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CONSECUTIVE CANCELLATIONS

IN FILTERED FREE RESOLUTIONS

Leila Sharifan

Abstract. Let M be a finitely generated module over a regular local

ring (R, n). We will fix an n-stable filtration for M and show that the
minimal free resolution of M can be obtained from any filtered free res-

olution of M by zero and negative consecutive cancellations. This result
is analogous to [10, Theorem 3.1] in the more general context of filtered

free resolutions. Taking advantage of this generality, we will study res-

olutions obtained by the mapping cone technique and find a sufficient
condition for the minimality of such resolutions. Next, we give another

application in the graded setting. We show that for a monomial order

σ, Betti numbers of I are obtained from those of LTσ(I) by so-called
zero σ-consecutive cancellations. This provides a stronger version of the

well-known cancellation “cancellation principle” between the resolution

of a graded ideal and that of its leading term ideal, in terms of filtrations
defined by monomial orders.

1. Introduction

Consider a regular local ring (R, n) and let M be a finitely generated R-
module. Let M = {Mn}n≥0 be a stable filtration on M . The associated graded
module grM(M) =

⊕
iMi/Mi+1 has a natural structure as a finitely generated

graded P -module in which P = grn(R) =
⊕

ni/ni+1 is the associated graded
ring of R with respect to the n-adic filtration. In the literature, starting from
classical results by Northchott, Abhyankar, Matlis, and Sally, several authors
have found basic numerical invariants of the module M . Often the Hilbert
function of grM(M) (see [11] as an overview) has been the central tool. As it
is clear that more information can be achieved from a minimal free resolution
of M , this paper is mainly devoted to study free resolutions. Our approach is
to find information about minimal free resolution of M through minimizing a
filtered free resolution of M .
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Robbiano, by using graded free resolutions of grM(M), has introduced a
special filtered free resolution of M (see [7] and also [9]). In [10, Thorem 3.1],
it was shown that the Betti numbers of M as an R-module can be obtained
from the Betti numbers of grM(M) as a P -module by a sequence of negative
consecutive cancellations (Definition 3.3). Later, Sammartano [13, Theorem 2]
extended this result and showed that for finitely generated modules M and N
over a Noetherian local ring R, the bigraded Hilbert series of gr(TorR(M,N))

is obtained from that of Torgr(R)(gr(M), gr(N)) by negative consecutive can-
cellations.

In this paper, we first prove a statement similar to [10, Theorem 3.1] in the
more general situation of filtered free resolutions, and next, we give two appli-
cations of it in the local and the graded setting. For our goal, corresponding
to an arbitrary filtered free resolution (F., δ.) of M , we define the valuation se-
quence {γi =

∑
j∈N γi,j} (Definition 3.4) and we show that the Betti numbers

of M can be obtained from the valuation sequence of (F., δ.) by zero and neg-
ative consecutive cancellations (see Theorem 3.6). Briefly, starting from given
sequences {cij} and {ci =

∑
j∈N ci,j}, we fix an index i, and choose j and j′

such that j ≤ j′ and cij , ci−1,j′ > 0. Then replace cij by cij − 1 and ci−1,j′ by
ci−1,j′−1, and accordingly, replace in the second sequence ci by ci−1 and ci−1
by ci−1 − 1. This substitution is called an i negative consecutive cancellation
when j < j′ and an i zero consecutive cancellation when j = j′.

Theorem 3.6 can help to study the minimal free resolution of some mod-
ules through suitable filtered free resolutions. For example, in Section 4, we
introduce a filtered free resolution for a given submodule of a free R-module
by applying the mapping cone technique. This resolution is different from the
special filtered free resolution defined by Robbiano, and in some cases it is
more convenient to apply Theorem 3.6 for this resolution instead of getting
information via [10, Theorem 3.1] (see Example 4.8 and Corollary 4.9).

Let us explain this idea in more details. Assume that M is a submodule of a
filtered free R-module

⊕s
i=1R(−νi) and f ∈

⊕s
i=1R(−νi) \M is of valuation

d. Then we have the following short exact sequence of filtered modules:

0→ R/(M : (f))(−d)→
s⊕
i=1

R(−νi)/M →
s⊕
i=1

R(−νi)/(M + (f))→ 0.

We prove that the mapping cone technique gives us a filtered free resolu-
tion of

⊕s
i=1R(−νi)/(M + (f)). So, we can apply Theorem 3.6 and de-

scribe the admissible consecutive cancellations in the filtered free resolution of⊕s
i=1R(−νi)/(M+(f)) obtained by the mapping cone technique (see Corollary

4.4).
It is clear that in general, the result of the mapping cone is not a mini-

mal free resolution even if we initially consider the minimal free resolutions of
R/(M : (f))(−d) and

⊕s
i=1R(−νi)/M . In Theorem 4.7, we present a sufficient

condition for minimality of such resolution. The importance of this result is
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distinguished when we apply it for classes of modules in which Theorem 4.7
can compute the Betti numbers while [10, Theorem 3.1] determines some pos-
sible consecutive cancellations that actually do not happen. This situation will
occur in Example 4.8 and Corollary 4.9. In Corollary 4.9, using Theorem 4.7,
we compute Betti numbers of stretched Artinian local rings of almost maximal
Cohen-Macauly type.

In the last section, we give another application of our approach in the graded
setting. Let σ be a term ordering on the set of monomials of P . It is well-known
that the graded Betti numbers of a graded ideal I of P can be obtained from
those of LTσ(I) by zero consecutive cancellations (see [3, Corollary 1.21]). We
present a stronger version of this theorem that predicts the place of possible
zero consecutive cancellations more precisely.

First, we equip the polynomial ring P with a (Zn, σ)-filtration on P which is
called σ-Gröbner filtration and we discuss standard basis theory in this setting.
We consider P as a Nn-graded (or multigraded) ring and each monomial ideal
as a homogeneous (multigraded) ideal. So we can talk about multigraded
Betti numbers of monomial ideals. By a natural modification in the proof of
Theorem 3.6 and its prerequisites, we show that the graded Betti numbers of
I can be gotten from the multigraded Betti numbers of LTσ(I) by a sequence
of so-called σ-consecutive cancellations (see Definition 5.4 and Theorem 5.5).
Since I is a graded ideal, each σ-consecutive cancellation should be also a zero
consecutive cancellation. So, we can say that the graded Betti numbers of
I can be obtained from those of LTσ(I) by a sequence of zero σ-consecutive
cancellations (see Corollary 5.6). Note that often, the number of possible zero
σ-consecutive cancellation is less than the number of possible zero consecutive
cancellations. For instance, Examples 5.7 and 5.8 both contain cancellations
(e.g. P (−5), P (−5)) that are a priori admissible by [3, Corolllary 1.21], but are
not in fact admissible by Corollary 5.6.

