DOI QR코드

DOI QR Code

THE SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING MONOTONE BILEVEL EQUILIBRIUM PROBLEMS USING BREGMAN DISTANCE

  • Received : 2022.06.08
  • Accepted : 2022.11.02
  • Published : 2023.06.15

Abstract

In this paper, we propose a new subgradient extragradient algorithm for finding a solution of monotone bilevel equilibrium problem in reflexive Banach spaces. The strong convergence of the algorithm is established under monotone assumptions of the cost bifunctions with Bregman Lipschitz-type continuous condition. Finally, a numerical experiments is reported to illustrate the efficiency of the proposed algorithm.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. P.N. Anh, J.K Kim, N.D. Hien and N.V. Hong, Strong convergence of inertial hybrid subgradient methods for solving equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal. 24(3) (2023), 499-514.
  2. P.N. Anh, H.T.C. Thach and J.K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl., 25(3) (2020), 437-451.
  3. P.N. Anh and H.A. Le Thi, An Armijo-type method for pseudomonotone equilibrium problems and its applications, J. Global Optim., 57(3) (2013), 803-820. https://doi.org/10.1007/s10898-012-9970-8
  4. P.N. Anh and H.A. Le Thi, New subgradient extragradient methods for solving monotone bilevel equilibrium problems, Optimization, (2019) https://doi.org/ 10.1080/02331934.2019.1656204.
  5. J.P. Aubin and I. Ekeland, Applied nonlinear analysis, New York. Wiley, 1984.
  6. H.H. Bauschke and J.M. Borwein, Legendre functions and the method of random Bregman projections, J. Convex Anal., 4 (1997), 27-67.
  7. H.H. Bauschke, J.M. Borwein and P.L. Combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim., 42 (2003), 596-636. https://doi.org/10.1137/S0363012902407120
  8. H.H. Bauschke, J.M. Borwein and P.L. Combettes, Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., 3 (2001), 615-647. https://doi.org/10.1142/S0219199701000524
  9. G.C. Bento, J.X. CruzNeto, J.O. Lopes, P.A. Soares and A.Jr. Soubeyran, Generalized proximal distances for bilevel equilibrium problems, SIAM J. Optim., 26 (2016), 810-830. https://doi.org/10.1137/140975589
  10. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.
  11. L.M. Bregman, A relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), 200-217. https://doi.org/10.1016/0041-5553(67)90040-7
  12. D. Butnariu, Y. Censor and S. Reich, Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl., 8 (1997), 21-39. https://doi.org/10.1023/A:1008654413997
  13. D. Butnariu and A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers. Dordrecht. The Netherlands, 2000.
  14. D. Butnariu and E. Resmerita, Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. Art., 2006, 1-39.
  15. Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335. https://doi.org/10.1007/s10957-010-9757-3
  16. O. Chadli, Z. Chbani and H. Riahi, Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities, J. Optim. Theory Appl., 105 (2000), 299-323. https://doi.org/10.1023/A:1004657817758
  17. Z. Chbani and H. Riahi, Weak and strong convergence of proximal penalization and proximal splitting algorithms for two-level hierarchical Ky Fan minimax inequalities, Optimization, 64 (2015), 1285-1303. https://doi.org/10.1080/02331934.2013.858397
  18. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Netherlands, 1990.
  19. S. Dempe, Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints, Optimization, 52 (2003), 333-359. https://doi.org/10.1080/0233193031000149894
  20. H. Iiduka, Fixed point optimization algorithm and its application to power control in CDMA data networks, Math. Program, 133 (2012), 227-242. https://doi.org/10.1007/s10107-010-0427-x
  21. H. Iiduka and I. Yamada, A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim., 19 (2009), 1881-1893. https://doi.org/10.1137/070702497
  22. G. Kassay, S. Reich and S. Sabach, Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim., 21 (2011), 1319-1344. https://doi.org/10.1137/110820002
  23. J.K. Kim and P. Majee, Modified Krasnoselski Mann iterative method for hierarchical fixed point problem and split mixed equilibrium problem, J. Ineq. Appl., (2020) 2020:227, ISSN 1029-242X doi.org/10.1186/s13660-020-02493-8.
  24. J.K. Kim and Salahuddin, Existence of solutions for multi-valued equilibrium problems, Nonlinear Funct. Anal. Appl., 23(4) (2018), 779-795.
  25. J.K. Kim and T.M. Tuyen, A parallel iterative method for a finite family of Bregman strongly nonexpansive mappings in reflexive Banach spaces, J. Kor. Math. Soc., 57(3) (2020), 617-640. https://doi.org/10.4134/JKMS.j190268.
  26. P.E. Mainge, A hybrid extragradient-viscosity method for monotone operators and fixed point problems, SIAM J. Control Optim., 47 (2008), 1499-1515. https://doi.org/10.1137/060675319
  27. A. Moudafi, Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim., 47 (2010), 287-292. https://doi.org/10.1007/s10898-009-9476-1
  28. K. Muangchoo, A new explicit extragradient method for solving equilibrium problems with convex constraints, Nonlinear Funct. Anal. Appl., 27(1) (2022), 1-22.
  29. L.D. Muu and W. Oettli, Optimization over equilibrium sets, Optimization, 49 (2000), 179-189.
  30. TD. Quoc, LD. Muu and VH. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization, 57(6) (2008), 749-776. https://doi.org/10.1080/02331930601122876
  31. N.V. Quy, An algorithm for a bilevel problem with equilibrium and fixed point constraints, Optimization, 64 (2014), 1-17.
  32. S. Reich and S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485.
  33. S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 22-44. https://doi.org/10.1080/01630560903499852
  34. S. Sabach, Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., 21 (2011), 1289-1308. https://doi.org/10.1137/100799873
  35. F. Schopfer, T. Schuster and A. K Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Problems, 24 (2008).
  36. L.Q. Thuy and T.N. Hai, A projected subgradient algorithm for bilevel equilibrium problems and applications, J. Optim. Theory Appl., https://doi.org/10.1007/s10957-017-1176-2. 
  37. J.V. Tiel, Convex Analysis, An introductory text. John Wiley & Sons Ltd, 1984.
  38. J.C. Yao, Variational inequalities with generalized monotone operators, Math. Oper. Research. 19 (1994), 691-705. https://doi.org/10.1287/moor.19.3.691
  39. T. Yuying, B.V. Dinh, D.S. Kim and S. Plubtieng, Extragradient subgradient methods for solving bilevel equilibrium problems, J. Ineq. Appl., https://doi.org/10.1186/s13660-018-1898-1.
  40. G. Zamani Eskandani, M. Raeisi and Themistocles M. Rassias, A Hybrid extragradient method for pseudomonotone equilibrium problems by using Bregman distance, Fixed Point Theory Appl., 27 (2018), 20-132.