FIXED POINTS OF $\alpha_{s}-\beta_{s}-\psi$-CONTRACTIVE MAPPINGS IN S-METRIC SPACES

Deep Chand ${ }^{1}$ and Yumnam Rohen ${ }^{2}$
${ }^{1}$ Department of Mathematics, National Institute of Technology Manipur, Imphal 795004, Manipur, India e-mail: deepak07872@gmail.com
${ }^{2}$ Department of Mathematics, National Institute of Technology Manipur, Imphal 795004, Manipur, India e-mail: ymnehor2008@yahoo.com

Abstract

In this paper, we have developed the idea of $\alpha-\beta-\psi$-contractive mapping in S metric space and renamed it $\alpha_{s}-\beta_{s}-\psi$-contractive mapping. We have proved some results of fixed point present in literature in partially ordered S-metric space using α_{s} - β_{s}-admissible and $\alpha_{s}-\beta_{s}-\psi$-contractive mapping.

1. Introduction and Preliminaries

The theory of fixed point has been applied to different fields of study throughout the last four-five decades. Samet et al. [20] attempted to generalize Banach fixed point theorem to contribute by developing the idea of α-admissible mappings and further the idea of $\alpha-\psi$-contractive mappings in metric spaces. The study of Samet et al. [20] demonstrate that Banach's fixed point result and other conclusions are natural implications of their results.

The notion of α-admissible mappings is further expanded to S-metric space, S_{b}-metric space, G-metric space, etc. Zhou et al. [24] expanded the notion of α-admissible mappings to S-metric space for mapping and pair of mappings.

[^0]Further, they also defined various types of contractions of mappings viz. typeA, type-B, etc. [24].

Priyobarta et al. [16] also introduce the notion of α-admissible mappings in the perspective of S-metric spaces and denote it as α_{s}-admissible mappings. Further, they established many theorems of fixed point regarding various types of contractive mappings due to α_{s}-admissibility.

Recently, the presence of fixed points, in partially ordered sets has been studied in $[1,2,3,4,6,7,8,11,12,14,15,17]$. In the row of extension and generalization, Asgari et al. [2] considered $\alpha-\psi$-contractive type mappings with a supplementary condition for partially ordered set and solved a firstorder boundary value problem in connection with its lower solution. Further Asgari et al. [3] introduce the notion of $\alpha-\beta-\psi$-contractive mappings and proved various results of the fixed point in a partially ordered metric space. For more information reader are suggested to see the papers $[5,9,10,13,18$, $19,22,23,25]$.

In this paper, we have introduced the notion of $\alpha-\beta-\psi$-contractive mappings in S-metric space and denote it as $\alpha_{s}-\beta_{s}-\psi$-contractive mappings and established some theorems of the fixed point in S-metric space equipped with a partial order. The proposed theorems are expansions in the S-metric space of theorems found in the literature, specifically, the results of Ran and Reurings [17], Harjani and Sadrangani [6] and Nieto et al. [12, 13]. Further, we applied the collected results to find the solution to the boundary value issues of the first-order ODE in comparison to its lower solution.

Definition 1.1. If (U, \leq) is a partially ordered set. The mapping $G: U \rightarrow U$ is considered as monotonic non-decreasing if

$$
l \leq l^{\prime} \Longrightarrow G(l) \leq G\left(l^{\prime}\right), \text { for all } l, l^{\prime} \in U .
$$

Definition 1.2. ([20]) We consider Ψ a collection of mappings $\psi:[0,+\infty) \rightarrow$ $[0,+\infty)$ such that ψ is non-decreasing and

$$
\sum_{0}^{\infty} \psi^{n}(k)<+\infty, \text { for all } k>0
$$

where, ψ^{n} represents $n^{\text {th }}$ iteration of ψ.
Lemma 1.3. ([20]) If a mapping $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is non-decreasing such that

$$
\lim _{n \rightarrow \infty} \psi^{n}(k)=0, \text { for all } k>0
$$

then $\psi(k)<k$.

In 2012, Sedghi et al. [21] introduced the concept of S-metric space and defined it as follows;

Definition 1.4. ([21]) Let U be a nonempty set. An S-metric on U is a function $S: U \times U \times U \rightarrow[0, \infty)$ that satisfies the following conditions for each $l_{1}, l_{2}, l_{3}, a \in U$:
$\left(\mathcal{S}_{1}\right) S\left(l_{1}, l_{2}, l_{3}\right) \geq 0$,
$\left(\mathcal{S}_{2}\right) S\left(l_{1}, l_{2}, l_{3}\right)=0$ if and only if $l_{1}=l_{2}=l_{3}$,
$\left(\mathcal{S}_{3}\right) S\left(l_{1}, l_{2}, l_{3}\right) \leq S\left(l_{1}, l_{1}, a\right)+S\left(l_{2}, l_{2}, a\right)+S\left(l_{3}, l_{3}, a\right)$.
The pair (U, S) is called an S-metric space.
Example 1.5. ([21]) Let U be a nonempty set and d be an ordinary metric on U. Then $S\left(l_{1}, l_{2}, l_{3}\right)=d\left(l_{1}, l_{3}\right)+d\left(l_{2}, l_{3}\right)$ is an S-metric on U.