2. Preliminaries on filtered modules

In this section we collect necessary notations, definitions and some known
results which will be used in this paper.

Throughout the paper (R, n) is a regular local ring with the residue field
k. If dim(R) = n, then the associated graded ring grn(R) with respect to the
n-adic filtration is the polynomial ring P = k[x1, . . . , xn]. Let M be a finitely
generated R-module. We say, according to the notation in [11], that a filtration
of submodules M = {Mn}n≥0 on M is an n-filtration if nMn ⊆Mn+1 for every
n ≥ 0, and a stable n-filtration if nMn = Mn+1 for all sufficiently large n. In
the following a filtered module M will be always an R-module equipped with a
stable n-filtration M.

If M = {Mj} is a stable n-filtration of M , define

grM(M) =
⊕
j≥0

(Mj/Mj+1)
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which is a graded P = grn(R)-module in a natural way. It is called the associ-
ated graded module to the filtration M.

To avoid triviality, we assume that grM(M) is not zero or equivalentlyM 6= 0.
If N is a submodule of M, by Artin-Rees Lemma, the sequence {N∩Mj | j ≥ 0}
is a stable n-filtration of N . Since

(1) (N ∩Mj)/(N ∩Mj+1) ' (N ∩Mj +Mj+1)/Mj+1,

grM(N) is a graded submodule of grM(M).
If m ∈M \{0}, we denote by νM(m) the largest integer p such that m ∈Mp

(the so-called valuation of m with respect to M) and we denote by grM(m) the
residue class of m in Mp/Mp+1 where p = νM(m). If m = 0, we set νM(m) =
+∞. It is clear that if f ∈ R is a unit element, then νM(fm) = νM(m). An
element m ∈M is a lifting of an element x ∈ grM(M) if grM(m) = x.

Using (1), it is clear that grM(N) is generated by the elements grM(x) with
x ∈ N . When the filtration is clear from the context we denote by N∗ the
associated graded module grM(N). So,

N∗ := grM(N) = 〈grM(x) : x ∈ N〉.

On the other hand it is clear that {(N +Mj)/N | j ≥ 0} is a stable n-filtration
of M/N which we denote by M/N. These graded modules are related by the
graded isomorphism

grM/N (M/N) ' grM(M)/grM(N).

Let I be an ideal of R and (A,m) = (R/I, n/I). If we consider the n-adic
filtration on R, then grn/I(R/I) = P/I∗ is the associated graded ring of A with
respect to the m-adic filtration.

Given R-modues M and N , let M and N be stable n-filtrations of M and N
respectively. We define a new filtration as follows

M⊕ N : M ⊕N ⊇M1 ⊕N1 ⊇ · · · ⊇Mn ⊕Nn ⊇ · · · .

It is easy to see that M ⊕ N is a stable n-filration on the R-module M ⊕ N .
Moreover, for any (m,n) ∈M ⊕N we have

νM⊕N(m,n) = min{νM(m), νN(n)}.

So for filtered free R-modules we have:
Let F={Fn}n≥0 be a filtration on a freeR-module F =

⊕s
i=1Rei ((e1, . . . , es)

is the canonical basis of F ). If each Fn is a direct sum of ideals, then

(2) νF(

s∑
i=1

giei) = min{νF(giei) | 1 ≤ i ≤ s, gi 6= 0}.

Note that working with canonical basis is a crucial point to have the equality
(2). Let us explain this fact by the following example:
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Example 2.1. Let R = k[[x]] and F = R⊕R with the filtration F = {Fn}n≥0
where

F0 = R⊕R, F1 = R⊕R, F2 = R⊕ nR, F3 = nR⊕ nR, F4 = nR⊕ n2R

and
∀i ≥ 5, Fi = nFi−1.

If we let ξ1 = (1, 1) and ξ2 = (0, 1), then (ξ1, ξ2) is a basis of F and we have
νF(xξ1) = νF(−xξ2) = 3 while νF((x, 0)) = 4 and (x, 0) = xξ1 − xξ2.

For completeness we collect, in this section, a part of the well known results
concerning the standard basis of filtered modules.

Definition 2.2. If M and N are filtered R-modules and f : M → N is
an R-homomorphism, f is said to be a homomorphism of filtered modules if
f(Mp) ⊆ Np for every p ≥ 0 and f is said strict if f(Mp) = f(M) ∩ Np for
every p ≥ 0.

The morphism of filtered modules f : M → N clearly induces a morphism
of graded P -modules

gr(f) : grM(M)→ grN(N).

It is clear that gr(·) is a functor from the category of the filtered R-modules
into the category of the graded P -modules. Furthermore we have a canonical
embedding (ker f)∗ → ker(gr(f)).

Definition 2.3. Let F =
⊕s

i=1Rei be a free R-module of rank s and ν1, . . . , νs
be integers. We define the filtration F = {Fp : p ∈ Z} on F as follows

Fp :=

s⊕
i=1

np−νiei = {(a1, . . . , as) : ai ∈ np−νi}.

We denote the filtered free R-module F by
⊕s

i=1R(−νi) and we call it a special
filtration on F.

So when we write F =
⊕s

i=1R(−νi) it means that we consider the free
module F of rank s with the special filtration defined above. It is clear that F
is an n-stable filtration. For the canonical basis (e1, . . . , es) of F , νF(ei) = νi.
It is obvious that grF(F ) =

⊕
p Fp/Fp+1 is isomorphic as a P = grn(R)-module

to
⊕s

i=1 grn(R)(−νi) =
⊕s

i=1 P (−νi).
The canonical basis (grF(e1), . . . , grF(es)) of grF(F ) will be simply denoted

by (e1, . . . , es). Note that R with the n-adic filtration is the filtered module
R(0).

Let c = (c1, . . . , cs) be an element of F. By the definition of the filtration F
on F, we have

νF(c) = min{νR(ci) + νi : 1 ≤ i ≤ s}.
Set grF(c) = (c′1, . . . , c

′
s) and ν = νF(c), then

c′i =
{ grn(ci) if νR(ci) + νi = ν,

0 if νR(ci) + νi > ν.



1082 L. SHARIFAN

Let M be a finitely generated filtered R-module and S = {f1, . . . , fs} be a
system of elements of M and let νM(fi) be the corresponding valuations. As in
Definition 2.3, let F =

⊕s
i=1Rei be a free R-module of rank s equipped with

the filtration F where νi = νM(fi). Then we denote the filtered free R-module
F by

⊕s
i=1R(−νM(fi)), hence νF(ei) = νM(fi).

