Proceedings of the KSR Conference (한국철도학회:학술대회논문집)
The Korean Society for Railway
- Semi Annual
Domain
- Machinery > Vehicle/Rolling Stock
- Construction/Transportation > Railway Transportation Technology
1999.11a
-
This paper studies on the benefit evaluation of urban railway construction project. We compares Korean Method with Japanese in calculating the generalized cost(GC) of a trip. In Japan, the disadvantage of transferring to another mode or line is included to calculate GC of trip. And environmental effects are contained directly as rail construction benefit. But in Korea, inconvenience of transferring facilities like stairways and passageway for riding a subway is not accounted to analyse benefit. As a result, there is a little investigate to improve and overcoming the inconvenience facilities of transfer, access, and egress. So, we suggest the containing the disadvantage measure of transferring facilities when subway riderships are forecasted. That will be reduced tile capital size of subway.
-
To solve the metropolitan traffic problem, it is urgently needed to introduce new transportation system in Korea. The Light Rail Transit(LRT) can offer passenger capacity in the 5,000 to 20,000 per hour range. The LRT offers a fast, frequent and comfortable service to passenger, with service intervals of S minutes or less at peak times. This frequent and convenient service should give confidence to Koreans as a good riders. Now, it's time to introduce this LRT into Korea. Chonju will be the first city with LRT in Korea.
-
This Paper presents a concert of Public Service Obligation related with validity, suitability and rationality. As we know, The Public Service Obligation of KNR is a largest factor of loss in the Railroad Industry. In the future, PSO concept and Calculating methods have to be changed for providing rational Public service based on the various focus.
-
As of July 1999, i,185 lomocotives(excluding metropolitan area electric locomotives) are in Korean National Railroad(KNR). With this limited number of resources assigning locomotives to each trains of timetable is very important in the entire railway management point of view because schedule can be regarded as goods in transportation industry. On a simple rail network, it is rather easier to assign proper locomotives to trains with the experience of operating experts and get optimal assignment solution. However, as the network is getting bigger and complicated, the number of trains and corresponding locomotives will be dramatically increased to rover all the demands required to service all of the trains in timetable. There will be also numerous operational constraints to be considered. Assigning proper locomotives to trains and building optimal cyclic rotations of locomotive routings will result in increasing efficiency of schedule and giving a guarantee of more profit. The purpose of this study is two fold: (1) we consider a planning-level locomotive scheduling problem with the objective of minimizing the wasting cost under various practical constraints and (2) development of implementation prototype program of its assigning result. Not like other countries, i.e. Canada, Sweden, Korean railroad operates on n daily schedule basis. The objective is to find optimal assignment of locomotives of different types to each trains, which minimize the wasting cost. This problem is defined on a planning stage and therefore, does not consider operational constraints such as maintenance and emergency cases. Due to the large scale of the problem size and complexity, we approach with heuristic methods and column generation to find optimal solution. The locomotive scheduling prototype consists of several modules including database, optimization engine and diagram generator. The optimization engine solves MIP model and provides an optimal locomotive schedule using specified optimization algorithms. A cyclic locomotive route diagram can be generated using this optimal schedule through the diagram generator.
-
This paper presents a validity of improving core competence of railway industries based on data. The Competitive power of railway largely depends on the quality of railway service and operating systems. Customer life presents itself in a large variety of settlement patterns. As a result of this paper, we will get the opportunities to reduce the dissatisfaction of customer and improve the stability of train operation.
-
In this paper, we reviewed the evaluation methodologies of railway project considering the benefit incidence. Generally railway projects are much more reduced tile energy consumption, traffic accident and environmental pollution than road projects. But conventional B/C analysis of railway project does not measured including those benefits. Also there is a few attention to an incidence of benefits producing from railway construction. So we developed the evaluation method of railway project contained the railway oriented benefits and also considered of the benefit incidence producing from railway construction.
