SOME RESULTS CONCERNING (θ, φ) -DERIVATIONS ON PRIME RINGS

KYOO-HONG PARK AND YONG-SOO JUNG

ABSTRACT. Let R be a prime ring with characteristic different from two and let $\theta, \varphi, \sigma, \tau$ be the automorphisms of R. Let $d: R \to R$ be a nonzero (θ, φ) -derivation. We prove the following results: (i) if $a \in R$ and $[d(R), a]_{\theta \circ \sigma, \varphi \circ \tau} = 0$, then $\sigma(a) + \tau(a) \in Z$, the center of R, (ii) if $d([R, a]_{\sigma, \tau}) = 0$, then $\sigma(a) + \tau(a) \in Z$, (iii) if $[ad(x), x]_{\sigma, \tau} = 0$ for all $x \in R$, then a = 0 or R is commutative.

1. Introduction

Throughout, R will represent an associative ring, and Z will be its center. Let $x,y\in R$. As usual, the commutator xy-yx will be denoted by [x,y]. Let $\theta,\varphi,\sigma,\tau:R\to R$ be automorphisms. We write $[x,y]_{\sigma,\tau}$ for $x\sigma(y)-\tau(y)x$, and will make extensive use of the following basic commutator identities: [xy,z]=x[y,z]+[x,z]y, $[xy,z]_{\sigma,\tau}=x[y,z]_{\sigma,\tau}+[x,\tau(z)]y=x[y,\sigma(z)]+[x,z]_{\sigma,\tau}y$, $[x,yz]_{\sigma,\tau}=[x,y]_{\sigma,\tau}\sigma(z)+\tau(y)[x,z]_{\sigma,\tau}$. An additive mapping $d:R\to R$ is called a (θ,φ) -derivation if

$$d(xy) = d(x)\theta(y) + \varphi(x)d(y)$$
 for all $x, y \in R$.

A (1,1)-derivation is called simply a derivation, where $1:R\to R$ is the identity map on R. A derivation d is inner if there exists an $a\in R$ such that d(x)=[x,a] for all $x\in R$. For subsets A and B of R, let [A,B] (resp. $[A,B]_{\sigma,\tau}$) be the additive subgroup generated by [a,b] (resp. $[a,b]_{\sigma,\tau}$) for all $a\in A$ and $b\in B$. We recall that a Lie ideal L is an additive subgroup of R such that $[R,L]\subset L$.

In Kaya, Gölbaşi & Adyın [2], firsty introduced the generalized Lie ideal as following: Let U be an additive subgroup of R. Then

- (i) U is a (σ, τ) -right Lie ideal of R if $[U, R]_{\sigma, \tau} \subset U$.
- (ii) U is a (σ, τ) -left Lie ideal of R if $[R, U]_{\sigma, \tau} \subset U$.

Received by the editors July 15, 2003 and, in revised form, September 4, 2003. 2000 Mathematics Subject Classification. 16N10, 16W25, 16U80. Key words and phrases. prime ring, (θ, φ) -derivation, (σ, τ) -Lie ideal.

© 2003 Korea Soc. Math. Educ.

(iii) U is a (σ, τ) -Lie ideal of R if U is both a (σ, τ) -left Lie ideal and a (σ, τ) -right Lie ideal of R. Now every Lie ideal of R is a (1, 1)-Lie ideal of R.

Let R be a prime ring with characteristic different from two and let $a \in R$. Let $d: R \to R$ be a nonzero derivation. Herstein [1], proved that if [d(R), a] = 0, then $a \in Z$. Lee & Lee [3], proved that if $[d(R), d(R)] \subset Z$, then R is commutative. It is our main goal in this note to improve their results to (θ, φ) -derivations.

2. Results

We shall need the following lemma which is similar to Posner [4, Lemma 1].

Lemma 1. Let R be a prime ring and let d be a (θ, φ) -derivation of R. Suppose that either (i) ad(x) = 0, $x \in R$ or (ii) d(x)a = 0, $x \in R$ holds. Then we have either a = 0 or d = 0.

Proof. Suppose that

$$ad(x) = 0$$
 for all $x \in R$.

Replacing x by xy in this relation, we obtain

$$ad(x)\theta(y) + a\varphi(x)d(y) = 0$$
 for all $x, y \in R$,

which is reduced to

$$a\varphi(x)d(y) = 0$$
 for all $x, y \in R$.

Since φ is an automorphism of R, we see that

$$azd(y) = 0$$
 for all $y, z \in R$.

By primeness of R, we have either a=0 or d=0. The proof of (ii) is similar to the one of (i).

