Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- P.N. Anh, J.K Kim, N.D. Hien and N.V. Hong, Strong convergence of inertial hybrid subgradient methods for solving equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 24(3) (2023), 499-514.
- P.N. Anh, H.T.C. Thach and J.K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl., 25(3) (2020), 437-451.
- P.N. Anh and H.A. Le Thi, An Armijo-type method for pseudomonotone equilibrium problems and its applications, J. Global Optim., 57(3) (2013), 803-820. https://doi.org/10.1007/s10898-012-9970-8
- P.N. Anh and H.A. Le Thi, New subgradient extragradient methods for solving monotone bilevel equilibrium problems, Optimization, (2019) https://doi.org/ 10.1080/02331934.2019.1656204.
- J.P. Aubin and I. Ekeland, Applied nonlinear analysis, New York. Wiley, 1984.
- H.H. Bauschke and J.M. Borwein, Legendre functions and the method of random Bregman projections, J. Convex Anal., 4 (1997), 27-67.
- H.H. Bauschke, J.M. Borwein and P.L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim., 42 (2003), 596-636. https://doi.org/10.1137/S0363012902407120
- H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., 3 (2001), 615-647. https://doi.org/10.1142/S0219199701000524
- G.C. Bento, J.X. CruzNeto, J.O. Lopes, P.A. Soares and A.Jr. Soubeyran, Generalized proximal distances for bilevel equilibrium problems, SIAM J. Optim., 26 (2016), 810-830. https://doi.org/10.1137/140975589
- J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.
- L.M. Bregman, A relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), 200-217. https://doi.org/10.1016/0041-5553(67)90040-7
- D. Butnariu, Y. Censor and S. Reich, Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl., 8 (1997), 21-39. https://doi.org/10.1023/A:1008654413997
- D. Butnariu and A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers. Dordrecht. The Netherlands, 2000.
- D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. Art., 2006, 1-39.
- Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335. https://doi.org/10.1007/s10957-010-9757-3
- O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, J. Optim. Theory Appl., 105 (2000), 299-323. https://doi.org/10.1023/A:1004657817758
- Z. Chbani and H. Riahi, Weak and strong convergence of proximal penalization and proximal splitting algorithms for two-level hierarchical Ky Fan minimax inequalities, Optimization, 64 (2015), 1285-1303. https://doi.org/10.1080/02331934.2013.858397
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Netherlands, 1990.
- S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359. https://doi.org/10.1080/0233193031000149894
- H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program, 133 (2012), 227-242. https://doi.org/10.1007/s10107-010-0427-x
- H. Iiduka and I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim., 19 (2009), 1881-1893. https://doi.org/10.1137/070702497
- G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim., 21 (2011), 1319-1344. https://doi.org/10.1137/110820002
- J.K. Kim and P. Majee, Modified Krasnoselski Mann iterative method for hierarchical fixed point problem and split mixed equilibrium problem, J. Ineq. Appl., (2020) 2020:227, ISSN 1029-242X doi.org/10.1186/s13660-020-02493-8.
- J.K. Kim and Salahuddin, Existence of solutions for multi-valued equilibrium problems, Nonlinear Funct. Anal. Appl., 23(4) (2018), 779-795.
- J.K. Kim and T.M. Tuyen, A parallel iterative method for a finite family of Bregman strongly nonexpansive mappings in reflexive Banach spaces, J. Kor. Math. Soc., 57(3) (2020), 617-640. https://doi.org/10.4134/JKMS.j190268.
- P.E. Mainge, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515. https://doi.org/10.1137/060675319
- A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47 (2010), 287-292. https://doi.org/10.1007/s10898-009-9476-1
- K. Muangchoo, A new explicit extragradient method for solving equilibrium problems with convex constraints, Nonlinear Funct. Anal. Appl., 27(1) (2022), 1-22.
- L.D. Muu and W. Oettli, Optimization over equilibrium sets, Optimization, 49 (2000), 179-189.
- TD. Quoc, LD. Muu and VH. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57(6) (2008), 749-776. https://doi.org/10.1080/02331930601122876
- N.V. Quy, An algorithm for a bilevel problem with equilibrium and fixed point constraints, Optimization, 64 (2014), 1-17.
- S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485.
- S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 22-44. https://doi.org/10.1080/01630560903499852
- S. Sabach, Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., 21 (2011), 1289-1308. https://doi.org/10.1137/100799873
- F. Schopfer, T. Schuster and A. K Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems, 24 (2008).
- L.Q. Thuy and T.N. Hai, A projected subgradient algorithm for bilevel equilibrium problems and applications, J. Optim. Theory Appl., https://doi.org/10.1007/s10957-017-1176-2.
- J.V. Tiel, Convex Analysis, An introductory text. John Wiley & Sons Ltd, 1984.
- J.C. Yao, Variational inequalities with generalized monotone operators, Math. Oper. Research. 19 (1994), 691-705. https://doi.org/10.1287/moor.19.3.691
- T. Yuying, B.V. Dinh, D.S. Kim and S. Plubtieng, Extragradient subgradient methods for solving bilevel equilibrium problems, J. Ineq. Appl., https://doi.org/10.1186/s13660-018-1898-1.
- G. Zamani Eskandani, M. Raeisi and Themistocles M. Rassias, A Hybrid extragradient method for pseudomonotone equilibrium problems by using Bregman distance, Fixed Point Theory Appl., 27 (2018), 20-132.