-
Belief revision involves integrating new information with the current belief. It is a ubiquitous human activity. A critical feature of belief revision lies in its sequential nature. Railroad system can be described as organic. Engine drivers take a great role in this system. Recently, Hogarth and Einhorn(1992) have Posited a belief-adjustment model for updating beliefs. Based on a sequential anchoring and adjustment strategy, the model is important fro decision makers. The sequential nature of information processing is affected by some task variables. This will be mainly explained in this paper. The purpose of this study is to examine the engine drivers' belief revision process and factors which influence on the belief revision process. The factors are the order and the experience. Thereby, this will contribute to the study of engine drivers' behavior. The result of this study is summarized as follows. The order effect due to the order of presentation of the evidence exist. The difference of belief revision is due to The experience level.
-
This study focuses on what factors influence the job satisfaction of KNR. For solving this research question, three important factors affected job satisfaction are selected through literature review : harmonics communication, fairness of personnel management, satisfaction of human relations. This study tests that the cognitive degrees of above factors are defending on different personal characteristics, and also searches the relationship between job satisfaction and the three factors. This study makes the hypothesis based on a conceptual model elicited from the outline of the previous study. To verify the hypothesis, using SPSS WIN 7.5 package is practiced.
-
Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of brake disk-lining for rolling stock. Multiple rotational reference frame, k-epsilon turbulent model and SIMPLE algorithm based on finite volume method are used to solve the physical disk-lining model. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction, From the results of simulation, the characteristics of cooling pattern is strongly affected by the grooves in lining. The face lift of lining affects on the temperature distribution of rear surface of lining as well as the front surface of that. Due to the grooves in lining, it will be expected to extend the maintenance life circle of lining.
-
Because many light rail transit systems are mainly operated in the downtown areas of a large cities and the congestion areas, there are many steep gradients and sharp radius sections in that lines. As that reasons above, light rail vehicles are equipped with differential gear units between traction motors and final reduction gear units. In this paper, the configurations and the interferences of 2K-H I type Planetary gear train, which is applicable for light rail vehicles and based on various differential gear units, are studied. The ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges are presented, which generate the maximum efficiency of planetary gear drives and differential gear unit as pressure angles, speed ratios,
-
Pantograph, which collects current from cartenary system, is one of important parts of high-speed train. Kinematic analysis is basic component of pantograph design. But kinematic analysis is very complex and time-consuming. Therefore numerical calculation of pantograph kinematics is necessary. In this study, pantograph kinematic analysis software was developed and relationship between kinematic parameters and pantograph performance was investigated. The software and relationship between kinematic parameters and pantograph performance are helpful to pantograph designers
-
The shape of the KHST, and of the power car in particular. is largely determined by aerodynamic considerations. At high speeds, air resistance accounts for the major part of overall resistance to forward motion. Further points to be considered are environmentally undesirable acoustic phenomena and pressure waves. Minimizing power requirements and environmentally-unfriendly noise and pressure waves are thus major objectives in the development of the KHST. When deciding on the aerodynamic design of the power car, the entire train set has to be taken into consideration. This paper describes the design process and results about the front shape of the KHST.
-
This paper will describe the design of database for system engineering of High Speed Railway Systems, focusing on tile ability to capture a full thread of traceability, from tile inception of a system requirement, to the test results that validate that the designed system meets criteria defined by the requirement. The database includes data models for requirement, function, component, work, work process, resource, etc.. These data models are utilized for tile efficient management of data related system design, development work, and validation.
-
This study was carried out about interior design of trailer car for Korean High speed Train of Maximum operating speed of 350km/h. The interior main item design of high speed train is performed in order to satisfy the function of speed, safety and comfort concerning the RAMSH, ENVIRONMENT, ACTIVITY AND INFORMATION, This paper focuses on what is the design principle concerning the above mentioned factors and how did we apply that in the korea high speed train.
