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Abstract. The conceptions of generalized b-metric spaces or Gb-metric spaces and a gener-

alized Ω-distance mappings play a key role in proving many important theorems in existence

and uniqueness of fixed point theory. In this manuscript, we establish a new type of contrac-

tion namely, Ωb(H, θ, s)-contraction, this contraction based on the concept of a generalized

Ω-distance mappings which established by Abodayeh et.al. in 2017 together with the concept

of H-simulation functions which established by Bataihah et.al [10] in 2020. By utilizing this

new notion we prove new results in existence and uniqueness of fixed point. On the other

hand, examples and application were established to show the importance of our results.

1. Introduction

In the past century, the developing of fixed point theory has taken a wide
range in the field of mathematics certainly after the original result of Banach
[6]. The study was divided into many directions; one of these directions by
modifying the contraction condition for examples see [2], [3], [8], [9], [14]–[23]
and the other by modifying the setting of the distance spaces, the pioneer
mathematicians established new distance spaces such as b-metric space, ex-
tended b-metric spaces and extended quasi b-metric spaces, etc. Qawasmeh
et.al. [21] and Shatanawi [29] discuss and unify the existence and uniqueness

0Received October 7, 2022. Revised January 8, 2023. Accepted January 9, 2023.
02020 Mathematics Subject Classification: 47H09, 47H10, 37C25.
0Keywords: Generalized b-metric spaces, Ωb-distance mappings, H-simulation functions,

nonlinear contraction, fixed point.
0Corresponding author: T. Qawasmeh(jorqaw@yahoo.com).



558 Tariq Qawasmeh

of fixed point results by utilizing the concept of extended b-metric spaces and
extended quasi b-metric spaces respectively, for more examples in distance
spaces see [24], [25], [27]–[30] and others by modifying both see [7], [23], [28],
[31].

In 2014, Aghajani et.al. [4] established the concept of generalized b-metric
spaces or Gb-metric spaces as a generalization of the standard concept of both
spaces b-metric spaces which investigated by Bakhtin [5] and G-metric spaces
which investigated by Mustafa and Sims [19] as follows:

2. Preliminaries

Definition 2.1. ([4]) Let D be a nonempty set and s ∈ [1,+∞). Assume that
the function
Gb : D ×D ×D → [0,+∞) satisfy:

(1) Gb(d, d
′
, d

′′
) = 0 if and only if d = d

′
= d

′′
;

(2) Gb(d, d, d
′
) ≥ 0 for all d, d

′ ∈ D with d 6= d
′
;

(3) Gb(d, d
′
, d

′
) ≤ Gb(d, d

′
, d

′′
) for all d, d

′
, d

′′ ∈ D with d
′ 6= d

′′
;

(4) Gb(d, d
′
, d

′′
) = Gb(p{d, d

′
, d

′′}) where p is a permutation of d, d
′
, d

′′
;

(5) Gb(d, d
′
, d

′′
) ≤ s[Gb(d, a, a) +Gb(a, d

′
, d

′′
)] for all d, d

′
, d

′′
, a ∈ D.

Then the function Gb is called a generalized b-metric on D and the pair (D,Gb)
is a generalized b-metric space or Gb-metric space.

Example 2.2. ([4]) Suppose that (D,G) is a G-metric space and p ∈ (1,+∞).
Define Gb : D ×D ×D → [0,+∞) via Gb(d1, d2, d3) = (G(d1, d2, d3))p. Then
Gb is a generalized b metric space with base s = 2p−1.

From now on, (D,Gb) refers to Gb-metric space. The notions of Gb conver-
gence and Gb completeness are given as follows:

Definition 2.3. ([4]) Let {dn} be a sequence in (D,Gb). Then

(1) {dn} is Gb Cauchy sequence if for all ε > 0 there is N ∈ N such that
for all n,m, l ≥ N,G(dn, dm, dl) < ε;

(2) {dn} is Gb convergent to d ∈ D if for all ε > 0 there is N ∈ N such
that for all n,m ≥ N,G(d, dn, dm) < ε;

(3) (D,Gb) is complete if every Gb Cauchy sequence is Gb convergent.

Remark 2.4. A sequence {dn} in (D,Gb) is Gb convergent to d ∈ D if one of
the following conditions hold:

(i) Gb(dn, dn, d)→ 0 as n→ +∞;
(ii) Gb(dnd, d)→ 0 as n→ +∞.