Let us start our investigation with the following result.

Theorem 2. Let R be a prime ring with characteristic different from two and let d be a nonzero (θ, φ) -derivation of R. If $a \in R$ and $[d(R), a]_{\theta \circ \sigma, \varphi \circ \tau} = 0$, then $\sigma(a) + \tau(a) \in Z$.

Proof. If $a \in Z$, then the proof of the theorem is obvious. So we assume that $a \notin Z$. By hypothesis, for all $x \in R$ we have,

$$\begin{aligned} 0 &= [d(x\sigma(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} \\ &= [d(x)\theta(\sigma(a)) + \varphi(x)d(\sigma(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} \\ &= d(x)[\theta(\sigma(a)), \ \theta(\sigma(a))] + [d(x), a]_{\theta \circ \sigma, \varphi \circ \tau} \theta(\sigma(a)) \\ &+ \varphi(x)[d(\sigma(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} + [\varphi(x), \varphi(\tau(a))]d(\sigma(a)). \end{aligned}$$

Hence we obtain

(1)
$$[\varphi(x), \varphi(\tau(a))] d(\sigma(a)) = 0 \text{ for all } x \in R.$$

Since φ is an automorphism of R, relation (1) can be written as

(2)
$$[z, \varphi(\tau(a))]d(\sigma(a)) = 0 \text{ for all } z \in R.$$

Replacing z by zy in (2) and using (2), we get

$$[z, \varphi(\tau(a))]yd(\sigma(a)) = 0$$
 for all $y, z \in R$.

Since R is prime and $a \notin Z$, we obtain $d(\sigma(a)) = 0$.

Let us substitute $x\tau(a)$ for x in the hypothesis. Then for all $x \in R$ we have,

$$\begin{aligned} 0 &= [d(x\tau(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} \\ &= [d(x)\theta(\tau(a)) + \varphi(x)d(\tau(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} \\ &= d(x)[\theta(\tau(a)), \theta(\sigma(a))] + [d(x), a]_{\theta \circ \sigma, \varphi \circ \tau} \theta(\tau(a)) \\ &+ \varphi(x)[d(\tau(a)), a]_{\theta \circ \sigma, \varphi \circ \tau} + [\varphi(x), \varphi(\tau(a))]d(\tau(a)), \end{aligned}$$

whence

(3)
$$d(x)[\theta(\tau(a)), \theta(\sigma(a))] + [\varphi(x), \varphi(\tau(a))]d(\tau(a)) = 0 \text{ for all } x \in R.$$
 Since τ is an automorphism of R , relation (3) can be restated as

(4)
$$d(x)[\theta(\tau(a)),\theta(\sigma(a))] + [z,\varphi(\tau(a))]d(\tau(a)) = 0 \text{ for all } x,z \in R.$$
 Putting $x = \sigma(a)$ in (4), we get

(5)
$$[z, \varphi(\tau(a))]d(\tau(a)) = 0 \text{ for all } z \in R,$$

and replacing z by zy in (5) and using (5) yield

$$[z, \varphi(\tau(a))]yd(\tau(a)) = 0$$
 for all $y, z \in R$.

The primeness of R and $a \notin Z$ force $d(\tau(a)) = 0$.

Now we see that for all $x \in R$,

(6)
$$d([x,a]_{\sigma,\tau}) = d(x\sigma(a) - \tau(a)x)$$
$$= d(x)\theta(\sigma(a)) + \varphi(x)d(\sigma(a)) - d(\tau(a))\theta(x) - \varphi(\tau(a))d(x)$$
$$= [d(x),a]_{\theta\circ\sigma,\varphi\circ\tau} = 0.$$

We can use the hypothesis and (6) to obtain, for all $x, y \in R$,

$$\begin{split} 0 &= [d(x[y,a]_{\sigma,\tau}),a]_{\theta\circ\sigma,\varphi\circ\tau} \\ &= [d(x)\theta([y,a]_{\sigma,\tau}) + \varphi(x)d([y,a]_{\sigma,\tau}),a]_{\theta\circ\sigma,\varphi\circ\tau} \\ &= [d(x)\theta([y,a]_{\sigma,\tau}),a]_{\theta\circ\sigma,\varphi\circ\tau} \\ &= [d(x)[\theta([y,a]_{\sigma,\tau}),\theta(\sigma(a))] + [d(x),a]_{\theta\circ\sigma,\varphi\circ\tau}\theta([y,a]_{\sigma,\tau}) \\ &= d(x)[\theta([y,a]_{\sigma,\tau}),\theta(\sigma(a))], \end{split}$$