Let φ : F →M be a morphism defined by

φ(ei) = fi.

It is clear that φ is a morphism of filtered modules and grF(F ) is isomorphic
to the graded free P -module

⊕s
i=1 P (−νM(fi)) with a basis (e1, . . . , es) where

deg(ei) = νM(fi). In particular φ induces a natural graded morphism (of degree
zero) gr(φ) : grF(F )→ grM(M) sending ei to grM(fi) = f∗i .

Definition 2.4. Let M be a filtered R-module. A subset S = {f1, . . . , fs} of
M is called a standard basis of M if

grM(M) = 〈grM(f1), . . . , grM(fs)〉.

Recall that we denote by Syz(f1, . . . , fs) the submodule of F generated by
the first syzygies of f1, . . . , fs,. Likewise let Syz(grM(f1), . . . , grM(fs)) be the
module generated by the first syzygies of grM(f1), . . . , grM(fs). By following
the basic idea of Robbiano and Valla in [8], Shibuta in [15] (see also [10])
characterized the standard basis of filtered modules as follows.

Theorem 2.5. Let M be a filtered R-module and f1, . . . , fs ∈M . The follow-
ing facts are equivalent:

(1) {f1, . . . , fs} is a standard basis of M.
(2) {f1, . . . , fs} generates M and every element of

Syz(grM(f1), . . . , grM(fs)) can be lifted to an element in Syz(f1, . . . , fs).
(3) {f1, . . . , fs} generates M and

Syz(grM(f1), . . . , grM(fs)) = grF(Syz(f1, . . . , fs)).

Since computing the minimal free resolution of M is the central goal of our
work, here we discuss minimizing of a given free resolution. We try to clarify
the method explained in [4, Pages 127 and 167].

Let {f1, . . . , fs} be a system of generators for M andM be a matrix whose
columns generate Syz(f1, . . . , fs). Then {f1, . . . , fs} is a minimal system of
generators of M if and only if all the entries of M are non-units. If it is not
the case, we can perform a sequence of elementary column operations (i.e.,
adding a multiple of one column to another and multiplying any column by a

unit element) to produce a reduced column form matrix M̃. Where by reduced

column form matrix, we mean that in each column of M̃ if we have some unit
entries, then the leading unit entry is 1 and it is the only non-zero entry in its

row. Of course the columns of M̃ again generate Syz(f1, . . . , fs) and if i1, . . . , ir
(resp. j1, . . . , jr) are the numbers of the rows (resp. columns) of the leading
1s, then {f1, . . . , fs} \ {fi1 , . . . , fir} is a minimal system of generators for M .
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Moreover, by deleting the rows i1, . . . , ir and the columns j1, . . . , jr of M̃, we
get a matrix whose columns generate the syzygy module of the remaining fis.

Let (F., δ.) be an R-free resolution of M . For each j ∈ N ∪ {0}, the differ-
ential δj is given by a matrix Mj . These matrices are called the differential
matrices (note that they depend on the chosen basis of Fjs). Following the
above discussion, we can construct a minimal free resolution of M starting

from (F., δ.). Let j be the least integer that Mj has a unit entry and M̃j be

the reduced column form ofMj . Assume that the leading 1s of M̃j occur in the
rows i1, . . . , ir and in the columns j1, . . . , jr. We delete the columns i1, . . . , ir
ofMj−1 and the rows j1, . . . , jr ofMj+1. Also we replaceMj with the matrix

obtained from M̃j by deleting the rows i1, . . . , ir and the columns j1, . . . , jr
and we do not change the other Mis. Corresponding to this new matrices, we
obtain a free resolution of M that we show it again by (F., δ.). Note that now
for each i ≤ j the differential matrix Mi does not have unit entries. Starting
from this new resolution, we repeat the above procedure. Continuing in this
way, we get a minimal free resolution of M .

3. Filtered free resolutions

Let M be a filtered module. The aim of this section is to study the minimal
R-free resolutions of M starting from a filtered free resolution of M . In the
rest of the paper, a filtration on a free R-module ⊕si=1Rei is as H = {Hn}n≥0
where each Hn is a direct sum of ideals of R. In the following, we first recall
some definitions.

Definition 3.1. Let (F., δ.) be a complex of R-modules. We say (F., δ.) is
a complex of filtered modules if each Fi is a filtered module and each δi is a
homomorphism of filtered modules.

Definition 3.2. Let M be a filtered module. A filtered free resolution of M is
a free resolution (F., δ.) of M :

· · · δ2−→ F1
δ1−→ F0

δ0−→M

which is a complex of finitely generated filtered modules.

Definition 3.3 ([10]). Let {cij}i,j∈N be a sequence of integers and for each i
let ci =

∑
j∈N cij . Starting from the sequences {cij} and {ci} we obtain new

sequences by a consecutive cancellation as follows: fix an index i, and choose j
and j′ such that j ≤ j′ and cij , ci−1,j′ > 0; then replace cij by cij−1 and ci−1,j′

by ci−1,j′ − 1, and accordingly, replace in the second sequence ci by ci − 1 and
ci−1 by ci−1 − 1. If j < j′, we call it an i negative consecutive cancellation and
if j = j′, an i zero consecutive cancellation.

A sequence of consecutive cancellations will mean a finite number of consec-
utive cancellations performed on given sequences {cij} and {ci =

∑
j∈N cij}.
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Finally, we define the valuation sequence and the valuation matrices of a
filtered free resolution. Note that the valuation sequence often plays the same
role as the graded Betti table of a graded module, but we want to point out
that there are important differences because the valuation sequence is not in-
dependent of the chosen filtered free resolution.

Definition 3.4. Assume that (F., δ.) is a filtered free resolution of M and
each Fi is of rank γi. For each i fix a basis Bi = (ξi1, . . . , ξiγi) of Fi (as a
permutation of the canonical basis (e1, . . . , eγi)) in such a way that νFi

(ξi1) ≤
· · · ≤ νFi

(ξiγi). For example, if F is the filtered free module defined in Example
2.1, we consider the basis (ξ1, ξ2) where ξ1 = e2 and ξ2 = e1. For each j ∈ N,
let γi,j = |{ξir | 1 ≤ r ≤ γi, νFi(ξir) = j}|. It is clear that γi =

∑
j∈N γi,j .

We say that B = {Bi} is an ordered basis of (F., δ.) and {γi,j} is the valuation
sequence of (F., δ.).