Lemma 1.6. ([21]) Let (U, S) be an S-metric space. Then for all $l_{1}, l_{2} \in U$, we have

$$
S\left(l_{1}, l_{1}, l_{2}\right)=S\left(l_{2}, l_{2}, l_{1}\right)
$$

Definition 1.7. ([21]) Let (U, S) be an S-metric space,
(i) A sequence $\left\{l_{n}\right\}$ in X converges to l if $S\left(l_{n}, l_{n}, l\right) \rightarrow 0$ as $n \rightarrow+\infty$. That is, for each $\varepsilon>0$, there exists $n_{0} \in N$ such that, for all $n \geq n_{0}$, $S\left(l_{n}, l_{n}, l\right)<\varepsilon$, and we denote this by $\lim _{n \rightarrow+\infty} l_{n}=l$.
(ii) A sequence $\left\{l_{n}\right\}$ in X is called a Cauchy sequence if for each $\varepsilon>0$ there exists $n_{0} \in N$ such that $S\left(l_{n}, l_{n}, l_{m}\right)<\varepsilon$ for each $n, m \geq n_{0}$.
(iii) The S-metric space (U, S) is said to be complete if every Cauchy sequence is convergent.

2. Main results

We extended the concept of $\alpha-\beta$ - ψ-contractive mappings of Asgari and Badehian [3] in partially ordered, complete S-metric space and defined it as follows.

Definition 2.1. Let (U, \leq, S) be a partially ordered, complete S-metric space. The mapping $G: U \rightarrow U$ is said to be an $\alpha_{s^{-}} \beta_{s^{-}} \psi$-contractive mapping of typeA if $\alpha_{s}, \beta_{s}: U \times U \times U \rightarrow[0,+\infty)$ and $\psi \in \Psi$ are such that

$$
\begin{equation*}
\alpha_{s}\left(l_{1}, l_{2}, l_{3}\right) S\left(G\left(l_{1}\right), G\left(l_{2}\right), G\left(l_{3}\right)\right) \leq \beta_{s}\left(l_{1}, l_{2}, l_{3}\right) \psi\left(S\left(l_{1}, l_{2}, l_{3}\right),\right. \tag{2.1}
\end{equation*}
$$

for all $l_{1}, l_{2}, l_{3} \in U$ with $l_{1} \geq l_{2} \geq l_{3}$.

Definition 2.2. Let (U, \leq, S) be a partially ordered, complete S-metric space. The mapping $G: U \rightarrow U$ is said to be an $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of typeB if $\alpha_{s}, \beta_{s}: U \times U \times U \rightarrow[0,+\infty)$ and $\psi \in \Psi$ are such that

$$
\begin{equation*}
\alpha_{s}\left(l_{1}, l_{1}, l_{2}\right) S\left(G\left(l_{1}\right), G\left(l_{1}\right), G\left(l_{2}\right)\right) \leq \beta_{s}\left(l_{1}, l_{1}, l_{2}\right) \psi\left(S\left(l_{1}, l_{1}, l_{2}\right)\right), \tag{2.2}
\end{equation*}
$$

for all $l_{1}, l_{2} \in U$ with $l_{1} \geq l_{2}$.
Example 2.3. A mapping $G: U \rightarrow U$ satisfying the Banach contraction principle and $\alpha_{s}\left(l_{1}, l_{2}, l_{3}\right)=\beta_{s}\left(l_{1}, l_{2}, l_{3}\right)=1$ for all $l_{1}, l_{2}, l_{3} \in U$ with $\psi(k)=\delta k$ for all $k \geq 0$, where $\delta \in[0,1)$. Then G is an $\alpha_{s^{-}}-\beta_{s^{-}} \psi$-contractive mapping.

Definition 2.4. Let $G: U \rightarrow U, \alpha_{s}, \beta_{s}: U \times U \times U \rightarrow[0,+\infty)$ and $c_{\alpha_{s}}>0$, $c_{\beta_{s}} \geq 0 . G$ is said to be an $\alpha_{s}-\beta_{s}$-admissible mapping if for all $l_{1}, l_{2}, l_{3} \in U$ with $l_{1} \geq l_{2} \geq l_{3}$,
(a) $\alpha_{s}\left(l_{1}, l_{2}, l_{3}\right) \geq c_{\alpha_{s}} \Longrightarrow \alpha_{s}\left(G\left(l_{1}\right), G\left(l_{2}\right), G\left(l_{3}\right)\right) \geq c_{\alpha_{s}}$;
(b) $\beta_{s}\left(l_{1}, l_{2}, l_{3}\right) \leq c_{\beta_{s}} \Longrightarrow \beta_{s}\left(G\left(l_{1}\right), G\left(l_{2}\right), G\left(l_{3}\right)\right) \leq c_{\beta_{s}}$;
(c) $0 \leq \frac{c_{\beta_{s}}}{c_{\alpha_{s}}} \leq 1$.