and by invoking Lemma 1 and considering that θ is an automorphism of R, we arrive at

$$[\theta([y,a]_{\sigma,\tau}),\theta(\sigma(a))]=0$$
 for all $y\in R$,

and so

(7)
$$[[y,a]_{\sigma,\tau},\sigma(a)] = 0 \text{ for all } y \in R,$$

which on substitution of $\tau(a)y$ for y in (7) yields

$$0 = [[\tau(a)y, a]_{\sigma, \tau}, \sigma(a)] = [\tau(a)[y, a]_{\sigma, \tau} + [\tau(a), \tau(a)]y, \sigma(a)]$$
$$= [\tau(a)[y, a]_{\sigma, \tau}, \sigma(a)] = \tau(a)[[y, a]_{\sigma, \tau}, \sigma(a)] + [\tau(a), \sigma(a)][y, a]_{\sigma, \tau}.$$

Thus relation (7) gives

(8)
$$[\tau(a), \sigma(a)][y, a]_{\sigma, \tau} = 0 for all y \in R.$$

Replacing y by yz in (8) and using (8), we have

$$[\tau(a), \sigma(a)]y[z, \sigma(a)] = 0$$
 for all $y, z \in R$,

and so the primeness of R and $a \notin Z$ guarantee

$$[\tau(a), \sigma(a)] = 0.$$

Now, expanding (7) and utilizing (9) yield

(10)
$$[[y, \sigma(a)], a]_{\sigma,\tau} = 0 \text{ for all } y \in R.$$

Indeed,

$$0 = [[y, a]_{\sigma, \tau}, \sigma(a)] = [y\sigma(a) - \tau(a)y, \sigma(a)]$$

= $[y, \sigma(a)]\sigma(a) - \tau(a)[y, \sigma(a)] = [[y, \sigma(a)], a]_{\sigma, \tau}.$

Let us write in (10) yz instead of y, thereby obtaining, for all $y, z \in R$,

$$\begin{split} 0 &= [[yz,\sigma(a)],a]_{\sigma,\tau} \\ &= [[y,\sigma(a)]z + y[z,\sigma(a)],a]_{\sigma,\tau} \\ &= [y,\sigma(a)][z,\sigma(a)] + [[y,\sigma(a)],a]_{\sigma,\tau}z \\ &+ y[[z,\sigma(a)],a]_{\sigma,\tau} + [y,\tau(a)][z,\sigma(a)] \\ &= [y,\sigma(a)][z,\sigma(a)] + [y,\tau(a)][z,\sigma(a)], \end{split}$$

that is,

$$[y, \sigma(a) + \tau(a)][z, \sigma(a)] = 0$$
 for all $y, z \in R$.

Since the mapping $z \mapsto [z, \sigma(a)]$ is a nonzero derivation of the prime ring R, we can use Posner [4, Lemma 1] to conclude that $\sigma(a) + \tau(a) \in Z$.

Corollary 3. Let R be a prime ring with characteristic different from two, let d be a nonzero (θ, φ) -derivation of R and let U be a (σ, τ) -left Lie ideal. If $[d(R), U]_{\theta \circ \sigma, \varphi \circ \tau} = 0$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

We here establish an example to support Theorem 2.

Example. Consider the prime ring

$$R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in I \right\},$$

where I is the set of integers.

$$\sigma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}, \ \tau \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

be two automorphisms of R and $a = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \notin Z$. If we define $d: R \to R$ by

$$d\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & s-b \\ c & 0 \end{pmatrix},$$

then d is a (1,1)-derivation of R such that $d([R,a]_{\sigma,\tau})=0$, but $\sigma(a)+\tau(a)\in Z$.

Theorem 4. Let R be a prime ring with characteristic different from two and let d be a nonzero (θ, φ) -derivation of R. If $a \in R$ and $d([R, a]_{\sigma, \tau}) = 0$, then $\sigma(a) + \tau(a) \in Z$.