-
The design of driver's cab includes the structure of cab frame, the layout of driver's cab equipment and facilities, i.e. driver's desk, seat, windows, floor, interior equipment, cab partition etc. The concept applied to the detail design has to be based on the ergonomics to guarantee the safety, comfort, and easy operation for the driver. In the aspect of manufacture, one more factor 'modulization' has to be considered into the design of sub blocks for cost-down. The design has to be implemented in the space allocated for driver's cab, which space is directly determined by the cab frame, optimized for the layout of driver's cab. The design process and results of the driver's cab for KHST will be described in this paper.
-
The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, flood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.
-
Extruded aluminum sections are used to the light construction of the rall vehicles structures However, the research works on the crashworthy design of the extruded aluminum sections are not published sufficiently in this paper, the impact energy absorption characteristics of extruded aluminum sections are investigated by crash simulation and test The optimized energy absorbing studies are also performed based on the selected design parameter variations of the sectional shapes and the dimensional ratios.
-
The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel/rail surface on tangent tack in the absence of discontinuities, such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are transmitted through the wheel and rail structures, exciting resonances of the wheel and travelling waves ill tile rail. Then these vibrations radiate noise to the wayside. In this paper, we predict the rolling noise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our predication these results show in good agreement between 500 ㎐ and 3150㎐.
-
The major subject of this paper is to develop the concept fur a Korea high speed train system and recommend to train configuration. High speed train configurations are basically concerned traction power(train configurations with concentrated; CPT or distributed Power system: DPT) and train design(single car as compared with articulated bogies). The result of configuration, a advantages and disadvantaged were necessitated by different train configurations; -distributed underfloor power have an increased length for the seats by 15% as compared with the concentrated power trait - articulated trainsets are characterised by less of number of bogies and reduced values of mass, train resistance, noise and vibration. from the result, the optimized train concept combining high seat capacity per train length with low weight and train resistance is 400m long, single -floor train composed of two symmetrically arranged half trainsets. Therefore, at this work recommended distributed train system However, the final decision of Korea high speed train configuration was concentrated power train and articulated bogie system. The configuration of trainset was 20cars included 2 power cars, 4 motorized cars and 14 trailer cars.
-
For weight reduction of the gearbox of power bogie of high speed train, aluminum alloy is recommended for the material of the gerabox case. In this paper, three models(Steel G/B Case-Steel BRG. Case[model-S], Aluminum G/B Case-Aluminum BRG. Case[model-A], Aluminum G/B Case-Steel BRG. Case[model-AS]) were compared to each other in the view of thermal expansion. The evaluation of the internal load, thermal expansion deformation and lug analysis were executed. It results that the 'model-A' is excessively deformed and fail in the bolt hole of bearing case. Material change of the bearing case to steel(model-AS) is effective to restrain the deformation of the inner radios of the bearing case and to prevent the failure of that.
-
According to the current trend of single arm type pantograph for high speed trail korean pantograph designed to single arm type will be installed on each power car roof of prototype train of korean very high speed rail configured to 7 cars and have the characteristics of maximum 1% contact loss at 350 km/h speed. This study is devoted to design basically element components of pantograph for korean very high speed train on the basis of kinematic analysis, static analysis and dynamic analysis, followed by making the basic drawings of korean pantograph. This drawings will be complemented through certification tests of prototype pantograph and verification of analysis software.
-
Train system like high speed train is assemble by a number of subsystem. Therefore, the Integration of train system needs the process that investigates the interface and influence between subsystems. In this paper, It studied the Design & Integration and major process of Korea High Speed Tram Project,
-
A catenary system should be designed to be an uniform elasticity over a span in order to maintain the lowest possible loss of contact between a pantograph and a contact wire. A elasticity disuniformity of a catenary can be regarded as a important design factor used for predicting the current collection performance for a catenary. There are a couple of formulas to calculate elasticity disuniformity of a catenary according to the literature survey, The effectiveness of these formulas is reviewed by performing catenary elasticity and loss of contact analysis for 5 different configurations of catenary systems using a beam element based FEM program, KRRI developed program, and the loss of contact by GASENDO, RTRI developed program, respective]y. The results reveals that these formulas are not suitable to predict the current collection performance for a catenary. Therefore, a new formula based on the standard deviation of the elasticity over a span is proposed in this study. The analysis results show that the new formula for an elasticity disuniformity of a catenary is very effective in predicting the current collection performance for a catenary.
