Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed point problem. Fixed point theory provides essential tools for solving problems arising in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization problems, equilibrium problems, complementarity problems, selection and matching problems, and problems of proving the existence of solution of integral and differential equations.The theory of fixed is known to find its applications in many fields of science and technology. For instance, the whole world has been profoundly impacted by the novel Coronavirus since 2019 and it is imperative to depict the spread of the coronavirus. Panda et al. [24] applied fractional derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of fixed point theory, existence and uniqueness of solutions of the models were proved. For more information on applications of fixed point theory to real life problems, authors should (see [6, 13, 24] and the references contained in).