SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE (σ, τ)-DERIVATION

Oznur Golbaşi and Neşet Aydin

Abstract

Abstrace. Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contans no nonzero nilpotent right ideal as a ring For a (σ, τ)-derivation $d \quad R \rightarrow R$, we prove the following results. (1) If d is an endomorphism on R then $d=0$. (2) If d is an anti-endomorphism on R then $d=0$ (3) If $d(x y)=d(y x)$, for all $x, y \in R$ then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then $d=0$

1. Introduction

The primary purpose of this paper is to investigate about a (σ, τ) dervation d which is a ring endomorphusm or anti-endomorphism on R. Bell and Kappe ([2]) proved that if d is a derivation of R which is either an endomorphism or ant1-endomorphism in sem-prime ring R, then $d=0$, and if d acts as a homomorphism or anti-homomorphism is a nonzero right ideal U of prime ring R, then $d=0$ on R. It is our alm in this paper to extend the above mentioned results to a more general situation

In this paper, R will represent an associative ring Recall that a ring R is prime if $a R b=\{0\}$ imphes that $a=0$ or $b=0$. Let R be a ring and σ, τ be two automorphisms of R. We write $[x, y],[x, y]_{\sigma, \tau}$,

[^0]for $x y-y x$ and $x \sigma(y)-\tau(y) x$ respectively and make extensive use of basic commutator identities: $[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=$ $x[y, \sigma(z)]+[x, z]_{\sigma, r} y$. We set $Z=\{c \in R \mid c x=x c$, for all $x \in R\}$ and call the center of R.

An additive mapping $d: R \rightarrow R$ is called a dervation if $d(x y)=$ $d(x) y+x d(y)$ holds for all $x, y \in R$. A derivation d is inner if there exits an $a \in R$ such that $d(x)=[a, x]$ holds for all $x \in R$ and d is called (σ, τ)-dervvation if $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$. On the other hand we said that d is an endomorphism or anti-endomorphism respectively $d(x y)=d(x) d(y)$ or $d(x y)=d(y) d(x)$ for all $x, y \in R$.

2. Results

Theorem 1. Let R be a prime ring. If d is a (σ, τ)-derivation of R which is an endomorphesm on R, then $d=0$.

Proof. Since d acts as a homomorphism on R, we have

$$
\begin{equation*}
d(x y)=d(x) \sigma(y)+\tau(x) d(y)=d(x) d(y) \text { for all } x, y \in R . \tag{2.1}
\end{equation*}
$$

Substituting $x r$ for $x, r \in R$ in (2.1), we get

$$
d(x r) \sigma(y)+\tau(x r) d(y)=d(x r) d(y)
$$

Since d is an homomorphism on R and τ is an automorphism of R, we have

$$
d(x) d(r) \sigma(y)+\tau(x) \tau(r) d(y)=d(x) d(r) d(y)
$$

Expanding the last equation one obtains,

$$
\begin{aligned}
d(x) d(r) \sigma(y)+\tau(x) \tau(r) d(y) & =d(x) d(r y) \\
& =d(x) d(r) \sigma(y)+d(x) \tau(r) d(y)
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
0 & =d(x) \tau(r) d(y)-\tau(x) \tau(r) d(y) \\
& =(d(x)-\tau(x)) \tau(r) d(y) .
\end{aligned}
$$

Since τ is an automorphism of R, we get

$$
(d(x)-\tau(x)) R d(y)=0 \text { for all } x, y \in R .
$$

Since R is a prime ring, we conclude that

$$
\begin{equation*}
d(x)=\tau(x) \text { for all } x \in R \text { or } d=0 . \tag{2.2}
\end{equation*}
$$

Assume $d(x)=\tau(x)$ for all $x \in R$. Replacing x by $x y, y \in R$ in this equation we have

$$
d(x y)=\tau(x y)=\tau(x) \tau(y) .
$$

On the other hand, recalling d is a ($\sigma, \tau)-$ derivation and (2.2), it follows

$$
d(x) \sigma(y)+\tau(x) d(y)=\tau(x) d(y)
$$

and so,

$$
d(x) \sigma(y)=0 \text { for all } x, y \in R .
$$

Since R is a prime ring, we see that $d=0$ on R.
Theorem 2. Let R be a prime ring If d is a (σ, τ)-derivation of R which is an antz-endomorphesm on R, then $d=0$.