-
Dynamic analysis of the magnetic levitation vehicle UTM01 is studied using the multibody dynamic analysis program DADS. The magnetic levitation force is defined and incorporated into DADS through the user-defined subroutines of DADS. The vehicle with bogies is modeled in 3 dimension. The developed vehicle model with magnetic nodules is analyzed for two rail profiles. The results show that the presented method is applicable to magnetic levitation vehicles.
-
The crash behaviour analysis of KHST is studied. KHST is modeled in 3D using the multibody dynamic analysis program DADS. The forward and side crash behaviour is predicted by tile dynamic analysis model and compared with those of another dynamic model. This study shot's that it is possible to predict tile crash behaviour of the trains in three dimension.
-
Rails have residual stresses produced during manufacturing processes. The residual stresses play all important role on brittle fracture, fatigue strength and derailment by producing cracks in the web of rail. The web saw-cut test is a technique developed to measure the bulk longitudinal residual stress level. It is a simple mettled to estimate a stress intensity factor,
$_{4}$ for a web crack by using the radii of curvature of the upper and lower portions of a cut rail. But according to this method,$_{4}$ varies along the rail length because the curvatures along tile rail length vary In this paper, tile residual stress was estimated by Finite Element Method and tile web saw-cut method. In addition tile variation of the residual stress with time was investigated. -
In order to manufacture high quality goods, the engineers who will design them has to have board technical experience as well as profound engineering knowledge. The engineers also be able to design and manufacture well development goods base on new advanced technology. Design process can be defined as transforming activity raw material into finished producted for human needs. The wealth of nation depend on its ability to retrieve natural resources and manufacture goods. Its ability, creation of goods, is most fundamental component of economic wealth of rich country. The rich countries have combine their own design knowledge with computer technology and create new effective design process. In this paper, one of the useful and practice design process created for railway industry is introduced. Base on the concept of this design process, the automatic wheelchair lifter design for railway vehicle is performed.
-
A study on the static type train simulator will include the training of new drives requires that the environment of the cab, controls placement, etc. must highly realistic so that driver can readily transfer his training experience to the real world. The simulator computer sends video disc speed command to a Video PC processor. A video switcher select the output of the on-line player. This selection is done with loss of vertical synchronization, meaning the picture will not noticeable roll or jump as the simulation mover from disc to disc. The video image quality remain contestant through the simulated speed range from zero to 100km/h. Flicker is avoided in the scene by the use of a TBC(Time Base Corrector) which causes the display of one video field at a time. Thus, no interfield jitter is present when the scene is stopped.
-
The auxiliary power supply system fur passenger service of railway car has been developed from MA(Motor-Alternator) to CVCF Inverter (Static Inverter). Generally, a customer wants to apply tile new control method and device for auxiliary power supply of railcar However, if the auxiliary power supply is supplied to extended existing line, the maintenance cost of the old system is less expensive than new developed system, so, the customer specifies that the auxiliary power supply has compatibility with existing one completely. At that time, the hardware is nearly same as existing system except small changes of accessories for better performance. This paper describes the flicker control using feed-forward method of auxiliary power supply system for new 50 electric railcars, which are delivered to Korean National Railroad (KNR) Kwa-chon Line. The existing power supply system has damping resistor box to stabilize the DC input (1.5 ㎸). At this time, for better system efficiency the new system has not include resistor box but new control method including feed-forward control is applied. This control algorithm realizes the better stabilization of input power compared to the result of the existing system, which includes resistor box
-
The main purpose of this study is to develope a Simulator for Central Traffic Controller(CTC) which can check the operating status of CTC and support tile maintenance procedure. The simulator supervise the CTC processor units and the data transmission between the CTC modules and the railway station equipments to define the validity of system functions and notify whether the eqipments are good or not. With the help of the simulator we could detect the error of CTC equipments easily. repair the faults efficiently. and improve tile reliability of CTC system.