Example 2.5. Let $U=(0,+\infty)$ and $G: U \rightarrow U$ be defined by $G(l)=e^{l}$, for all $l \in U$. If $\alpha_{s}, \beta_{s}: U \times U \times U \rightarrow[0,+\infty)$ are such that

$$
\alpha_{s}\left(l_{1}, l_{2}, l_{3}\right)= \begin{cases}3, & \text { if } l_{1} \geq l_{2} \geq l_{3} ; \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\beta_{s}\left(l_{1}, l_{2}, l_{3}\right)= \begin{cases}\frac{1}{4}, & \text { if } l_{1} \geq l_{2} \geq l_{3} \\ 0, & \text { otherwise }\end{cases}
$$

If we take $c_{\alpha_{s}}=2$ and $c_{\beta_{s}}=\frac{1}{2}$, then G is $\alpha_{s}-\beta_{s}$-admissible.
Theorem 2.6. Let (U, \leq, S) be a partially ordered, complete S-metric space. Let a non-decreasing mapping $G: U \rightarrow U$ be an $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of type A with;
(a) G is $\alpha_{s}-\beta_{s}$-admissible;
(b) there exists $l_{0} \in U$ such that $l_{0} \leq G\left(l_{0}\right)$;
(c) there exists $c_{\alpha_{s}}>0, c_{\beta_{s}} \geq 0$ such that $\alpha_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \geq c_{\alpha_{s}}$, $\beta_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \leq c_{\beta_{s}} ;$
(d) G is continuous.

Then, $G\left(l^{*}\right)=l^{*}$ for some $l^{*} \in U$, that is, G has a fixed point..
Proof. Let there exists $l_{0} \in U$ such that $l_{0} \leq G\left(l_{0}\right)$. If $G\left(l_{0}\right)=l_{0}$ then, there is nothing to prove. Suppose $G\left(l_{0}\right) \neq l_{0}$. Since $l_{0} \leq G\left(l_{0}\right)$ and mapping is non-decreasing, by induction we get

$$
\begin{equation*}
l_{0} \leq G\left(l_{0}\right) \leq G^{2}\left(l_{0}\right) \leq G^{3}\left(l_{0}\right) \leq \cdots \leq G^{n}\left(l_{0}\right) \leq G^{n+1}\left(l_{0}\right) \leq \cdots \tag{2.3}
\end{equation*}
$$

Due to $\alpha_{s}-\beta_{s}$-admissibility of G, if $\alpha_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \geq c_{\alpha_{s}}$, then

$$
\begin{align*}
& \alpha_{s}\left(G^{2}\left(l_{0}\right), G^{2}\left(l_{0}\right), G\left(l_{0}\right)\right) \geq c_{\alpha_{s}}, \cdots \\
& \alpha_{s}\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{n}\left(l_{0}\right)\right) \geq c_{\alpha_{s}} . \tag{2.4}
\end{align*}
$$

And if $\beta_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \leq c_{\beta_{s}}$, then

$$
\begin{align*}
& \beta_{s}\left(G^{2}\left(l_{0}\right), G^{2}\left(l_{0}\right), G\left(l_{0}\right)\right) \leq c_{\beta_{s}} \\
& \beta_{s}\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{n}\left(l_{0}\right)\right) \leq c_{\beta_{s}} . \tag{2.5}
\end{align*}
$$

From (2.1), (2.3) and (2.5)

$$
\begin{aligned}
c_{\alpha_{s}} S\left(G^{2}\left(l_{0}\right), G^{2}\left(l_{0}\right), G\left(l_{0}\right)\right) & \leq \alpha_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \cdot S\left(G^{2}\left(l_{0}\right), G^{2}\left(l_{0}\right), G\left(l_{0}\right)\right) \\
& \leq \beta_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \cdot \psi\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right) \\
& \leq c_{\beta_{s}} \psi\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
S\left(G^{2}\left(l_{0}\right), G^{2}\left(l_{0}\right), G\left(l_{0}\right)\right) & \leq \frac{c_{\beta_{s}}}{c_{\alpha_{s}}} \psi\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right) \\
& \leq \psi\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right) .
\end{aligned}
$$

In general,

$$
S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{n}\left(l_{0}\right)\right) \leq \psi^{n}\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right)
$$

This implies

$$
S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{n}\left(l_{0}\right)\right) \rightarrow 0
$$

as $n \rightarrow+\infty$. Now it can be proved that $\left\{G^{n}\left(l_{0}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence. As $\psi \in \Psi$, so for fixed $\varepsilon>0$ there exist $N(\varepsilon) \in \mathbb{N}$ such that

$$
\sum_{n \geq N(\varepsilon)} \psi^{n}\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right)<\varepsilon
$$

For $m, n \in \mathbb{N}$ such that $m>n>N(\varepsilon)$,

$$
\begin{aligned}
& S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), G^{m}\left(l_{0}\right)\right) \\
& \leq 2 S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), G^{n+1}\left(l_{0}\right)\right)+S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{m}\left(l_{0}\right)\right) \\
& \leq 2\left\{S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), G^{n+1}\left(l_{0}\right)\right)+S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), G^{n+2}\left(l_{0}\right)\right)\right. \\
& \left.\quad+\cdots+S\left(G^{m-1}\left(l_{0}\right), G^{m-1}\left(l_{0}\right), G^{m}\left(l_{0}\right)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2\left\{\psi^{n} S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)+\psi^{n+1} S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right. \\
&\left.+\cdots+\psi^{m-1} S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right\} \\
&= 2 \sum_{k=n}^{m-1} \psi^{k}\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right) \\
& \leq 2 \sum_{n \geq N(\varepsilon)} \psi^{n}\left(S\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right)\right) \\
&<\varepsilon
\end{aligned}
$$

Since (U, \leq, S) is a complete space, the sequence $\left\{G^{n}\left(l_{0}\right)\right\}_{n=1}^{\infty}$ will converge in it, that is, there exists $l^{*} \in U$ such that $\lim _{n \rightarrow+\infty} G^{n}\left(l_{0}\right)=l^{*}$.