The notion of Generalized Ω distance mappings or Ωb was introduced by
Abodayeh et.al. [1] and they employed this notion to discuss some fixed point
results in the literature.
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Definition 2.5. ([1]) A generalized Ω-distance mapping on (D,Gb) (denoted
by Ωb) is a function Ωb : D ×D ×D → [0,+∞) satisfy:

(1) Ωb(d, d
′
, d

′′
) ≤ s[Ωb(d, a, a) + Ωb(a, d

′
, d

′′
)] for all d, d

′
, d

′′
, a ∈ D, s ∈

[0,+∞);

(2) for all d, d
′ ∈ D, Ωb(d, d

′
, .),Ωb(d, ., d

′
) : D → D are lower semi-

continuous;
(3) for all ε > 0 there exists α > 0 such that if Ωb(d, a, a) ≤ α

and Ωb(a, d
′
, d

′′
) ≤ α, then Gb(d, d

′
, d

′′
) ≤ ε for all d, d

′
, d

′′ ∈ D.

Example 2.6. ([1]) Let D = R. Define Gb : R × R × R → [0,+∞) and
Ωb : R×R×R× → [0,+∞) via Gb(d1, d2, d3) = (|d1−d2|+|d2−d3|+|d1−d3|)2,
Ωb(d1, d2, d3) = (|d1 − d2|+ |d1 − d3|)2, respectively. Then Gb is a generalized
b metric space with s = 2 and Ωb is a generalized Ω-distance mapping.

Definition 2.7. ([10, 16]) Let Θ denotes the class of all continuous and none
decreasing functions θ : [0,+∞)→ [1,+∞) that satisfies the condition : for
all a sequence {rn} in [0,+∞),

lim
n→+∞

θ(rn) = 1 ⇐⇒ lim
n→+∞

rn = 0.

Remark 2.8. If θ ∈ Θ, then θ−1 ({1})=0.

The notion of the class of functions namely, H-simulation functions which
investigated by Bataihah et.al. in 2020 as follows:

Definition 2.9. ([10]) A class of functions H : [1,+∞) × [1,+∞) → R is
called a H-simulation function if

H(d, d
′
) ≤ d

′

d
, ∀ d, d′ ∈ [1,+∞). (2.1)

Remark 2.10. ([10]) Suppose H ∈ H and (dn), (d
′
n) are sequences in [1,+∞)

with 1 ≤ lim
n→+∞

d
′
n < lim

n→+∞
dn. Then

lim sup
n→+∞

H(dn, d
′
n) < 1. (2.2)

In the subsequence, D refers to nonempty set, Φf stands for the class of all
fixed points of f in the set D, R and N refer to the set of reals and the set of
natural numbers, respectively.
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3. Main results

Before we introduce our new results, it is necessary to introduce the follow-
ing definitions.

Definition 3.1. Suppose that (D,Gb) is equipped with generalized Ω-distance
mapping Ωb. we say that D is bounded with respect to Ωb if there is K > 0
with Ωb(d1, d2, d3) ≤ K for all d1, d2, d3 ∈ D.

Definition 3.2. Suppose that (D,Gb) is equipped with generalized Ω-distance
mapping Ωb. A self mapping f on D is called Ωb(H, θ, s)-contraction if there
exist s ∈ [1,+∞), δ ∈ [0, 1), θ ∈ Θ and H ∈ H such that for all d1, d2, d3 ∈ D
we have

1 ≤ H
(
θsΩb(fd1, f

2d1, fd2), θδW (d1, d2, d3)

)
, (3.1)

where

W (d1, d2, d3) = max

{
Ωb(d1, fd1, d2),Ωb(d1, fd1, fd1),Ωb(d2, fd2, fd2)

}
.

Lemma 3.3. Suppose that that the function f : D → D satisfies the conditions
of Ωb(H, θ, s)-contraction. Then

(1) if 0 < W (d1, d2, d3), then Ωb(fd1, f
2d1, fd2) ≤ δ

s
W (d1, d2, d3);

(2) if 0 = W (d1, d2, d3), then Ωb(fd1, f
2d1, fd2) = 0.

Proof. (1) If W (d1, d2, d3) > 0, then

1 ≤ H(θsΩb(fd1, f
2d1, fd2), θδΩb(d1, fd1, d2))

≤ θδW (d1, d2, d3)

θsΩb(fd1, f2d1, fd2)
.