-
An automatic train operation(ATO) system executes the operation of constant speed travelling and fixed point parking by using microprocessors instead of drivers manual operation. This paper describes the mathematical model for the train considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance, and so on. The speed controller of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control and fixed point parking performance and to compare its performance with that of a PID-type ATO control system under disturbances. Simulation results show that the control performance of gain scheduled control scheme fur ATO system is better than that of the conventional PID controller.
-
This paper presents an application of vector control strategy for 1.2MVA IGBT traction drive for electric railway vehicle. The vector control requires the control of the phase and amplitude of output voltage vector[5]. But in case of traction system far railway vehicle, the one-pulse mode is used in order to utilize the link voltage fully[8]. So it is impossible to control the flux axis current and the torque axis current instantaneously and independently. So this paper proposes the vector control strategy with slip-frequency control at one-pulse mode. And precise switching technique between the two different control structures has been proposed. And the strategy was verified by experimental result with 1.2MVA IGBT inverter with four 210㎾ induction motors.
-
This paper presents a new static circuit modeling methodology amenable to analysing the electric railway system. The accuracy and practicability of the proposed approach are demonstrated with the railway system containing 2 to 6 train
-
This paper is intended to provide a method to design control software fur the TCMS, train control and monitoring system. The TCMS with this control software will be applied KOREA Standard EMU. The control software is designed by SCADE Case tool to concern safety and reliability. The function for the EMU is implemented in software easily programmed, using a functional block, graphic programming language. the control software has modular design and each module is tested with SCADE simulator. This time we focus a HVAC(heater, ventilation and air conditioner controller) control module, present a design method and a simulation method for that module.
-
This paper presents study of collection performance according to dropper spacing for catenary Static characteristics analysis, dynamic simulation, stress and wear analysis for different 5 catenary configurations according to dropper spacing are performed. And collection performance for TGV-Nord catenary system is also analyzed in order to compare and evaluate.
-
Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.
-
The flywheel generator in use as a power source for experimental device can be large enough to generate the electric power to make it suitable for application in wide rage of industries. The proposed system pruduces the good performance for power control. In this paper, the validity of the flywheel for power storage is described and the new control method which applies the space vector control scheme are proposed. This system is superior to conventional power compensator in the aspect of stability improvement and it is possible to make the converter capacity small. Continuous operation by flywheel can be realized even during power network faults such as 1-line ground.
-
When a high speed train enters a tunnel, wind speed passing through the train in a tunnel section becomes higher due to the reverse flow to the direction of the train. The higher wind speed gives more aerodynamic forces to the pantograph on the train. Therefore, it is necessary to perform aerodynamic and dynamic analyses in order to check whether the current collection of the high speed train, entering the tunnel, still remain permissible or not. In this paper, the aerodynamic analysis has been performed under the assumption that a high speed train at 300 km/h enters a tunnel whose cross sectional area Is 107/㎡ and length is 1000m. In consideration of the aerodynamic analysis results, the dynamic analysis has been performed based on the catenary and pantograph dynamic models in SEOUL-PUSAN high speed rail, using the GASENDO developed by RTRI. In addition, the fatigue life of the contact wire has been reviewed using the Goodman diagram. Based on the analysis results, it is concluded that the increase of the aerodynamic forces on the pantograph in the tunnel section shall not affect characteristics of current collection adversely except that motions of the pantograph may be constrained by bump-stops.