Now it can verify that the limit l^{*} is a fixed point of the function G. Since G is a continuous function, there exists $\delta>0$ for each $\varepsilon>0$ such that

$$
S\left(l, l, l^{*}\right)<\delta \Longrightarrow S\left(G(l), G(l), G\left(l^{*}\right)\right)<\frac{\varepsilon}{3}, \text { for } l \in U .
$$

Suppose $\eta=\min \left\{\frac{\varepsilon}{3}, \delta\right\}$, since the sequence $\left\{G^{n}\left(l_{0}\right)\right\}_{n=1}^{\infty}$ converges to l^{*}, there exist $n_{0} \in \mathbb{N}$ such that,

$$
S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l^{*}\right) \leq \eta, \text { for all } n \geq n_{0}, n \in \mathbb{N} .
$$

Taking $n \geq n_{0}, n \in \mathbb{N}$ we get,

$$
\begin{aligned}
& S\left(G\left(l^{*}\right), G\left(l^{*}\right), l^{*}\right) \\
& \leq 2 S\left(G\left(l^{*}\right), G\left(l^{*}\right), G\left(G^{n}\left(l_{0}\right)\right)\right)+S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l^{*}\right) \\
& =2 S\left(G\left(G^{n}\left(l_{0}\right)\right), G\left(G^{n}\left(l_{0}\right)\right), G\left(l^{*}\right)\right)+S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l^{*}\right) \\
& <2 \times \frac{\varepsilon}{3}+\eta \\
& \leq \frac{2 \varepsilon}{3}+\frac{\varepsilon}{3} \\
& =\varepsilon
\end{aligned}
$$

Therefore, $S\left(G\left(l^{*}\right), G\left(l^{*}\right), l^{*}\right)=0$ that is $G\left(l^{*}\right)=l^{*}$.
Remark 2.7. The hypothesis of continuity of G has been eliminated in the next theorem.

Theorem 2.8. If (U, \leq, S) is a partially ordered, complete S-metric space. Let a non-decreasing mapping $G: U \rightarrow U$ be an $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of type- A with
(a) G be $\alpha_{s}-\beta_{s}$-admissible;
(b) there exists $l_{0} \in U$ such that $l_{0} \leq G\left(l_{0}\right)$;
(c) there exists $c_{\alpha_{s}}>0, c_{\beta_{s}}>0$ such that $\alpha_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \geq c_{\alpha_{s}}$, $\beta_{s}\left(G\left(l_{0}\right), G\left(l_{0}\right), l_{0}\right) \leq c_{\beta_{s}} ;$
(d) if there is a sequence $\left\{l_{n}\right\}_{n=1}^{\infty}$ in U such that $\alpha_{s}\left(l_{n}, l_{n}, l_{n+1}\right) \geq c_{\alpha_{s}}$, $\beta_{s}\left(l_{n}, l_{n}, l_{n+1}\right) \leq c_{\beta_{s}}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow+\infty} l_{n}=l^{\prime}$ in U, then $\alpha_{s}\left(l_{n}, l_{n}, l^{\prime}\right) \geq c_{\alpha_{s}}, \beta_{s}\left(l_{n}, l_{n}, l^{\prime}\right) \leq c_{\beta_{s}} ;$
(e) for non-decreasing sequence $\left\{l_{n}\right\}$ such that $l_{n} \rightarrow l^{\prime}$ in $U, l_{n} \leq l^{\prime}$ for all $n \in$ \mathbb{N}.
Then, $G\left(l^{*}\right)=l^{*}$ for some $l^{*} \in U$.
Proof. Proceeding as in the Theorem 2.6, since the sequence $\left\{G^{n}\left(l_{0}\right)\right\}$ is a Cauchy sequence, there exists an element $l \in U$ such that $\lim _{n \rightarrow+\infty} G^{n}\left(l_{0}\right)=l$. This limit is a fixed point of G which can be proved as follows:

Since $\left\{G^{n}\left(l_{0}\right)\right\}_{n=1}^{\infty}$ converges to l, therefore, for some $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right)<\frac{\varepsilon}{3}, \text { for all } n \geq n_{0} .
$$

Since, the sequence $\left\{G^{n}\left(l_{0}\right)\right\}$ is a non-decreasing sequence, on taking account (e), we have

$$
\begin{equation*}
G^{n}\left(l_{0}\right) \leq l . \tag{2.6}
\end{equation*}
$$

Using (2.1), (2.5), (2.6) and (d), we get

$$
\begin{aligned}
c_{\alpha_{s}} S(l, l, G(l)) \leq & c_{\alpha_{s}} S\left(G\left(G^{n}\left(l_{0}\right)\right), G\left(G^{n}\left(l_{0}\right)\right), G(l)\right) \\
& +2 c_{\alpha_{s}} S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l\right) \\
\leq & \alpha_{s}\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right) S\left(G\left(G^{n}\left(l_{0}\right)\right), G\left(G^{n}\left(l_{0}\right)\right), G(l)\right) \\
& +2 c_{\alpha_{s}} S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l\right) \\
\leq & \beta_{s}\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right) \psi\left(S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right)\right) \\
& +2 c_{\alpha_{s}} S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l\right) \\
\leq & c_{\beta_{s}} \psi\left(S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right)\right)+2 c_{\alpha_{s}} S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l\right),
\end{aligned}
$$

therefore,

$$
\begin{aligned}
S(l, l, G(l)) & <\frac{c_{\beta_{s}}}{c_{\alpha_{s}}} \psi\left(S\left(G^{n}\left(l_{0}\right), G^{n}\left(l_{0}\right), l\right)\right)+2 S\left(G^{n+1}\left(l_{0}\right), G^{n+1}\left(l_{0}\right), l\right) \\
& <\frac{\varepsilon}{3}+2 \frac{\varepsilon}{3} \\
& =\varepsilon .
\end{aligned}
$$