Let 1 ≤ s ≤ γi, 1 ≤ r ≤ γi−1 and set urs = νFi
(ξis)− νFi−1

(ξi−1r). Then the
matrix Ui = (urs) is called the i-th valuation matrix of (F., δ.) with respect to
B.

Let us compute the valuation sequence and matrices for the following exam-
ple.

Example 3.5. Let C be the field of complex numbers and I = 〈x2 +xy3, xy+
z3, xz3 − xy4 + y2z4〉 be an ideal of R = C[[x, y, z]]. Considering the n-adic
filtration on R, R/I has the following filtered free resolution.

F. : 0→R(−6)⊕R(−9)⊕R(−11)→ R(−3)⊕R2(−5)

⊕R2(−7)⊕R(−8)⊕R2(−10)

→R2(−2)⊕R(−4)⊕R2(−6)⊕R(−9)→ R,

where each Fi considered with a special filtration and the differential matrices
are respectively:

M1 =
(
xy + z3 x2 + xy3 xz3 − xy4 + y2z4 y2z4 −z6 + y4z3 y6z3

)
,

M2 =


x z3 − y4 −xy3 − y2z3 + y6 0 y5z 0 0 y9

−y 0 z3 0 0 0 0 0
−1 −y −x+ y3 z3 y2z 0 0 y6

1 y x+ z2 − y3 −z3 −x− y3 − y2z z2 y4 −y6
0 1 0 x 0 y2 0 0
0 0 −1 0 0 −1 −z −x− y3

 and

M3 =



z3 0 0
−x+ y3 y5 0

y 0 0
1 y2 0
0 −z2 y4

−y −x− y3 0
0 0 x+ y3

0 1 −z


.
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Here for each i, Bi is the canonical basis, νF0
(ξ01) = 0, νF1

(ξ11) = νF1
(ξ12) = 2,

νF1
(ξ13) = 4, νF1

(ξ14) = νF1
(ξ15) = 6, νF1

(ξ16) = 9, νF2
(ξ21) = 3, νF2

(ξ22) =
νF2(ξ23) = 5. Similarly, the valuations of other entries of B2 and B3 can be read.
The non-zero terms of the valuation sequence of (F., δ.) are γ0,0 = 1, γ1,2 =
γ1,6 = 2, γ1,4 = γ1,9 = 1, γ2,3 = γ2,8 = 1, γ2,5 = γ2,7 = γ2,10 = 2, γ3,6 =
γ3,9 = γ3,11 = 1. The valuation matrices of (F., δ.) are

U1 =
(

2 2 4 6 6 9
)
,

U2 =


1 3 3 5 5 6 8 8
1 3 3 5 5 6 8 8
−1 1 1 3 3 4 6 6
−3 −1 −1 1 1 2 4 4
−3 −1 −1 1 1 2 4 4
−6 −4 −4 −2 −2 −1 1 1

 ,

U3 =



3 6 8
1 4 6
1 4 6
−1 2 4
−1 2 4
−2 1 3
−4 −1 1
−4 −1 1


.

As we can see above, for the (r, s)th entry of Ui, say urs, and the (r, s)th entry
of Mi, say mi

rs, we have

urs ≤ νn(mi
rs) and ∀s ∃j; ujs = νn(mi

js).

Theorem 3.6. Let M be a filtered R-module, (F., δ.) be a filtered free resolu-
tion of M with the ordered basis B and the sequence {γi =

∑
j∈N γi,j} be the

valuation sequence of (F., δ.). Then the Betti numbers of M can be obtained
from {γi} by a sequence of zero and negative consecutive cancellations.

Proof. For each i letMi = (mi
rs) be the matrix of δi with respect to B = {Bi}

where Bi = {ξi1, . . . , ξiγi} and Ui = (urs) be the i-th valuation matrix of (F., δ.)
with respect to B. Then for each 1 ≤ s ≤ γi, δi(ξis) =

∑
mi
rsξi−1r and since

δi is a morphism of filtered modules, νFi
(ξis) ≤ νFi−1

(δi(ξis)). Note that by
Equation (2),

νFi−1
(δi(ξis)) = min{νFi−1

(mi
rsξi−1r) | 1 ≤ r ≤ γi−1, mi

rs 6= 0}.

So for each 1 ≤ r ≤ γi−1, if mi
rs 6= 0, then νFi−1(mi

rsξi−1r) ≥ νFi(ξis). Moreover

if mi
rs is a unit element, then νFi−1(mi

rsξi−1r) = νFi−1(ξi−1r) and consequently

νFi−1
(ξi−1r) ≥ νFi

(ξis). This shows that if mi
rs is a unit, then urs is not positive.

Now, assume that j is the least integer thatMj has unit entries. Following
the procedure described in Section 2 we can perform a sequence of elemen-

tary column operations on Mj to produce a reduced column form M̃j such
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that the entries of Uj corresponding to the leading 1s of M̃j are non-positive.
Assume that ui1j1 , . . . , uirjr is the mentioned entries. The sequences {γi,j}
and {γi =

∑
j∈N γi,j} admit some i-negative and zero consecutive cancellations

corresponding to ui1j1 , . . . , uirjr .

As we explained in Section 2, we can obtain a free resolution (F̃., δ̃.) of M
just by changing the matrices Mj−1,Mj and Mj+1. It is enough to delete
the columns i1, . . . , ir ofMj−1, delete the rows j1, . . . , jr ofMj+1 and replace

Mj with the matrix obtained from M̃j by deleting the rows i1, . . . , ir and the

columns j1, . . . , jr. It is clear that the matrix of δ̃i has no unit entries for each
i ≤ j and for each i > j the eventually remaining unit entries of the matrix of

δ̃i still correspond to the non-positive entries of the valuation matrix Ui.

We can repeat the procedure on (F̃., δ̃.) until we get a minimal free resolution
of M . �

If (F., δ.) is a complex of finitely generated freeR-modules, a special filtration
on F. is a special filtration on each Fi that makes (F., δ.) a complex of filtered
modules. Next goal is to consider special filtration on an R-free resolution of a
filtered module M.

The following result presented in [7] (and also [9, Theorem 1.8]) gives a com-
parison between an R-free resolution of M and a P -free resolution of grM(M).
The result will be an important tool in the rest of the paper.

Theorem 3.7. Let M be a filtered R-module and

G. : · · · →
βl⊕
i=1

P (−ali)
dl→

βl−1⊕
i=1

P (−al−1i)
dl−1→ · · · d1→

β0⊕
i=1

P (−a0i)
d0→ grM(M)

be the minimal graded P -free resolution of grM(M). Then we can build up
an R-free resolution (F., δ.) of M and a special filtration F on it such that
grF(F.) = G..