-
The safe operation of electro railways is greatly dependant on its protective systems. The system so-called Fault Protection Wire(FW) is now widely adapted to protect in AT feeding systems. It is connected between the feeder and trolley circuit to return the fault current to autotransfonmers at substation. This paper computed the distribution of fault currents at FW in the system and also evaluated the safety from electric shock when ground fault or flashover occur in the feeding system. The results show FW is useful to protect power supply network from fault in electric railways
-
Polymer stem insulator for an electric railway has been developed in 1995 in Korea. Owing to its excellent electrical and physical characteristics, KT mark was awarded for the developed polymer stem insulator. After new specification of KNR(Korea National Railway) was established, tile evaluation of long-term reliability combined with the improvement of manufacturing process was carried out. In 1998, this polymer stem insulator was installed in commercial electrical railway line. This paper presents the long-term reliability properties of the installed polymer stem insulator compared with conventional insulator. The location of tile installed polymer stem insulator in KNR is also introduced.
-
An inverter-driven induction motor is used as the traction motor for a high speed drive system that required safety, reliabillity, performance, compact size owing to the space and weight alloted for attaching to train, etc. particularly it is possible to happen the saturation effects of flux density at constant voltage-frequency region and then increase very higher than the at lowed capacity of no-load current and temperature in any case. therefore the optimum design of core, optimum voltage-frequency ratio, adoption of high grade magnetic core have been developed and researched for preventing these problems. this paper show the saturation effects of traction rotor by measuring the induced voltage of search coil at stator teeth and presents optimum voltage-frequency ratio as well as optimum core design through the comparison with efficiency, power factor, load current and no-load current for korea high speed train.
-
This paper describes the evaluation methods and criteria used verify field performance of automatic multi-coupler for the PMC rolling stock. Automatic multi-coupler was designed and manufactured by KRRI , Woojin electric machinery CO., and Yujinchajeon MFG.CO., LTD in 1999. Through field performance test of PMC rolling stock, vibration, brake system, assembly and disassembly of complex train were measured on the condition of service operation. As a result, test results meet the criteria proposed by KNR and KRRI.
-
In this paper, we introduce the on-line test plan of high speed rail development, which will be carried out at the test section of Seoul-Pusan high speed line from May to October, 2002. The test items are decided focused on the verification of the perofrmace and acquirement of the technical data of the high speed rail system development. The running time and distance of the train are calculated for several limited maximum speed cases. The detailed test scenario shall be developed according to the process of development and design of the system.
-
In this paper, we investigated the wear rate, braking temperature and stopping distance of the composite brake shoe for diesel locomotive in the field test. The wear rate and braking temperature of the composite brake shoe would rather than cast iron. Also, the stopping distance of composite brake shoe is 450m at 100km/h. This result of field test shown that the density distribution of the composite brake shoe influence on wear rate.
-
Rails are produced by several rolling processes. These processes play an important role on the performance of rails. We analysed the rolling processes by finite element code, DEFORM. The distributions of temperatures and effective strains are obtained. After the rolling processes, the rails are sent to the cooling bed. During the cooling, the rails are bended and twisted. These bending and twisting should be minimized to produce a high quality rail. The analyses of cooling processes and residual stresses produced through the rolling processes will be Presented in the next paper.
-
Safety of passengers in the Korean High Speed Train, KHST, was evaluated under the different accident scenarios. Preliminary occupant analysis has been performed based on the TGV-K train seat characteristics. The influence of the vehicle deceleration and passenger type, seating positions, effectiveness of compartmentalization have been evaluated in terms of occupant injury criteria. This study is the final result of the occupant analysis of KHST project at 1st stage 3rd year.
-
Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.
-
The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.
-
The design method of Geosynthetics reinforced Railway Roadbed that was developed in Germany in 1997 is presently putting into practice. This method insists that Railway Roadbed Thickness has to be measured by Frost and Bearing Capacity The Maximum Value from the above two measurements is the necessary Railway Roadbed Thickness. This design method has many kinds of advantage in economic, constructive aspect, and environmentalism. Recently a few Korean experts actively have researched on this area, but their results are not enough for proper design method. Ⅰ hope more complete study on this area will be progressed.