Hence, $S(l, l, G(l))=0$, that is $G(l)=l$.
Example 2.9. Let (\mathbb{R}, \leq) and S metric defined on it by $S(p, q, r)=|p-q|+$ $|q-r|$, for all $p, q, r \in \mathbb{R}$. Then (\mathbb{R}, S) is a complete S-metric space. The function $\mathcal{G}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{G}(r)= \begin{cases}\frac{r}{15}, & \text { if } r \geq 0 \\ 0, & \text { otherwise },\end{cases}
$$

and the mappings $\alpha_{s}, \beta_{s}: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow[0,+\infty)$ given by

$$
\begin{aligned}
& \alpha_{s}(p, q, r)= \begin{cases}2, & \text { if } p, q, r \geq 0 ; \\
0, & \text { otherwise },\end{cases} \\
& \beta_{s}(p, q, r)= \begin{cases}\frac{1}{3}, & \text { if } p, q, r \geq 0 ; \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $\psi(k)=\frac{k}{2}$ for $k>0$. Clearly function \mathcal{G} is continuous, non-decreasing and $\alpha_{s}-\beta_{s}-\psi$-contractive of type A. Let $c_{\alpha_{s}}=\frac{3}{2}$ and $c_{\beta_{s}}=\frac{1}{2}$. Then \mathcal{G} is $\alpha_{s}-\beta_{s}$-admissible. For $p, q, r \in[0,+\infty)$ with $p \geq q \geq r$, we have

$$
\alpha_{s}(p, q, r) \geq c_{\alpha_{s}} \Longrightarrow \alpha_{s}(\mathcal{G}(p), \mathcal{G}(q), \mathcal{G}(r))=\alpha_{s}\left(\frac{p}{15}, \frac{q}{15}, \frac{r}{15}\right) \geq c_{\alpha_{s}},
$$

also

$$
\beta_{s}(p, q, r) \leq c_{\beta_{s}} \Longrightarrow \beta_{s}(\mathcal{G}(p), \mathcal{G}(q), \mathcal{G}(r))=\beta_{s}\left(\frac{p}{15}, \frac{q}{15}, \frac{r}{15}\right) \leq c_{\beta_{s}} .
$$

Also, there exists $r_{0} \in U$ such that

$$
\alpha_{s}\left(\mathcal{G}\left(r_{0}\right), \mathcal{G}\left(r_{0}\right), r_{0}\right) \geq c_{\alpha_{s}}
$$

and

$$
\beta_{s}\left(\mathcal{G}\left(r_{0}\right), \mathcal{G}\left(r_{0}\right), r_{0}\right) \leq c_{\beta_{s}} .
$$

Since $0 \leq \mathcal{G}(0)=0, r_{0} \leq \mathcal{G}\left(r_{0}\right)$. Hence each postulates (a)-(d) of Theorem 2.6 holds. Therefore, $G\left(l^{*}\right)=l^{*}$ for some $l^{*} \in U$. Here $0 \in U$ is a point such that $G(0)=0$.

Remark 2.10. In the next example mapping is discontinuous and follows Theorem 2.8.

Example 2.11. Let (\mathbb{R}, \leq) and S-metric defined on it is

$$
S(p, q, r)=|p-q|+|q-r|+|r-p|
$$

for all $p, q, r \in \mathbb{R}$. Then (\mathbb{R}, S) is a complete S-metric space. Define $\mathcal{G}: \mathbb{R} \rightarrow \mathbb{R}$ and $\alpha_{s}, \beta_{s}: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow[0,+\infty)$ by

$$
\mathcal{G}(r)= \begin{cases}2 r-\frac{1}{2}, & \text { if } r \geq \frac{1}{2} ; \\ \frac{r}{10}, & \text { if } 0 \leq r<\frac{1}{2} ; \\ 0, & \text { if } r<0\end{cases}
$$

and

$$
\begin{aligned}
& \alpha_{s}(p, q, r)= \begin{cases}1, & \text { if } p, q, r \in\left[0, \frac{1}{2}\right] ; \\
0, & \text { otherwise },\end{cases} \\
& \beta_{s}(p, q, r)= \begin{cases}\frac{1}{3}, & \text { if } p, q, r \in\left[0, \frac{1}{2}\right] ; \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that, the mapping \mathcal{G} is discontinuous and non-decreasing. Let $\psi(k)=$ $\frac{k}{3}$, for all $k>0$. Obviously, if $p, q, r \in \mathbb{R}-\left[0, \frac{1}{2}\right]$, then the mapping \mathcal{G} is $\alpha_{s^{-}}$ $\beta_{s}-\psi$-contractive of type-A. Let $p, q, r \in\left[0, \frac{1}{2}\right]$ with $p \geq q \geq r, c_{\alpha_{s}}=\frac{1}{2}$ and $c_{\beta_{s}}=\frac{1}{3}$. Then $\alpha_{s}(p, q, r) \geq c_{\alpha_{s}}$ and $\beta_{s}(p, q, r) \leq c_{\beta_{s}}$. Hence, we have