In Theorem 3.7, (F., δ.) is defined by inductive process focused on Theorem

2.5. For each j ≥ 0, Fj is the filtered free R-module Fj =
⊕βj

i=1R(−aji) and
each δj is a strict morphism. So, each finitely generated filtered module M has
a filtered free resolution (F., δ.) whose valuation sequence is the sequence of
the graded Betti numbers of grM(M).

Note that the R-free resolution of M , given in Theorem 3.7, is not necessarily
minimal. A filtered module M is said to be of homogeneous type with respect
to the given filtration M if βi(grM(M)) = βi(M) for every i ≥ 0.

The following theorem is one of the main results of [10]. Note that there is
an obvious difference between Theorem 3.6 and the next theorem. Actually,
thanks to good properties of the resolution of Theorem 3.7, we can say that
only negative consecutive cancellations happen when the valuation sequence is
the sequence of the graded Betti numbers of grM(M).
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Theorem 3.8 ([10, Theorem 3.1]). Let M be a filtered R-module and {βi =∑
j∈N βi,j} be the sequence of the Betti numbers of grM(M). The Betti numbers

of M as an R-module can be obtained from {βi} by a sequence of negative
consecutive cancellations.

4. Resolutions by mapping cones

In this section, we consider filtered free resolutions of a module that are
obtained by the mapping cone technique and we apply Theorem 3.6 for these
resolutions in order to get some information about the minimal free resolution
of the underlying module.

Definition 4.1. Let (F., δ.) and (G., d.) be two complexes of filtered modules.
Then a filtered chain map f : (G., d.)→ (F., δ.) is a sequence of homomorphism
of filtered modules fn : Gn → Fn such that for each n, fndn+1 = δn+1fn+1.

Theorem 4.2 (Comparison Theorem). Let M and M ′ be two filtered R-
modules and f : M →M ′ be a filtered homomorphism. Consider the diagram

· · ·→P2
d2→ P1

d1→ P0
d0→M → 0

f↓

· · ·→P ′2
δ2→ P ′1

δ1→ P ′0
δ0→M ′ → 0

where the rows are complexes of finitely generated filtered modules. If each Pn
in the top row is projective and if the bottom row is exact, then there exists
a filtered chain map f making the completed diagram commute, provided that
each δi is strict.

Proof. By [12, Theorem 6.9] we have a chain map f making the completed
diagram commute. Since each δi is a strict morphism, ifm ∈ Pn has valuation d,
then we can define fn(m) with νP′n(fn(m)) ≥ d. So the conclusion follows. �

Definition 4.3. Given any filtered R-module M , we can form a new filtered
R-module by shifting the filtration on M as follows: if n is any integer, de-
fine M(n) to be equal to M as an R-module but its filtration defined by
M(n)k = Mn+k. It is clear that the corresponding associated graded mod-
ule is grM(M)(n).

In the following, assume that M is a submodule of the filtered free R-module⊕s
i=1R(−νi) and f ∈

⊕s
i=1R(−νi)\M is an element of valuation d. We equip

R with the usual n-adic filtration we have the following short exact sequence
of filtered modules:

0→ R/(M : (f))(−d)→
s⊕
i=1

R(−νi)/M →
s⊕
i=1

R(−νi)/(M + (f))→ 0.

Assume that (G., d.) is a filtered free resolution of R/(M : (f))(−d) and
(F., δ.) is a filtered free resolution of

⊕s
i=1R(−νi)/M . If each δi is a strict
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morphism, then, by the Comparison Theorem there exists a filtered chain map
f : (G., d.)→ (F., δ.). Now, the mapping cone M(f) is the complex such that

M(f)i = Fi ⊕Gi−1
with the differential map

φi(x, y) = (fi−1(y) + δi(x),−di−1(y)).

Since each fi, δi and di is a homomorphism of filtered modules, it is clear that
δis are homomorphisms of filtered modules. So, the mapping cone is a filtered
free resolution of

⊕s
i=1R(−νi)/(M+(f)). Next, we apply Theorem 3.6 for the

result of the mapping cone.

Corollary 4.4. With the notations as above,
(1)

⊕s
i=1R(−νi)/(M + (f)) has a filtered free resolution constructed by the

mapping cone technique.
(2) If for each i, j we let

(3) γi,j = βi,j(

s⊕
i=1

P (−νi)/M∗) + βi−1,j−d(P/(M : (f))∗) and {γi =
∑
j∈N

γi,j}

then the Betti numbers of
⊕s

i=1R(−νi)/(M + (f)) can be obtained from {γi}
by a sequence of zero and negative consecutive cancellations.

Proof. (1) By Theorem 3.7, we can build up a filtered free resolution (G., d.)
of R/(M : f) with the valuation sequence

{βi(P/(M : f)∗) =
∑
j∈N

βi,j(P/(M : f)∗)}.

The shifted complex (G.(−d), d.) is a filtered free resolution of R/(M : f)(−d).
Again by Theorem 3.7, we can get a filtered free resolution (F., δ.) of

s⊕
i=1

R(−νi)/M

such that each δi is a strict morphism and the corresponding valuation sequence
is

{βi(
s⊕
i=1

P (−νi)/M∗) =
∑
j∈N

βi,j(

s⊕
i=1

P (−νi)/M∗)}.

Now, we can apply the mapping cone technique as described just before the
theorem and find a filtered free resolution of

⊕s
i=1R(−νi)/(M + (f)) whose

valuation sequence is given by the Equation (3).
(2) follows by (1) and Theorem 3.6. �

In the next example, we give two different filtered free resolutions for an ideal
and compare these resolutions with the minimal free resolution of the ideal.
Note that these resolutions are constructed by the mapping cone technique.
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Example 4.5. Let

I = 〈z2 + x3, zx2 + y3, zxy2, x2yz〉 ⊂ R = C[[x, y, z]].

Considering the n-adic filtration and let

J1 = 〈z2 + x3, zx2 + y3, zxy2〉

and

J2 = 〈x2yz, zx2 + y3, zxy2〉.
Then computations show that

J∗1 = 〈z2, x2z + y3, xy2z, x6, x4y2〉, J∗2 = J2,

L1 = J1 : 〈x2yz〉 = 〈y, xz, x3 + z2〉, L∗1 = 〈y, xz, z2, x4〉
and

L2 = J2 : 〈z2 + x3〉 = J2.