Proof. Since d acts as a anti-homomorphism on R, we get

$$
\begin{equation*}
d(x y)=d(x) \sigma(y)+\tau(x) d(y)=d(y) d(x) \text { for all } x, y \in R . \tag{2.3}
\end{equation*}
$$

Replacing y by $x y$ in (2.3), we have

$$
d(x) \sigma(x y)+\tau(x) d(x y)=d(x y) d(x) .
$$

Recall that d is a (σ, τ)-derivatzon of R which is an anti-endomorphism on R, we have

$$
d(x) \sigma(x) \sigma(y)+\tau(x) d(y) d(x)=d(x) \sigma(y) d(x)+\tau(x) d(y) d(x)
$$

Sunce the second terms on the both sides are equal, we conclude that

$$
\begin{equation*}
d(x) \sigma(y) d(x)-d(x) \sigma(x) \sigma(y)=0 \text { for all } x, y \in R . \tag{2.4}
\end{equation*}
$$

Substituting $y r, r \in R$ for y in this equation, we get

$$
\begin{aligned}
0 & =d(x) \sigma(y r) d(x)-d(x) \sigma(x) \sigma(y r) \\
& =d(x) \sigma(y) \sigma(r) d(x)-d(x) \sigma(x) \sigma(y) \sigma(r)
\end{aligned}
$$

Using (2.4), it gives

$$
\begin{aligned}
0 & =d(x) \sigma(y) \sigma(r) d(x)-d(x) \sigma(y) d(x) \sigma(r) \\
& =d(x) \sigma(y)[\sigma(r), d(x)] .
\end{aligned}
$$

Since σ, τ are automorphisms of R, we obtain

$$
d(x) R[\sigma(r), d(x)]=0 \text { for all } x, r \in R .
$$

Since R is a prime ring,

$$
d(x)=0 \text { or } d(x) \in Z \text { for all } x \in R .
$$

If $d(x)=0$ then $d(x) \in Z$. So, we can take $d(R) \subset Z$ which forces d to be an endomophism of R. It follows $d=0$ from Theorem 1. This completes the proof of the Theorem 2.

Theorem 3. Let R be a prime ring of characteristic not two. If d as a nonzero (σ, τ)-derivation of R and $d(x y)=d(y x)$ for all $x, y \in R$, then R is a commutative ring.

Proof

For any element $c \in R$ such that $d(c)=0$, for example $c=[x, y]$, we have

$$
d(z) \sigma(c)=d(z c)=d(c z)=\tau(c) d(z)
$$

for all $z \in R$.
Thus

$$
\begin{equation*}
[d(z), c]_{\sigma, \tau}=0 \text { for all } z \in R \tag{2.5}
\end{equation*}
$$

This reduces $c \in Z$ for all $c \in R$ such that $d(c)=0$ by [4, Theorem 1]. In view of (2.5), we obtain $[x, y] \in Z$ for all $x, y \in R$ because of $d([x, y])=0$. Thus R is commutative by [3, Lemma 1.5].

ENDOMORPHISMS OF PRIME RING WITH (σ, τ) - DERIVATION 199
LEMMA 1. Let R be a prime ring and U a nonzero left adeal of R which is semiprime as a ring If $U a=0(a U=0)$ for $a \in R$ then $a=0$.

Proof. Since R is a prime ring and U is a nonzero left ideal of R, if $a U=0$ then $a=0$. Now, let us show that $U a=0$ then $a=0$. Assume that $a \neq 0$. Define L by

$$
L=\{x \in R \mid U x=0\}
$$

Since $0 \neq a \in L$ it is clearly that L is a nonzero right deal of R such that $U L=(0)$. On the other hand, $L \cap U$ is a right ideal of U and

$$
(L \cap U)(L \cap U) \subset U L=(0)
$$

that is,

$$
(L \cap U)^{2}=(0)
$$

Since U is semprime, we have $L \cap U=0$ In this case, we have

$$
L U \subset L \cap U=(0)
$$

Since R is a prime ring and U is a nonzero left ideal of R, one obtains $L=(0)$ Thus we get $a=0$.

