SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong (Department of Mathematics Education, Seowon University) ;
  • Jung Yong-Soo (Institute of Basic Science, Seowon University)
  • Published : 2003.11.01

Abstract

Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

Keywords