-
In this study, Bolsterless bogie with col spring suspension for KNR new electric locomotive developed by Daewoo Heavy Indutries LTD is introduced. Bogie is designed in order to have good ride comfort in high speed and easy maintenance and proved by the running test performed in korean railroad for 1 years.
-
The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.
-
In this paper, a technique for the shape design and analysis of rail fastener is presented. KRRI's own 3 type fasteners are developed after due consideration for tile aspects of installation, maintenance, and cost of fastener. Numerical by using commercial FEM program COSMOS/Works are carried out to determine the optimal shape of fastener clip. Front tile manufactured models and numerical results, the developed fasteners show tile possibility to be commercialized. But in order to have their competitiveness on the markets, further studies are required for the demonstration of performance through laboratory and field tests
-
Tn this paper. a numerical method for the system analysis of the slab track is presented. In the model rail is considered to have a distributed mass and to be supported by sleepers discretely on slab. The slab supported by discrete slab pads- isolators Put on floor is modelled by finite beam elements The system analysis for the same type floating slab laid in Puchon station is carried out using the developed program. Then the numerical results are compared with system requirements for slab track.
-
In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.
-
In this study, we have Quantitatively estimated the mechanical properties of SM steels widely used in steel structures after correcting and analyzing the millsheets of the steels. From this result, in present, the mechanical properties of the steels produced in domestics have satisfied the prescribed values in Korean Standards on the whole. The mechanical properties of the steels were dependent of plate thickness and class of the steels. Also, there have been linear relations between the plate thickness and the mechanical properties of the steels. And the results of this study have shown the similar tendencies with the existing results. Because the upper limit value of yield strength are not prescribed in Korean Standards at present, it is necessary to prescribe the upper limit value of yielding ratio(or yield strength) in order to assure the deformation performance of the steels.
-
The noises generated from the air-conditioning duct are known to strongly affect the indoor-noises of high speed trains. The acoustic characteristics of an air-conditioning duct should depend on the geometry and shape of the duct. The structural material for Korean high speed train is supposed to be changed from Steel, which was used for TGV, to Aluminum in order to reduce the total train weight. Accordingly, the shape and layout of the air-conditioning duct of Korean high speed train will be different from that of TGV. Thus, this paper introduces a analytical method to predict the noise attenuation through the air-conditioning duct, based on the ISO 7235. In this method, the whole duct is divided into several pieces and the noise attenuations predicted for each duct piece are integrated to get the noise attenuation for the whole duct system. The validity of the method introduced herein is discussed through some numerical tests.
-
The object of this study is to reduce the subway noise by the low noise wheel. The vibro-acoustic reduction was predicted from the FRF difference between low noise wheel and solid wheel by experimental modal analysis. The low noise wheel and solid wheel were compared in viewpoint of car interior/exterior noise. The effect of low noise wheel on the noise of subway train of 6 vehicles was obtained. But, the application of low noise wheel must be reviewed in some aspect.
-
Typical analytical tools in noise level estimation are using BEM and Ray Acoustics for acoustic field.0 this paper, application of both approaches have been examined for the prediction on the exterior surface of railway vehicles. Advantages and disadvantages of the tool have been also evaluated. The result shows that sound understanding of the analytical tools for noise evaluation is necessary.
-
NIC@E is the software for prediction of various outdoor Noise. The Program is based on the ray tracing technique which has been widely used in an environmental noise prediction and analysis. In this paper, we analyze the Railway noise on the various types of geometrical source conditions in 3D and develope the expression method of 3D Graphics for noise level.