$$
\begin{aligned}
\alpha_{s}(p, q, r) S(\mathcal{G} p, \mathcal{G} q, \mathcal{G} r) & =|\mathcal{G} p-\mathcal{G} q|+|\mathcal{G} q-\mathcal{G} r|+|\mathcal{G} r-\mathcal{G} p| \\
& =\left|\frac{p}{10}-\frac{q}{10}\right|+\left|\frac{q}{10}-\frac{r}{10}\right|+\left|\frac{r}{10}-\frac{p}{10}\right| \\
& =\frac{1}{10}(|p-q|+|q-r|+|r-p|)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{s}(p, q, r) \psi(S(p, q, r)) & =\frac{1}{3} \times \frac{1}{3} S(p, q, r) \\
& =\frac{1}{9}(|p-q|+|q-r|+|r-p|) .
\end{aligned}
$$

Therefore,

$$
\frac{1}{10}(|p-q|+|q-r|+|r-p|) \leq \frac{1}{9}(|p-q|+|q-r|+|r-p|) .
$$

In other words,

$$
\alpha_{s}(p, q, r) S(\mathcal{G} p, \mathcal{G} q, \mathcal{G} r) \leq \beta_{s}(p, q, r) \psi(S(p, q, r))
$$

for all $p, q, r \in \mathbb{R}$. Therefore, the mapping \mathcal{G} is an $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of type-A. Moreover, there exists $r_{0} \in \mathbb{R}$ such that $\alpha_{s}\left(\mathcal{G} r_{0}, \mathcal{G} r_{0}, r_{0}\right) \geq c_{\alpha_{s}}$ and $\beta_{s}\left(\mathcal{G} r_{0}, \mathcal{G} r_{0}, r_{0}\right) \leq c_{\beta_{s}}$. Let $r_{0}=0$. Then

$$
\alpha_{s}\left(\mathcal{G} r_{0}, \mathcal{G} r_{0}, r_{0}\right)=\alpha_{s}(\mathcal{G}(0), \mathcal{G}(0), 0)=\alpha_{s}(0,0,0)=1 \geq \frac{1}{2}
$$

and

$$
\beta_{s}\left(\mathcal{G} r_{0}, \mathcal{G} r_{0}, r_{0}\right)=\beta_{s}(\mathcal{G}(0), \mathcal{G}(0), 0)=\beta_{s}(0,0,0)=\frac{1}{3} \leq c_{\beta_{s}}=\frac{1}{3} .
$$

Since $0=r_{0} \leq 0=\mathcal{G} r_{0}$, that is, $r_{0} \leq \mathcal{G} r_{0}, \mathcal{G}$ is $\alpha_{s}-\beta_{s}$-admissible. Now, if the sequence $\left\{r_{n}\right\}$ is non-decreasing in \mathbb{R} such that $\alpha_{s}\left(r_{n}, r_{n}, r_{n+1}\right) \geq c_{\alpha_{s}}$ and $\beta_{s}\left(r_{n}, r_{n}, r_{n+1}\right) \leq c_{\beta_{s}}$ for all $n \in \mathbb{N}$ and $r_{n} \rightarrow r$, then by definition of α_{s} and $\beta_{s}, r_{n} \in\left[0, \frac{1}{2}\right)$, that is, $r \in\left[0, \frac{1}{2}\right)$. In addition, $\left\{r_{n}\right\}$ is non-decreasing hence $r_{n} \leq r$. Hence, all the hypotheses of Theorem 2.8 are satisfied, therefore \mathcal{G} has a fixed point. 0 and $\frac{1}{2}$ are fixed points for \mathcal{G}.

Remark 2.12. It is clear that the fixed point of G may not be unique(see above Example 2.11). The following theorems are obtained by applying additional conditions to the hypotheses of Theorem 2.6 and 2.8 to obtain a unique fixed point.

Theorem 2.13. Considering all the hypotheses of Theorems 2.6 or 2.8 , there exists $p \in U$ for all $l_{1}, l_{2}, \in U$ with $l_{1} \geq p, l_{2} \geq p$ such that

$$
\left\{\begin{array}{l}
\alpha_{s}\left(l_{1}, l_{1}, p\right) \geq c_{\alpha_{s}} \text { and } \quad \beta_{s}\left(l_{1}, l_{1}, p\right) \leq c_{\beta_{s}} \tag{2.7}\\
\alpha_{s}\left(l_{2}, l_{2}, p\right) \geq c_{\alpha_{s}} \text { and } \beta_{s}\left(l_{2}, l_{2}, p\right) \leq c_{\beta_{s}}
\end{array}\right.
$$

provides unique fixed point of G.
Proof. Suppose l^{\prime} and $l^{\prime \prime}$ are two fixed points of G, that is, $G\left(l^{\prime}\right)=l^{\prime}$ and $G\left(l^{\prime \prime}\right)=l^{\prime \prime}$. Then there exists $p \in U$ for l^{\prime} and $l^{\prime \prime}$ such that (2.7) holds. Now by the first part of (2.7), we have

$$
\begin{equation*}
\alpha_{s}\left(l^{\prime}, l^{\prime}, p\right) \geq c_{\alpha_{s}} \text { and } \quad \beta_{s}\left(l^{\prime}, l^{\prime}, p\right) \leq c_{\beta_{s}}, l^{\prime} \geq p . \tag{2.8}
\end{equation*}
$$