The graded minimal free resolution of P/L∗1 is

0→P (−4)⊕ P (−6)→ P 3(−3)⊕ P 2(−5)

→P (−1)⊕ P 2(−2)⊕ P (−4)→ P → P/L∗1

and the graded minimal free resolution of P/J∗1 is

0→P (−6)⊕ P (−10)→ P 3(−5)⊕ P 2(−7)⊕ P (−8)

→P (−2)⊕ P (−3)⊕ P (−4)⊕ P 2(−6)→ P → P/J∗1 .

So, by the mapping cone technique, R/I has the following filtered free resolu-
tion:

F1. : 0→R(−8)⊕R(−10)→ R(−6)⊕R3(−7)⊕R2(−9)⊕R(−10)

→R4(−5)⊕R2(−6)⊕R2(−7)⊕R2(−8)

→R(−2)⊕R(−3)⊕R2(−4)⊕R2(−6)→ R→ R/I.

On the other hand, the graded minimal free resolution of P/J∗2 is

0→ P (−5)⊕ P (−6)→ P (−3)⊕ P 2(−4)→ P → P/J∗2 .

Since J∗2 = L∗2, by the mapping cone technique R/I has the following filtered
free resolution:

F2. : 0→R(−7)⊕R(−8)→ R2(−5)⊕R3(−6)

→R(−2)⊕R(−3)⊕R2(−4)→ R→ R/I.

Note that F2. is itself a minimal free resolution and we don’t need any can-
cellation while F1. is not minimal and we need 7 consecutive cancellations
and one of them is (R(−10), R(−10), 0, 0) which means that at least one zero
cancellation happens.
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If (G., d.) and (F., δ.) are arbitrary free resolutions of R/(M : f) and⊕s
i=1R(−νi)/M respectively, then we can apply the mapping cone technique

and get a free resolution of
⊕s

i=1R(−νi)/(M + (f)). It is clear that in general,
the result is not a minimal free resolution of

⊕s
i=1R(−νi)/(M + (f)) even if

both (G., d.) and (F., δ.) are minimal. Below, we find a sufficient condition for
the minimality of (M(f), φ.). We first need the following definition.

Definition 4.6. Assume that M and M ′ are two filtered R-modules and f :
M →M ′ be a filtered homomorphism. Let (G., d.) and (F., δ.) be the minimal
free resolutions of grM(M) and grM′(M

′) respectively. Assume that

Gj =

βj⊕
i=1

P (−aji)

and

Fj =

β′j⊕
i=1

P (−bji)

where aj1 ≤ · · · ≤ ajβj
and bj1 ≤ · · · ≤ bjβ′j .

Let 1 ≤ s ≤ βj , 1 ≤ r ≤ β′j and urs := ajs − bjr. Then the matrix
Uj(M,M ′) = (urs) is called the j-th degree matrix of the pair (M,M ′). The
matrix Uj(M,M ′) is called a positive matrix when all entries of it are positive.

Theorem 4.7. If M is a submodule of
⊕s

i=1R(−νi) and f ∈
⊕s

i=1R(−νi)\M ,
then the free resolution of

⊕s
i=1R(−νi)/(M + (f)) constructed by the map-

ping cone technique is minimal provided that for each j ≤ pd(P/(M : f)∗),
Uj(R/(M : (f))(−d),

⊕s
i=1R(−νi)/M) is a positive matrix.

Proof. In order to prove theorem, it is enough to show that for each j ≥ 0,

βj(

s⊕
i=1

R(−νi)/(M + (f))) = βj(

s⊕
i=1

R(−νi)/M) + βj−1(R/(M : f)).

Let (G., d.) and (F., δ.) be filtered free resolutions of R/(M : (f))(−d) and⊕s
i=1R(−νi)/M coming from the minimal free resolutions of P/(M : (f))∗(−d)

and
⊕s

i=1 P (−νi)/M∗ respectively. Then (M(f), φ.) is a filtered free resolution
of
⊕s

i=1R(−νi)/(M + (f)) with the valuation sequence as (3).
Let for each r, Mr (resp. Nr) be the matrix of δr (resp. dr) with respect

to the ordered basis of Fr and Fr−1 (resp. Gr and Gr−1). Also assume that
for each r, Or is the matrix of fr : Gr → Fr. Then, by the mapping cone
construction, the matrix of φr, with respect to the corresponding basis of Fr ⊕
Gr−1 and Fr−1 ⊕Gr−2, is denoted by M′r, has the following shape:

M′r =

(
Mr Or−1

0 −Nr−1

)
.

Since for each r, Ur(R/(M : (f))(−d),
⊕s

i=1R(−νi)/M) is a positive matrix,
all the unit entries of M′r lie in the submatrix Mr or Nr−1 and correspond to
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the negative entries of the rth valuation matrix of (F., δ.) or r − 1th valuation
matrix of (G., d.).

Now, let j be the least integer that M′j has some unit entries. Then one
can do the elementary column operations to produce a reduced column form

matrix M̃′j in such a way that the following conditions hold:

1) The entries of the jth valuation matrix of (M(f), φ.) corresponding to the

leading 1s of M̃′j are negative and belong to one of the submatrices coincide

with the jth valuation matrix of (F., δ.) or the j − 1th valuation matrix of
(G., d.).

2) The submatrix of M̃′j correspond to Mj is the reduced column form of

Mj and the submatrix of M̃′j correspond to −Nj−1 is the reduced column
form of −Nj−1.

The above discussion shows that in the same time we are doing the mini-
mizing method for (F., δ.) and (G., d.) too.

Doing the corresponding cancellations, we see that

∀i < j, βi(

s⊕
i=1

R(−νi)/(M + (f))) = βi(

s⊕
i=1

R(−νi)/M) + βi−1(R/(M : f)).

Continuing in this way, we can see that for each i, the necessary cancellations
we need to perform on the sequence (3) in order to find βi(

⊕s
i=1R(−νi)/(M +

(f))) correspond to the necessary cancellations in {βi(
⊕s

i=1 P (−νi)/M∗)} for
finding βi(

⊕s
i=1R(−νi)/M) or correspond to the necessary cancellations in

{βi(P/(M : f)∗} for finding βi−1(R/M : f). So the conclusion follows. �

Example 4.8. Consider the ideals I = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x21−
x32 − x33〉 and J = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉 of the power series ring
C[[x1, x2, x3, x4]]. Then I = J + 〈x21 − x32 − x33〉 and L = J : 〈x21 − x32 − x33〉 =
〈x1x2, x2x3, x1x3, x4〉. Consider the n-adic filtration, the graded minimal free
resolution of P/L∗(−2) is

0→ P 2(−6)→ P 5(−5)→ P (−3)⊕ P 3(−4)→ P (−2)→ P/L∗(−2)

and the graded minimal free resolution of P/J∗ is

0→ P 3(−4)→ P 8(−3)→ P 6(−2)→ P → P/J.