This implies that, θsΩb(fd1, f
2d1, fd2) ≤ θδW (d1, d2, d3). Since the class Θ is

non-decreasing function, we get

Ωb(fd1, f
2d1, fd2) ≤ δ

s
W (d1, d2, d3).

(2) If 0 = W (d1, d2, d3), then by utilizing condition (1), we have

1 ≤ θsΩb(fd1, f
2d1, fd2) ≤ θδW (d1, d2, d3) = 1.

Thus, Ωb(fd1, f
2d1, fd2) = 0. �

Lemma 3.4. Suppose that that the function f : D → D satisfies Ωb(H, θ, s)-
contraction. Then Φf has at most one element.
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Proof. First, if ω ∈ Φf , we claim that Ωb(ω, ω, ω) = 0. If not, then by Lemma
3.3, we get that

Ωb(fω, f
2ω, fω) ≤ δ

s
W (ω, ω, ω)

=
δ

s
max{Ωb(ω, fω, ω),Ωb(ω, fω, fω),Ωb(ω, fω, fω)}

=
δ

s
[Ωb(ω, ω, ω)]

< Ωb(ω, ω, ω),

which is a contradiction.
Now, assume that there are ω, v ∈ Φf . Then Ωb(ω, v, v) > 0 by utilizing

Lemma 3.3, we get that

Ωb(ω, v, v) = Ωb(fω, f
2v, fv) ≤ δ

s
W (ω, v, v)

=
δ

s
max{Ωb(ω, fv, v)Ωb(ω, ω, ω),Ωb(v, v, v)}

=
δ

s
Ωb(ω, v, v)

< Ωb(ω, v, v),

which is a contradiction. Therefore, Ωb(ω, v, v) = 0 and by the condition (3)
of the definition of of Ωb and since Ωb(ω, ω, ω) = 0, we have Gb(ω, v, v) = 0
and so ω = v. �

Theorem 3.5. Suppose (D,Gb) is complete equipped with a generalized Ω-
distance mapping Ωb with base s ∈ [1,+∞) and D is bounded with respect to
Ωb. Suppose there exist θ ∈ Θ, H ∈ H, δ ∈ [0, 1) such that the self-mapping
f : D → D is a Ωb(H, θ, s)-contraction and satisfies one of the followings:

(i) f is a continuous mapping;
(ii) for all β ∈ D if fβ 6= β, then 0 < inf{Ωb(d, fd, β) : d ∈ D},

then Φf contains only one element.

Proof. Construct a Picard sequence {dn} by choosing an arbitrary point d0 ∈
D and by letting dn+1 = fn+1(d0) = f(dn) for n ∈ N.

Since Ωb(dn, dn+1, dn+1) = Ωb(fdn−1, f
2dn−1, fdn),

1 ≤ H(θsΩb(fdn−1, f
2dn−1, fdn), θδW (dn−1, dn, dn))

= H(θsΩb(dn, dn+1, dn+1), θδW (dn−1, dn, dn))
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≤ θδW (dn−1, dn, dn)

θsΩb(dn, dn+1, dn+1)

=
θδmax{Ωb(dn−1, dn, dn),Ωb(dn−1, dn, dn),Ωb(dn, dn+1, dn+1))}

θsΩb(dn, dn+1, dn+1)
.

(3.2)

Therefore, we have

θsΩb(dn, dn+1, dn+1) ≤ θδmax{Ωb(dn−1, dn, dn) + Ωb(dn, dn+1, dn+1).

Since the class Θ is a non-decreasing function, we get

Ωb(dn, dn+1, dn+1) ≤ δ

s
max{Ωb(dn−1, dn, dn),Ωb(dn, dn+1, dn+1))}.

If max{Ωb(dn−1, dn, dn),Ωb(dn, dn+1, dn+1))} = Ωb(dn, dn+1, dn+1), then
Ωb(dn, dn+1, dn+1) < Ωb(dn, dn+1, dn+1) which is a contradiction. Therefore,
we have

Ωb(dn, dn+1, dn+1) ≤ δ

s
Ωb(dn−1, dn, dn)

≤ (
δ

s
)2Ωb(dn−2, dn−1, dn−1)

...

≤ (
δ

s
)nΩb(d0, d1, d1).