Since G is $\alpha_{s}-\beta_{s^{-}}$-admissible, we get

$$
\begin{aligned}
\alpha_{s}\left(G\left(l^{\prime}\right), G\left(l^{\prime}\right), G(p)\right) \geq & c_{\alpha_{s}} \text { and } \beta_{s}\left(G\left(l^{\prime}\right), G\left(l^{\prime}\right), G(p)\right) \leq c_{\beta_{s}} \\
& G\left(l^{\prime}\right) \geq G(p)
\end{aligned}
$$

Therefore, $\alpha_{s}\left(l^{\prime}, l^{\prime}, G(p)\right) \geq c_{\alpha_{s}}$ and $\beta_{s}\left(l^{\prime}, l^{\prime}, G(p)\right) \leq c_{\beta_{s}}, l^{\prime} \geq G(p)$. Continuing this process, we have
$\alpha_{s}\left(l^{\prime}, l^{\prime}, G^{n}(p)\right) \geq c_{\alpha_{s}}$ and $\beta_{s}\left(l^{\prime}, l^{\prime}, G^{n}(p)\right) \leq c_{\beta_{s}}, l^{\prime} \geq G^{n}(p)$, for all $n \in \mathbb{N}$.
Using the $\alpha_{s}-\beta_{s}-\psi$-contractivity of G, we have

$$
\begin{aligned}
c_{\alpha_{s}} S\left(l^{\prime}, l^{\prime}, G^{n}(p)\right) & =c_{\alpha_{s}} S\left(G\left(l^{\prime}\right), G\left(l^{\prime}\right), G\left(G^{n-1}(p)\right)\right) \\
& \leq \alpha_{s}\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right) S\left(G\left(l^{\prime}\right), G\left(l^{\prime}\right), G\left(G^{n-1}(p)\right)\right) \\
& \leq \beta_{s}\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right) \psi\left(S\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right)\right) \\
& \leq c_{\beta_{s}} \psi\left(S\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
S\left(l^{\prime}, l^{\prime}, G^{n}(p)\right) \leq & \frac{c_{\beta_{s}}}{c_{\alpha_{s}}} \psi\left(S\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right)\right) \\
\leq & \psi\left(S\left(l^{\prime}, l^{\prime}, G^{n-1}(p)\right)\right) \\
\leq & \psi\left(\psi\left(S\left(l^{\prime}, l^{\prime}, G^{n-2}(p)\right)\right)\right) \\
& \vdots \\
& \leq \psi^{n}\left(S\left(l^{\prime}, l^{\prime}, p\right)\right) .
\end{aligned}
$$

Which implies,

$$
S\left(l^{\prime}, l^{\prime}, G^{n}(p)\right) \leq \psi^{n}\left(S\left(l^{\prime}, l^{\prime}, p\right)\right) \text { for all } n \in \mathbb{N}
$$

this implies $G^{n}(p) \rightarrow l^{\prime}$ as $n \rightarrow+\infty$. Similarly, for the second part of (2.7), $G^{n}(p) \rightarrow l^{\prime \prime}$. Therefore $l^{\prime}=l^{\prime \prime}$ proves uniqueness of fixed point of G.

Note: Similarly, we can easily prove the following theorems (2.14), (2.15) and (2.16) obtained by replacing the inequality $l_{0} \leq G\left(l_{0}\right)$ by $l_{0} \geq G\left(l_{0}\right)$ in the assumption (b) of the theorems (2.6), (2.8) and (2.13) respectively.
Theorem 2.14. Let (U, \leq, S) be a partially ordered, complete S-metric space and $G: U \rightarrow U$ be a non-decreasing, $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of type- A satisfying;
(a) G is $\alpha_{s}-\beta_{s}$-admissible;
(b) there exists $l_{0} \in U$ such that $l_{0} \geq G\left(l_{0}\right)$;
(c) there exists $c_{\alpha_{s}}>0, c_{\beta_{s}} \geq 0$ such that $\alpha_{s}\left(l_{0}, l_{0}, G\left(l_{0}\right)\right) \geq c_{\alpha_{s}}$, $\beta_{s}\left(l_{0}, l_{0}, G\left(l_{0}\right)\right) \leq c_{\beta_{s}} ;$
(d) G is continuous.