So,

U0(R/L(−2), R/J) =
(

2
)
,

U1(R/L(−2), R/J) =


1 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2
1 2 2 2

 ,
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U2(R/L(−2), R/J) =



2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
.2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2


,

U3(R/L(−2), R/J) =

 2 2
2 2
2 2

 .

So, by Theorem 4.7, for each j ≥ 0,

βj(R/I) = βj(R/J) + βj−1(R/J : 〈x21 − x32 − x33〉).

Now, since both R/J and R/J : 〈x21 − x32 − x33〉 are of homogeneous type, the
minimal free resolution of R/I is

0→ R2 → R8 → R12 → R7 → R→ R/I.

In fact the filtered free resolution constructed by the mapping cone technique
is the minimal free resolution of R/I. Note that

I∗ = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x21, x42, x43〉

and the graded minimal free resolution of P/I∗ is

0→P (−5)⊕ P 2(−7)→ P 6(−4)⊕ P 6(−6)→ P 11(−3)⊕ P 6(−5)

→P 7(−2)⊕ P 2(−4)→ P → P/I∗.

By Theorem 3.7, we can build up a filtered free resolution (F., δ.) of P/I
whose valuation sequence is {βi(P/I∗) =

∑
j∈N βi,j(P/I

∗)}. By Theorem 3.8,

the Betti numbers of R/I can be obtained from this sequence by some neg-
ative consecutive cancellations. Actually the necessary negative consecutive
cancellations on (F4, F3, F2, F1) are (0, 0, R(−3), R(−4)), (0, 0, R(−3), R(−4)),
(0, R(−4), R(−5), 0), (0, R(−4), R(−5), 0), (0, R(−4), R(−5), 0) and (R(−5),
R(−6), 0, 0).

As we see, in this example the result of the mapping cone is much better
than the filtered free resolution described in Theorem 3.7. One reason may be
the fact that both R/J and R/(J : 〈x21 − x32 − x33〉) are of homogeneous type
while R/I is not.

We end this section by an application of Theorem 4.7, in finding Betti num-
bers of a class of Artinian local rings. Recall that an Artinian local ring
(A,m) = (R/I, n/I) is called stretched when m2 is minimally generated by
one element.
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Corollary 4.9. Let A = R/I be a stretched Artinian local ring with the Cohen-
Macaulay type τ(A) = n− 1 and socle degree s ≥ 2. Then

βi(R/I) = i

(
n

i+ 1

)
+ (n− 1)

(
n− 1

i− 1

)
.

Proof. By [2, Theorem 3.1] one can find a set of generators {X1, . . . , Xn} of n
such that the ideal I is minimally generated by

{XiXj}1≤i<j≤n, {X2
j }2≤j≤n−1, {X2

n −Xs
1}.

If J is the ideal generated by all generators of I except X2
n − Xs

1 , then I =
J + 〈X2

n−Xs
1〉 and L = J : 〈X2

n−Xs
1〉 = 〈X1Xn, X2, . . . , Xn−1〉. Consider the

n-adic filtration, L∗ is generated by the regular sequence x1xn, x2, . . . , xn−1.
So its graded minimal free resolution is given by the Koszul complex and we
have

βi,j(P/L
∗) =


(
n−2
i

)
, j = i;(

n−2
i−1
)
, j = i+ 1;

0, otherwise.

Let

J∗1 = 〈xixj , 1 ≤ i < j ≤ n〉,
then

J∗ = J∗1 + 〈x2j , 2 ≤ j ≤ n− 1〉.
By [14, Theorem 4.1] the minimal free resolution of P/J∗ is computed by
iterated mapping cone starting from the minimal free resolution of P/J∗1 and
we have

βi,i+1(P/J∗) =

{
i
(
n
i+1

)
+ (n− 2)

(
n−1
i−1
)
, j = i+ 1;

0, otherwise.

So for each i, all the entries of Ui(R/L(−2), R/L) are 2 or 1. Now, by
Theorem 4.7, the minimal free resolution of R/I is given by the mapping cone
technique. In particular we have

βi(R/I) = i

(
n

i+ 1

)
+ (n− 2)

(
n− 1

i− 1

)
+

(
n− 2

i− 1

)
+

(
n− 2

i− 2

)
= i

(
n

i+ 1

)
+ (n− 1)

(
n− 1

i− 1

)
.

�

5. Filtered free resolutions of graded ideals

In this section, we are going to apply the main result of Section 3 in the
graded setting. Our approach is to equip the polynomial ring P = k[x1, . . . , xn]
with a suitable (Zn, σ) filtration (where σ is a monoid ordering on Zn) and
define the notion of consecutive cancellations to find graded Betti numbers of
a graded ideal by a sequence of consecutive cancellations from the multigraded
Betti numbers of corresponding associated graded ideal.
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Recall that one may consider the polynomial ring as a Nn-graded (or multi-
graded) ring and construct minimal multigraded free resolution of every multi-
graded module. It is clear that every multigraded free resolution is also a graded
resolution. Note that every monomial ideal is homogeneous with respect to the
Nn-grading. So, we can consider multigraded Betti numbers of monomial ideals
(see [6, Chapter 1, Section 26]).

We refer to [5] for background on (Zn, σ) filtrations. Note that (Zn, σ)
filtrations have a difference with the usual filtrations that we considered in the
previous sections. Because Pγ ⊆ Pγ′ for all γ, γ′ ∈ Zn with γ ≤σ γ′.

Let σ be a term ordering on Tn where by Tn we mean the set of all mono-
mials of P . Using the isomorphism of monoids log : Tn → Nn, we can view σ
as a monoid ordering on Nn, and by [5, Proposition 1.4.14], we can extend σ
uniquely to a monoid ordering on Zn which we denote by σ again. For every
γ ∈ Zn, we define the vector space

Pγ = {f ∈ P \ {0} | log(LTσ(f)) ≤σ γ} ∪ {0}.

Then it is easy to see that P = {Pγ | γ ∈ Zn} is a (Zn, σ)-filtration on P . It
is called the σ-Gröbner filtration on P . Let I ⊂ P be an ideal. Then, by
[5, Remark 6.5.14], I∗ = LTσ(I) and an standard basis of I is nothing but a
Gröbner basis.