LEMMA 2. Let R be a prime ring and U a nonzero left adeal of R. which is semiprime as a ring. If d is a (σ, τ) - derivation of R such that $d(U)=0$ then $d=0$.

Proof. By hypothesis for all $x \in R, m \in U$, we get

$$
0=d(x m)=d(x) \sigma(m)+\tau(x) d(m)=d(x) \sigma(m)
$$

Since σ is an automorphism of R, it follows from Lemmal that $d(x)=0$ for all $x \in R$.

Theorem 4, Let R be a prime ring, U a nonzero left vdeal of R which is semiprime as a ring. If d is a nonzero (σ, τ)-dervation of R such that $d(U) a=0(\operatorname{ad}(U)=0)$, then $a=0$.

Proof. For all $u \in U, x \in R$ we have

$$
0=d(x u) a=d(x) \sigma(u) a+\tau(x) d(u) a .
$$

From the hypothesis, we take

$$
d(x) \sigma(u) a=0 \text { for all } u \in U, x \in R .
$$

That is $U \sigma^{-1}(a)=0$ by [1, Lemma 1]. And so, $a=0$ by Lemma 1. If $\operatorname{ad}(U)=0$, then for all $u, v \in U$,

$$
0=a d(u v)=a d(u) \sigma(v)+a \tau(u) d(v) .
$$

That is,

$$
a \tau(u) d(v)=0 \text { for all } u, v \in U .
$$

We can take $\tau^{-1}(a) U \tau^{-1}(d(v))=0$ for all $u, v \in U$ since τ is an automorphism of $R . U \tau^{-1}(d(v))$ is a left ideal of R, we obtain $a=0$ or $U \tau^{-1}(d(v))=0$ from Lemma 1. If $U \tau^{-1}(d(v))=0$ for all $v \in U$ then by Lemma 1 and Lemma 2 we get $d=0$.

Theorem 5. Let R be a prime rang, U is a nonzero left ideal of R which is semiprime as a ring and d is a (σ, τ)-dervvation of R. If d acts as a homomorphesm on U, then $d=0$.

Proof. Since d acts as a homomorphism on U, we have

$$
d(v u)=d(v) d(u)=d(v) \sigma(u)+\tau(v) d(u) \text { for all } u, v \in U .
$$

Substituting $u t, t \in U$ for u, we get

$$
\begin{aligned}
d(v) \sigma(u) d(t)+\tau(v) d(u) d(t) & =d(v u) d(t)=d(v) d(u) d(t) \\
& =d(v) d(u t)=d(v(u t)) \\
& =d(v) \sigma(u) \sigma(t)+\tau(v) d(u t) \\
& =d(v) \sigma(u) \sigma(t)+\tau(v) d(u) d(t)
\end{aligned}
$$

and so,

$$
d(U) \sigma(u)(d(t)-\sigma(t))=0 \quad \text { for all } \quad u, t \in U
$$

Using Theorem 4 , we get $d=0$ by Lemma 2 or

$$
U \sigma^{-1}(d(t)-\sigma(t))=0 \quad \text { for all } t \in U
$$

If $U \sigma^{-1}(d(t)-\sigma(t))=0$, then by Lemma 1 , one obtains,

$$
\begin{equation*}
d(t)=\sigma(t) \text { for all } t \in U \tag{2.6}
\end{equation*}
$$

Replacing t by $t u, t, u \in U$ in (26)

$$
\begin{aligned}
\sigma(t) \sigma(u) & =\sigma(t u)=d(t u) \\
& =d(t) \sigma(u)+\tau(t) d(u) \\
& =\sigma(t) \sigma(u)+\tau(t) d(u)
\end{aligned}
$$

that is,

$$
\tau(t) d(u)=0, \quad \text { for all } \quad t, u \in U
$$

By Theorem 4, we get $d=0$.
Theorem 6. Let R be a prime ring, U is a nonzero left ideal of R which is semiprime as a ring and d is a (σ, τ) - dervvation of R. If d acts an antz-homomorphism on U, then $d=0$.