(3.3)

Since D is bounded with respect to Ωb, there is K > 0 such that

Ωb(dn, dn+1, dn+1) ≤ (
δ

s
)nK. (3.4)

Next, by utilizing Equation (3.4) and condition (1) of the the definition of
Ωb for all n < m ≤ l, we have

Ωb(dn, dm, dl) ≤ sΩb(dn, dn+1, dn+1) + sΩb(dn+1, dm, dl)

≤ sΩb(dn, dn+1, dn+1) + s2Ωb(dn+1, dn+2, dn+2)

+s2Ωb(dn+2, dm, dl)

...

≤ sΩb(dn, dn+1, dn+1) + s2Ωb(dn+1, dn+2, dn+2) + · · ·

+sm−n−1Ωb(dm−2, dm−1, dm−1) + sm−n−1Ωb(dm−1, dm, dl)
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≤ s(δ
s

)nK + s2(
δ

s
)n+1K + · · ·+ sm−n−1(

δ

s
)m−1K

= s(
δ

s
)nK

[
1 + δ + δ2 + · · ·+ δm−n−1

]

= sK(
1− δm−n

1− δ
)(
δ

s
)n.

(3.5)

By taking the limit as n→ +∞, we get

lim
n→+∞

Ωb(dn, dm, dl) = 0. (3.6)

Consequently, {dn} is Gb Cauchy sequence, so there is β ∈ D such that the
sequence {dn} is Gb convergent to β. If f is a continuous function, then fβ = β.
But if f is any mapping by using the lower semi continuity of Ωb, we have

Ωb(dn, dm, β) ≤ lim
t→+∞

Ωb(dn, dm, dt) < ε, ∀n,m ≥ N. (3.7)

Assume that m = n+ 1. Then

Ωb(dn, dn+1, β) ≤ lim
t→+∞

Ωb(dn, dn+1, dt) < ε

for all n ≥ N. Now, if fβ 6= β, we have

0 < inf{Ωb(d, fd, β) : d ∈ D} ≤ inf{Ωb(dn, dn+1, β) : n ∈ N} < ε (3.8)

for each ε > 0, which is a contradiction. Hence, fβ = β. To prove the
uniqueness, Lemma 3.4 ensures that Φf contains only one element and this
completes the proof. �

Corollary 3.6. Suppose (D,Gb) is complete equipped with a generalized Ω-
distance mapping Ωb with base s ∈ [1,+∞) and D is bounded with respect to
Ωb. Suppose there exist θ ∈ Θ, δ ∈ [0, 1) such that the self-mapping f : D → D
satisfies the condition:

2sΩb(fd,f2d,ft) ≤ 2δΩb(d,fd,t), ∀ d, t, l ∈ D.

If one of the following conditions satisfied

(1) f is a continuous mapping;
(2) for all β ∈ D if fβ 6= β, then 0 < inf{Ωb(d, fd, β) : d ∈ D},

then Φf contains only one element.

Proof. Define H : [1,+∞)× [1,+∞)→ R, θ : [0,∞)→ [1,∞) by

H(v1, v2) = 1 + ln(
v2

v1
), λ ∈ (0, 1) and θ(v) = 2v, ∀ v ∈ D,
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respectively, then H ∈ H and θ ∈ Θ. Now,

2sΩb(fd,f2d,ft) ≤ 2δΩb(d,fd,t),

then

θsΩb(fd, f
2d, ft) ≤ θδΩb(d, fd, t) ≤ θδW (d, t, l).

Therefore, we have

1 ≤ θδW (d, t, l)

θsΩb(fd, f2d, ft)
.

It means that

1 ≤ 1 + ln

(
θδW (d, t, l)

θsΩb(fr, f2r, ft)

)
,

it implies

1 ≤ H(θδW (d, t, l), θsΩb(fd, f
2d, ft)).

�

Definition 3.7. Let L denotes the class of all continuous functions:

L := {l : [0,+∞)→ [1,+∞) : l−1({1}) = 0}.

Corollary 3.8. Suppose (D,Gb) is complete equipped with generalized Ω-
distance mapping Ωb with base s ∈ [1,+∞) and D is bounded with respect
to Ωb. Suppose there exist θ ∈ Θ, δ ∈ [0, 1). Assume there are l1, l2 ∈ L with
l2(t) ≤ t ≤ l1(t) with t ∈ [0,+∞) such that the self-mapping f : D → D
satisfies the condition:

1 ≤ l2(θδW (d1, d2, d3))

l1(θsΩb(fd1, f2d1, fd2))
. (3.9)

If one of the following conditions satisfied:

(1) f is a continuous mapping;
(2) for all β ∈ D if fβ 6= β, then 0 < inf{Ωb(d, fd, β) : d ∈ D},

then Φf contains only one element.