Proof. If $a \in \mathbb{Z}$, then it is clear that $\sigma(a) + \tau(a) \in \mathbb{Z}$. We now let $a \notin \mathbb{Z}$. From the hypothesis, for all $x \in \mathbb{R}$ we have,

$$0 = d([\tau(a)x, a]_{\sigma, \tau}) = d(\tau(a)[x, a]_{\sigma, \tau}) = d(\tau(a))\theta([x, a]_{\sigma, \tau}) + \varphi(\tau(a))d([x, a]_{\sigma, \tau}),$$
 and so,

(11)
$$d(\tau(a))\theta([x,a]_{\sigma,\tau}) = 0 \text{ for all } x \in R.$$

Substituting xy for x in (11), we obtain for any $x, y \in R$,

$$\begin{split} 0 &= d(\tau(a))\theta([xy,a]_{\sigma,\tau}) \\ &= d(\tau(a))\theta(x[y,\sigma(a)] + [x,a]_{\sigma,\tau}y) \\ &= d(\tau(a))\theta(x)\theta([y,\sigma(a)]) + d(\tau(a))\theta([x,a]_{\sigma,\tau})\theta(y), \end{split}$$

and use (11) in order to get

$$d(\tau(a))\theta(x)\theta([y,\sigma(a)]) = 0$$
 for all $x,y \in R$,

from which it follows that

$$d(\tau(a))z\theta([y,\sigma(a)]) = 0$$
 for all $y,z \in R$

because θ is an automorphism of R. Since R is prime and $a \notin Z$, we know that $d(\tau(a)) = 0$. We claim that $d(\sigma(a)) = 0$. Replacing x by $x\sigma(a)$ in the hypothesis shows that for all $x \in R$,

$$0 = d([x\sigma(a), a]_{\sigma, \tau}) = d([x, a]_{\sigma, \tau}\sigma(a))$$
$$= d([x, a]_{\sigma, \tau})\theta(\sigma(a)) + \varphi([x, a]_{\sigma, \tau})d(\sigma(a)),$$

and hence,

(12)
$$\varphi([x,a]_{\sigma,\tau})d(\sigma(a)) = 0 \text{ for all } x \in R.$$

If we substitute xy for x in (12), for all $x, y \in R$ we obtain,

$$\begin{split} 0 &= \varphi \big([xy, a]_{\sigma, \tau} d(\sigma(a)) \big) \\ &= \varphi \big(x[y, a]_{\sigma, \tau} + [x, \tau(a)]y) \big) d(\sigma(a)) \\ &= \varphi(x) \varphi([y, a]_{\sigma, \tau}) d(\sigma(a)) + \varphi([x, \tau(a)]) \varphi(y) d(\sigma(a)), \end{split}$$

thus, the relation (12) gives

$$\varphi([x, \tau(a)])\varphi(y)d(\sigma(a)) = 0$$
 for all $x, y \in R$.

We can use the fact that φ is an automorphism of R to get

$$\varphi([x, \tau(a)])zd(\sigma(a)) = 0$$
 for all $x, z \in R$,

and the primeness of R and $a \notin Z$ yield $d(\sigma(a)) = 0$, as claimed.

According to the hypothesis, we now have, for any $x \in R$,

$$0 = d([x, a]_{\sigma, \tau}) = d(x\sigma(a) - \tau(a)x)$$

= $d(x)\theta(\sigma(a)) + \varphi(x)d(\sigma(a)) - d(\tau(a))\theta(x) - \varphi(\tau(a))d(x),$

which, in conjunction with $d(\sigma(a)) = 0$ and $d(\tau(a)) = 0$, gives

$$[d(x), a]_{\theta \circ \sigma, \varphi \circ \tau} = 0$$
 for all $x \in R$.

Hence we conclude from Theorem 2 that $\sigma(a) + \tau(a) \in Z$.

Corollary 5. Let R be a prime ring with characteristic different from two, let d be a nonzero (θ, φ) -derivation of R and let U be a (σ, τ) -left Lie ideal. If $d([R, U])_{\sigma, \tau} = 0$, then $\sigma(u) + \tau(u) \in Z$ for all $u \in U$.

Theorem 6. Let R be a prime ring and let d be a nonzero (θ, φ) -derivation of R. If $a \in R$ and $[ad(x), x]_{\sigma,\tau} = 0$ for all $x \in R$, then a = 0 or R is commutative.

Proof. Linearizing our hypothesis, we get

(13)
$$[ad(x), y]_{\sigma,\tau} + [ad(y), x]_{\sigma,\tau} = 0 for all x, y \in R.$$

Replacing y by yx in (13), we have for all $x, y \in R$,

$$\begin{aligned} 0 &= [ad(x),yx]_{\sigma,\tau} + [ad(y)\theta(x) + a\varphi(y)d(x),x]_{\sigma,\tau} \\ &= [ad(x),y]_{\sigma,\tau}\sigma(x) + \tau(y)[ad(x),x]_{\sigma,\tau} + ad(y)[\theta(x),\sigma(x)] \\ &\quad + [ad(y),x]_{\sigma,\tau}\theta(x) + a\varphi(y)[d(x),x]_{\sigma,\tau} + [a\varphi(y),\tau(x)]d(x). \end{aligned}$$

