-p.q.-Baer;
(3) B is σ̄-p.p.;
(4) B is σ̄-p.q.-Baer.
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