Proof. Define H : [1,+∞)×[1,+∞)→ R by H(v1, v2) =
l2(v2)

l1(v1)
, it is obviously

that H ∈ H. Theorem 3.5 ensures that Φf has only one element. �

Next, assume that the class L is a non-decreasing function and by using
Corollary 3.8, we get the following corollaries:

Corollary 3.9. Suppose (D,Gb) is complete equipped with generalized Ω-
distance mapping Ωb with base s ∈ [1,+∞) and D is bounded with respect
to Ωb. Suppose there exist θ ∈ Θ, δ ∈ [0, 1). Assume there are l1, l2 ∈ L with
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l2 ≤ t ≤ l1 and t ∈ [0,+∞) such that the self-mapping f : D → D satisfies
the condition:

l1(θsΩb(fd1, f
2d1, fd2)) ≤ l2(Ωb(d1, fd1, d2)). (3.10)

If one of the following conditions satisfied:

(1) f is a continuous mapping;
(2) for all β ∈ D if fβ 6= β, then 0 < inf{Ωb(d, fd, β) : d ∈ D},

then Φf contains only one element.

Next, let l1(t) = t, l2(t) = λt with λ ∈ [0, 1) by employing Corollary 3.8, we
get the following corollary:

Corollary 3.10. Suppose (D,Gb) is complete equipped with generalized Ω-
distance mapping Ωb with base s ∈ [1,+∞) and D is bounded with respect
to Ωb. Suppose there exist θ ∈ Θ, λ, δ ∈ [0, 1) such that the self-mapping
f : D → D satisfies the condition:

θsΩb(fd1, f
2d1, fd2) ≤ λθδW (d1, d2, d3), ∀ d1, d2, d3 ∈ D. (3.11)

If one of the following conditions satisfied:

(1) f is a continuous mapping;
(2) for all β ∈ D if fβ 6= fβ, then 0 < inf{Ωb(d, fd, β) : d ∈ D},

then Φf contains only one element.

Example 3.11. Let D = I = [0, 1]. Then Φf of the following mapping

fd = 1− d2

8 + d2

has only one element on I. To show this, define the following mapping:
H : [1,+∞)× [1,+∞)→ [0,+∞) and θ : [0,+∞)→ [1,+∞) by

H(d1, d2) =
dλ2
d1

with λ =
1

2
and θ(ω) = 2ω, ∀ω ∈ I,

respectively, then H ∈ H and θ ∈ Θ. Also, define Gb : I × I × I → [0,+∞) by

Gb(d1, d2, d3) = (|d1 − d2|+ |d2 − d3|+ |d1 − d3|)2,

then (D,Gb) is a complete Gb-metric space with s = 2.
Furthermore, define Ωb : I × I × I → [0,+∞) by

Ωb(d1, d2, d3) = (|d1 − d2|+ |d1 − d3|)2,

then Ωb is a generalized Ω-distance mapping.
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Now, for all d, t, l ∈ D, assume fd = u. Then we have

sΩb(fd, f
2d, ft) = 2Ωb(fd, fu, ft)

= 2

(
|1− d2

8 + d2
− (1− u2

8 + u2
)|

+|1− d2

8 + d2
− (1− t2

8 + t2
)|
)2

≤ 2

(64)2

[
|(d2)(8 + u2)− (u2)(8 + d2)|

+|(d2)(8 + t2)− (t2)(8 + d2)|
]2

=
2

64

[
|d2 − u2|+ |d2 − t2|

]2

≤ 1

8

[
|d− u|+ |d− t|

]2

=
1

8

[
|d− fd|+ |d− t|

]2

= λδΩb(d, fd, t),

with λ =
1

2
, δ =

1

4
. Now,

sΩb(fd, f
2d, ft) ≤ λδΩb(d, fd, t) ≤ λδW (d, t, l),

then

2sΩb(fd,f2d,ft) ≤ (2δW (d,t,l))λ.