Let F =
⊕s

i=1 Pei be a free P -module of rank s and γ1, . . . , γs ∈ Zn. We
define the σ-Gröbner filtration F = {Fγ : γ ∈ Zn} on F as follows:

Fγ = {(h1, . . . , hs) ∈ ⊕si=1Pei | log(LTσ(hi)) ≤σ γ − γi}.

We denote the σ-Gröbner filtered free P -module F by ⊕si=1P (γi) and we
call it σ-Gröbner special filtration on F .

Let M be a finitely generated submodule of ⊕si=1P (γi), Clearly, we can
consider σ-Gröbner filtration for M . If m ∈ M \ {0}, then νF(m) = min{γ ∈
Zn |m ∈ Fγ}. Let {f1, . . . , ft} be a system of elements of M and let F1 =
⊕ti=1P (νF(fi)) be the corresponding σ-Gröbner filtered free P -module. Based
on the properties of σ-Gröbner filtration (see [5, Section 6.5.1]) and by similar
methods as previous sections we have:

Theorem 5.1. Let M be a σ-Gröbner filtered submodule of ⊕si=1P (γi) and
f1, . . . , ft ∈M . The following facts are equivalent:

(1) {f1, . . . , ft} is a standard basis of M.
(2) {f1, . . . , ft} generates M and every element of Syz(grF(f1), . . . , grF(ft))

can be lifted to an element in Syz(f1, . . . , ft).
(3) {f1, . . . , ft} generates M and

Syz(grF(f1), . . . , grF(ft)) = grF1
(Syz(f1, . . . , ft)).

In particular, if M is a graded submodule of ⊕si=1P (−|γi|), then we can assume
that f1, . . . , ft are homogeneous elements of M .
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Theorem 5.2. Let M be a σ-Gröbner filtered submodule of ⊕si=1P (γi) and
(G., d.) be a P -free multigraded resolution of M∗. Then we can build up a P -
free resolution (F., δ.) of M and a σ-Gröbner special filtration F on it such that
grF(F.) = G..

In particular, if M is a graded submodule of ⊕si=1P (−|γi|), then (F., δ.) is a
graded free resolution of M .

In particular, for the graded ideals of P we have:

Theorem 5.3. Let I be a graded ideal of P and (G., d.) be the minimal P -
free multigraded resolution of LTσ(I) = I∗. Then we can build up a graded
P -free resolution (F., δ.) of I and a σ-Gröbner special filtration F on it such
that grF(F.) = G..

For this kind of filtered free resolutions of graded ideals, consecutive cancel-
lation has the following meaning:

Definition 5.4. Let {cij}i∈N,j∈Nn be a sequence of integers and for each i
let ci =

∑
j∈Nn cij . Starting from the sequences {cij} and {ci} we obtain new

sequences by a consecutive cancellation as follows: fix an index i, and choose
j and j′ such that j′ ≤σ j and cij , ci−1,j′ > 0; then replace cij by cij − 1 and
ci−1,j′ by ci−1,j′−1, and accordingly, replace in the second sequence ci by ci−1
and ci−1 by ci−1 − 1. We call it an (i, σ)-consecutive cancellation.

A sequence of consecutive cancellations will mean a finite number of consec-
utive cancellations performed on given sequences {cij} and {ci =

∑
j∈Nn cij}.

Theorem 5.5. Let I be a graded ideal of P and {βi =
∑
j∈Nn βi,j} be the se-

quence of multigraded Betti numbers of LTσ(I). Then the graded Betti numbers
of I can be obtained from {βi} by a sequence of σ-consecutive cancellations.

As we recall in the introduction, it is well-known that the graded Betti
numbers of a graded ideal are obtained from those of its leading term ideal by
a sequence of zero consecutive cancellations. It is more convenient to consider
both kinds of cancellations together. Actually, since in Theorem 5.3, (F., δ.) is
a graded resolution, one can see that each σ-consecutive cancellation should be
also a zero consecutive cancellation. So we have:

Corollary 5.6. Let I be a graded ideal of P and {βi =
∑
j∈Nn βi,j} be the se-

quence of multigraded Betti numbers of LTσ(I). Then the graded Betti numbers
of I can be obtained from {βi} by a sequence of zero σ-consecutive cancellations.

We end this section with two examples that show how Corollary 5.6 can
help to encode the Betti numbers of an ideal by just looking to the multigraded
Betti numbers of LTσ(I). Both of these examples contain cancellations (e.g.
P (−5), P (−5)) that are a priori admissible by [3, Corollary 1.21], but are not
in fact admissible by Corollary 5.6.
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Example 5.7. Let P = C[x, y, z], σ = DegRevLex and I = 〈z2 + x2, yz, y3 +
z3, xz〉. Then I∗ = LTσ(I) has the following minimal multigraded free resolu-
tion:

G : 0→P (1, 1, 3)⊕ P (2, 3, 1)

→P (1, 1, 1)⊕ P (2, 0, 1)⊕ P (0, 1, 3)⊕ P (1, 0, 3)⊕ P (0, 3, 1)⊕ P (2, 0, 3)

→P (2, 0, 0)⊕ P (0, 1, 1)⊕ P (1, 0, 1)⊕ P (0, 3, 0)⊕ P (0, 0, 3)→ I∗.

One can see that the only possible zero σ-cancellation on (F2, F1, F0) is
corresponded to (0, P (1, 1, 1), P (0, 0, 3)) or (0, P (2, 0, 1), P (0, 0, 3)) and exactly
one of them occurs. So, the minimal graded free resolution of I is:

0→ P (−5)⊕ P (−6)→ P (−3)⊕ P 3(−4)⊕ P (−5)→ P 3(−2)⊕ P (−3)→ I.

Example 5.8. Let P = C[x, y, z], σ = DegRevLex and I = 〈x3 + xy2 +
y3, xyz, y2z, z2〉. Then I∗ = LTσ(I) = 〈x3, xyz, y2z, z2〉 has the following multi-
graded free resolution:

0→P (1, 2, 2)⊕ P (3, 1, 2)

→P (3, 0, 2)⊕ P (3, 1, 1)⊕ P (0, 2, 2)⊕ P (1, 1, 2)⊕ P (1, 2, 1)

→P (0, 0, 2)⊕ P (3, 0, 0)⊕ P (1, 1, 1)⊕ P (0, 2, 1)→ I∗.

As we see there is no zero σ-cancellation. So the minimal graded free resolution
of I is

0→ P (−5)⊕ P (−6)→ P 3(−4)⊕ P 2(−5)→ P (−2)⊕ P 3(−3)→ I.
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