Proof. Since d acts as a anti-homomorphism on U, we have

$$
\begin{equation*}
d(u v)=d(v) d(u)=d(u) \sigma(v)+\tau(u) d(v) \text { for all } u, v \in U \tag{2.7}
\end{equation*}
$$

Substıtuting $u v$ for v in (2.7), we get

$$
\begin{aligned}
d(u) \sigma(u) \sigma(v)+\tau(u) d(v) d(u) & =d(u) \sigma(u v)+\tau(u) d(u v)=d(u v) d(u) \\
& =d(u) \sigma(v) d(u)+\tau(u) d(v) d(u)
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
d(u) \sigma(v) d(u)=d(u) \sigma(u) \sigma(v) \text { for all } u, v \in U \tag{2.8}
\end{equation*}
$$

Replacing v by $v t, t \in U$ in (2.8) and using (2.8), we have,

$$
d(u) \sigma(v) \sigma(t) d(u)=d(u) \sigma(u) \sigma(v) \sigma(t)=d(u) \sigma(v) d(u) \sigma(t)
$$

and so,

$$
d(u) \sigma(v)[\sigma(t), d(u)]=0 \quad \text { for all } \quad u, v, t \in U
$$

That is,

$$
\sigma^{-1}(d(u)) U\left[t, \sigma^{-1}(d(u))\right]=0, \quad \text { for all } u, t \in U
$$

Since $U\left[t, \sigma^{-1}(d(u))\right]$ is a left ideal and R is a prime ring it gives

$$
d(u)=0 \quad \text { or }[\sigma(t), d(u)]=0 \quad \text { for all } u, t \in U
$$

Define for fixed $t \in R, K=\{u \in U \mid d(u)=0\}$ - and $I . \quad\{u \in$ $U \|[\sigma(t), d(u)]=0\}$. A group can not be the set theoretir :un:on of two proper subgroups, hence $U=K$ or $U=L$. In the formrir case, $d(U)=(0)$. It gives that $d=0$ by Lemma 2. So we have $[\sigma(t), d(u)]=$ 0 , for all $u, t \in U$. Replacing t by $r t, r \in R$ we have

$$
[\sigma(r), d(u)] \sigma(t)=0 \text { for all } u, t \in U, r \in R
$$

and so,

$$
\left[R, \sigma^{-1}(d(u))\right] U=0
$$

Since U is a left ideal of R and R is a prime ring, we get $d(U) \subset Z$ which forces d to be an endomophism of R. It follows $d=0$ from Theorem 5 This completes the proof of the Theorem 6 .

References

[1] E C Posner, Derivations in prime rings, Proc Amer Math 8 (1957), 10931100
[2] H E Bell and L C Kappe, Rings in which derivations satisfy certain algebrasc conditzons, Acta Math Hungar 53 (1989), 339-346
[3] I N Herstein, Topics in Ring Theory, University of Chicago Press, 1965
[4] N Aydin and K Kaya, Some generaluzations in prime rings with (σ, τ) derıvation, Doğa Tr J. Math. 16 (1992), 169-176

Cumhuriyet University
Faculty of Arts and Science
Department of Mathematics

Sivas - TURKEY
E-mail: golbasi@cumhurryet.edu.tr URL http://www.cumhuriyet.edu.tr
and
Çanakkale 18 Mart University Faculty of Arts and Science
Department of Mathematics
Çanakkale - TURKEY
E-mall: neseta@comu.edu.tr
URL http://www.comu.edu tr

[^0]: Recelved August 24, 2002 Revised November 15, 2002.
 2000 Mathematics Subject Classification Prımary 16W25, 16A60; Secondary 16A70, 16A72

 Key words and phrases prime ring, derivation, (σ, τ)-derivation.