Therefore, we have

1 ≤ (2δW (d,t,l))λ

2sΩb(fd,f2d,ft)
.

It means that

1 ≤ H
(
θsΩb(fd, f

2d, ft), θδW (d, t, l)

)
.

Hence, f satisfy the conditions of Ωb(H, θ, s)-contraction. Theorem 3.5 ensures
that Φf has only one element.

By employing MATLAB simulation we find out that the fixed point of f is
d ≈ 0.9067953030328075.
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Example 3.12. Consider the following mapping

fr =
1− dm

Γ + dm
, where m,Γ ∈ R and m >

1√
2
, Γ ≥

√
2 m.

Then Φf has only one element on [0, 1]. To show this, define the follow-
ing mappings: H : [1,+∞) × [1,+∞) → [0,+∞), θ : [0,+∞) → [1,+∞)

by H(d1, d2) = 1 + ln
d2

d1
, θ(ω) = eω for all ω ∈ D, respectively, then H ∈

H and θ ∈ Θ. Also, define: Gb : D ×D ×D → [0,+∞) via Gb(d1, d2, d3) =
(|d1− d2|+ |d2− d3|+ |d1− d3|)2. Then (D,Gb) is a complete Gb metric space
with s = 2.

Furthermore, define Ωb : D ×D ×D → [0,+∞) via

Ωb(d1, d2, d3) = (|d1 − d2|+ |d1 − d3|)2,

then Ωb is a generalized Ω-distance mapping.
Now, for all d, t, l ∈ R, assume fd = u. Then we have

sΩb(fd, f
2d, ft) = 2Ωb(fd, fu, ft)

= 2

(
| 1− d

m

Γ + dm
− 1− um

Γ + um
|+ | 1− d

m

Γ + dm
− 1− tm

Γ + tm
|
)2

≤ 2

Γ4

[
|(1− dm)(Γ + um)− (1− um)(Γ + dm)|

+|(1− dm)(Γ + tm)− (1− tm)(Γ + dm)|
]2

≤ 2(Γ− 1)2

Γ4
(|dm − um|+ |dm − tm|)2

≤ 2m2(Γ− 1)2

Γ4
(|d− u|+ |d− t|)2

≤
(

Γ− 1

Γ

)2

(|d− fd|+ |d− t|)2

= δΩb(d, fd, t), where δ =

(
Γ− 1

Γ

)2

.

Now,
sΩb(fd, f

2d, ft) ≤ δΩb(d, fd, t) ≤ δW (d, t, l),

then
esΩb(fd,f2d,ft) ≤ eδW (d,t,l).
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Therefore, we have

1 ≤ eδW (d,t,l)

esΩb(fd,f2d,ft)
.

It means that

1 ≤ 1 + ln
eδW (d,t,l)

esΩb(fd,f2d,ft)
,

it implies

1 ≤ H
(
θsΩb(fd, f

2d, ft), θδW (d, t, l)

)
.

Hence, f satisfy the conditions of Ωb(H, θ, s)-contraction. Theorem 3.5 ensures
that Φf has only one element.

4. Application

To Show the novelty of our work, we introduce this application.
By utilizing our results the following equation:

dm+1 + dm + Γd = 1, where m,Γ ∈ R and m >
1√
2
, Γ ≥

√
2 m, (4.1)

has not only a solution in the unit interval [0, 1] as intermediate value theorem
say, but also, the solution is unique.

To prove this, it is similar to show that Φf of the following mapping has
only one element in the unit interval [0, 1].

f(d) =
1− dm

Γ + dm
, where m,Γ ∈ R and m >

1√
2
, Γ ≥

√
2 m. (4.2)

Example 3.12 ensures that Φf has only one element and so the equation (4.1)
has a unique solution.

Example 4.1. If m = 100, Γ = 150 in Equation (4.2). By employing MAT-
LAB simulation we find out that the fixed point of f is d ≈ 0.0666666666665433
and so, it is the unique solution of the Equation (4.1).

5. Conclusion

In this study, We employed our new contraction namely Ωb(H, θ, s)-contrac-
tion to discuss and unify some new fixed point results in the literature, this
contraction established by using the notion ofGb-metric spaces which equipped
with generalized Ω-distance mappings (Ωb-distance mappings) and the notion
of H-simulation functions and the class of Θ functions. Finally, we show the
importance of our work by setting up some interesting examples and applica-
tion.
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