-
Though not very often, a train accident can cause large number of fatality. As a result, public concern about its safety is increasing nowadays. Tn this paper, the structural crashworthiness of Korean High Speed Train trailer was examined through FE analysis. Crash analyses on energy absorbing part and safety zone were carried out to determine each section force. Rollover analysis was performed to observe the amount of intrusion in the passenger's area in case of rollover accident.
-
This paper describes a crashworthy design for the front structure of KHST (Korean High Speed Train) under the SNCF accident scenario (collision against a movable rigid mass of IS tons at 110 km/h). The front structure designed in a new concept shows good behaviours in crashworthy point of view. It collapses in a progressive and well-controlled fashion. To evaluate the design by considering real situations, the power-car is simulated for accidents collided against a dump truck of 15 tons at 110 km/h. The front end structure of it shows a good response on crashworthiness.
-
Tn this study, the crashworthy design of the full rake of KHST (Korean High Speed Train under development in G7-project) is numerically evaluated using 2-dimensional crash dynamics. The results of KHST are compared with those of TGV-K (TGV for Seoul-Pusan line). KHST shows better crashworthy behaviors after impact. Specifically, impact forces, decelerations and overriding displacements are much reduced in KHST All the design guidelines under SNCF accident scenario (collision against a movable rigid mass of 15 ton at 110 km/h) are satisfied in KHST.
-
The purpose of this study is to suggest the effective analytical procedure using finite element model for the crashworthiness of motorized trailer of high speed train. In the analysis of end-on collision of Motorized Trailer for Korean High Speed Train., deformed pattern, rigidwall force, internal energy and each part section force is obtained. From those indices, we evaluate crashworthiness of motorized trailer for Korean High Speed Train in planning. The numerical results are applied to the design of motorized trailer of Korean high speed train.
-
The purpose of this study is to investigate stability of a high speed train and to propose optimal design using sensitivity analysis of suspension design parameters. A form of equations of motion in tangent track and curve track is obtained based on each creep force. Tangent track and curve track equations include lateral, rolling and yawing motions of wheel sets, bogies, and carbodies. Three track cases have been chosen to stability assesment of a high speed train analysis. Sensitivity equations are set up by directly differentiating the equations of motion. This study def'.led Stability performance index of a high speed train in tangent track and curve track. The relative magnitude of the effect of suspension parameters on the critical speed is computed, and by adjusting these parameters, the increase of the critical speed is achieved.
-
Results of the dynamic simulation on KTX catenary and catenary-pantograph interface are presented. Simulation programs based on finite element and finite difference models of the catenary are developed, while the pantograph is modeled as a linear 3-degree-of-freedom system. The catenary motion dynamics are primarily determined by the transmission and reflection of the propagating disturbance wave at the hanger and span boundaries. On the other hand, the catenary-pantograph contact characteristics are primarily influenced by the movement of the pantograph across the hanger and span boundaries, the amount of damping present in the contact wire, and the resonant frequencies of the pantograph.
-
Rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other and passenger loads. This paper deals with the statics analysis for two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamics analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, Ⅰ-DEAS and NASTRAN show that maximum stresses do not exceed the yielding level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except the case of a lateral loading. It is also observed that the steering type shows a be stiffened. It is strongly anticipated that vibrational fatigue analysis should be carried out under realistic loading conditions closely matching to situations such as running surface and lateral clearances along the guideway.
-
This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1
$\^$ st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms. -
비선형 임계속도를 주행시험대를 이용하여 측정하였으며 비선형 임계속도가 관성에 의한 과도 현상이 아님을 확인하기 위하여 주행속도를 연속 그리고 불연속적으로 감가속 하면서 선형 및 비선형 임계속도를 측정하였다. 또한 차량의 안정성을 간편하게 예측할 때 대차모델만을 사용하던 종래의 방법이 타당한지 확인하였으며 차량의 임계속도와 응답주파수를 예측하기 위하여 산업체에서 사용되던 간편 식들의 정확성을 검토한 결과 다음의 결과를 도출할 수 있었다. (중략)