Since σ and θ are the automorphisms of R, the last relation implies that for all $w, x, y, z \in R$

$$\begin{split} 0 &= [ad(x),y]_{\sigma,\tau}z + \tau(y)[ad(x),x]_{\sigma,\tau} + ad(y)[w,z] \\ &\quad + [ad(y),x]_{\sigma,\tau}w + a\varphi(y)[d(x),x]_{\sigma,\tau} + [a\varphi(y),\tau(x)]d(x). \end{split}$$

In particular, for all $x, y, z \in R$ we have,

$$0 = [ad(x), y]_{\sigma, \tau} z + \tau(y) [ad(x), x]_{\sigma, \tau} + ad(y) [z, z]$$
$$+ [ad(y), x]_{\sigma, \tau} z + a\varphi(y) [d(x), x]_{\sigma, \tau} + [a\varphi(y), \tau(x)] d(x).$$

By hypothesis and (13), this relation is reduced to

$$a\varphi(y)[d(x),x]_{\sigma,\tau}+[a\varphi(y),\tau(x)]d(x)=0 \text{ for all } x,y\in R,$$

which gives, for all $x, y \in R$,

(14)
$$a\varphi(y)[d(x),x]_{\sigma,\tau} + a[\varphi(y),\tau(x)]d(x) + [a,\tau(x)]\varphi(y)d(x) = 0.$$

Taking $\varphi^{-1}(a)y$ for y in (14), for all $x, y \in R$ we get

$$a^{2}\varphi(y)[d(x), x]_{\sigma,\tau} + a^{2}[\varphi(y), \tau(x)]d(x)$$
$$+ a[a, \tau(x)]\varphi(y)d(x) + [a, \tau(x)]a\varphi(y)d(x) = 0,$$

which leads to, in view of (14),

$$[a, \tau(x)]a\varphi(y)d(x) = 0$$
 for all $x, y \in R$.

Since R is prime and φ is an automorphism of R, we see that for all $x \in R$, either d(x) = 0 or $[a, \tau(x)]a = 0$. That is, R is the union of its additive subgroups $\{x \in R : d(x) = 0\}$ and $\{x \in R : [a, \tau(x)]a = 0\}$.

Since a group cannot be the union of two proper subgroups and d is nonzero, it follows that $[a, \tau(x)]a = 0$ for all $x \in R$. But then Posner [4, Lemma 1] implies that $a \in Z$, which gives $a[d(x), x]_{\sigma,\tau} = 0$ since $a[d(x), x]_{\sigma,\tau} + [a, \tau(x)]d(x) = [ad(x), x]_{\sigma,\tau} = 0$ for all $x \in R$. Hence relation (14) is reduced to $a[\varphi(y), \tau(x)]d(x) = 0$ for all $x, y \in R$, and so also $aw[\varphi(y), \tau(x)]d(x) = 0$ for all $w, x, y \in R$. Therefore we have either $[\varphi(y), \tau(x)]d(x) = 0$ or a = 0 for all $x, y \in R$.

In the first case, by putting yz instead of y, we get $[\varphi(y), \tau(x)]\varphi(z)d(x) = 0$ for all $x, y, z \in R$, and so, $[u, \tau(x)]rd(x) = 0$ for all $r, u, x, y \in R$ because φ is an automorphism of R. Again using the fact that a group cannot be the union of two proper subgroups, we see that either d = 0 or R is commutative. But d is nonzero, and so it follows that R is commutative.

REFERENCES

- I. N. Herstein: A note on derivations. II. Canad. Math. Bull. 22 (1979), no. 4, 509-511.
 MR 81b:16025
- 2. K. Kaya, Ö. Gölbaşi & N. Aydin: Some results in generalized Lie ideals in prime rings with derivation. II. Appl. Math. E-Notes 1 (2001), 24-30. MR 2002j:16024
- P. H. Lee & T. K. Lee: On derivations of prime rings. Chinese J. Math. 9 (1981), no. 2, 107-110. MR 84i:16040
- E. C. Posner: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
 MR 20#2361

(K. H. Park) Department of Mathematics Education, Seowon University, 231 Mochungdong, Heungdeok-gu, Cheongju, Chungbuk 361-742, Korea Email address: parkkh@seowon.ac.kr

(Y. S. Jung) Institute of Basic Science, Seowon University, 231 Mochung-dong, Heungdeokgu, Cheongju, Chungbuk 361-742, Korea Email address: ysjung@seowon.ac.kr