Then, there exists a fixed point of G.
Theorem 2.15. Let (U, \leq, S) be a partially ordered, complete S-metric space. If a non-decreasing mapping $G: U \rightarrow U$ is $\alpha_{s}-\beta_{s}-\psi$-contractive mapping of type-A with;
(a) G is $\alpha_{s}-\beta_{s}$-admissible;
(b) there exists $l_{0} \in U$ such that $l_{0} \geq G\left(l_{0}\right)$;
(c) there exists $c_{\alpha_{s}}>0, c_{\beta_{s}} \geq 0$ such that $\alpha_{s}\left(l_{0}, l_{0}, G\left(l_{0}\right)\right) \geq c_{\alpha_{s}}$, $\beta_{s}\left(l_{0}, l_{0}, G\left(l_{0}\right)\right) \leq c_{\beta_{s}}$;
(d) if $\left\{l_{n}\right\}_{n=1}^{\infty}$ is a sequence in U and $\lim _{n \rightarrow \infty} l_{n}=l$, if $\alpha_{s}\left(l_{n+1}, l_{n+1}, l_{n}\right) \geq c_{\alpha_{s}}, \beta_{s}\left(l_{n+1}, l_{n+1}, l_{n}\right) \leq c_{\beta_{s}}$ for all $n \in N$ implies $\alpha_{s}\left(l, l, l_{n}\right) \geq c_{\alpha_{s}}, \beta_{s}\left(l, l, l_{n}\right) \leq c_{\beta_{s}}$;
(e) if there exists a non-increasing sequence $\left\{l_{n}\right\}$ in U such that $l_{n} \rightarrow l$ then $l \leq l_{n}$ for all $n \in N$.
Then, there exists a fixed point of G.
Theorem 2.16. Considering all the postulates of the Theorems 2.14 or 2.15, if there exists $p \in U$ for all $l_{1}, l_{2} \in U$ such that $l_{1} \geq p, l_{2} \geq p$ and

$$
\left\{\begin{array}{l}
\alpha_{s}\left(l_{1}, l_{1}, p\right) \geq c_{\alpha_{s}} \text { and } \beta_{s}\left(l_{1}, l_{1}, p\right) \leq c_{\beta_{s}}, \tag{2.10}\\
\alpha_{s}\left(l_{2}, l_{2}, p\right) \geq c_{\alpha_{s}} \text { and } \beta_{s}\left(l_{2}, l_{2}, p\right) \leq c_{\beta_{s}} .
\end{array}\right.
$$

Then, there exists a unique fixed point of G.

3. Applications to ordinary differential equations

Here, we have proved the uniqueness of a solution of the following firstorder boundary value problem with continuous $T: J \times R \rightarrow R$ and $\alpha_{s^{-}}-\beta_{s^{-}} \psi$ contractive mapping of type-A considering existence of a lower solution.

$$
\left\{\begin{array}{l}
x^{\prime}(j)=T(j, x(j)), \quad j \in J=[0, M] ; \tag{3.1}\\
x(0)=x(M),
\end{array}\right.
$$

where $M \geq 0$ and function $T: J \times R \rightarrow R$ is continuous.
Nieto and Rod.-Lopez [12] solved the differential equation (3.1) in the relation of its lower solution as:

Theorem 3.1. ([12]) The problem (3.1) with continuous $T: J \times R \rightarrow R$ and some $\lambda>0, \mu>0$ with $\mu<\lambda$ such that, for all $l_{1}, l_{2} \in R$ with $l_{1} \leq l_{2}$,

$$
\mu\left(l_{2}-l_{1}\right) \geq T\left(j, l_{2}\right)+\lambda l_{2}-T\left(j, l_{1}\right)-\lambda l_{1} \geq 0,
$$

then, the existence of a lower solution for (3.1), provides the existence of a unique solution of (3.1).

Also, Sadarangani and Harjani [7] have proved the theorem:
Theorem 3.2. ([7]) The problem (3.1) with continuous $T: J \times R \rightarrow R$ and suppose that there exists $\lambda>0$ such that for all $l_{1}, l_{2} \in R$ with $l_{1} \leq l_{2}$,

$$
\lambda \psi\left(l_{2}-l_{1}\right) \geq T\left(j, l_{2}\right)+\lambda l_{2}-T\left(j, l_{1}\right) \geq 0
$$

where $\psi:[0,+\infty) \rightarrow[0,+\infty)$ given by $\psi(k)=k-\phi(k)$ for $\phi:[0,+\infty) \rightarrow[0,+\infty)$ continuous, increasing with $\phi(k)=0$ only for $k=0$ and $\lim _{k \rightarrow+\infty} \phi(k)=+\infty$ for all $k \in(0,+\infty)$. If (3.1) has a lower solution exists, then it is unique solution.

Now we solve problem (3.1) using the above theorems.
Remark 3.3. For some $\lambda>0$, problem (3.1) can be expressed as

$$
\left\{\begin{array}{l}
x^{\prime}(j)+\lambda x(j)=T(j, x(j))+\lambda x(j), \quad j \in J=[0, M] ; \\
x(0)=x(M) .
\end{array}\right.
$$

The corresponding integral equation to this differential equation is given by

$$
x(j)=\int_{0}^{M} G(j, t)[T(t, x(t))+\lambda x(t)] d t,
$$

where

$$
G(j, t)= \begin{cases}\frac{e^{\lambda(M+t-j)}}{\frac{e^{\lambda M-}}{\lambda+(t-j)}-1} ; & 0 \leq t<j \leq M ; \\ \frac{e^{\lambda M}-1}{e^{\lambda M}} ; & 0 \leq j<t \leq M .\end{cases}
$$

$G(j, t)$ is known as the Green function in differential equation theory.

Theorem 3.4. Consider the given problem (3.1) with continuous $T: J \times R \rightarrow$ R holding the following conditions:
(a) for all $l_{1}, l_{2} \in R$ with $l_{2} \geq l_{1}$, and $\psi \in \Psi$ there exists $\lambda>0$ such that

$$
\lambda \psi\left(l_{2}-l_{1}\right) \geq T\left(j, l_{2}\right)+\lambda l_{2}-T\left(j, l_{1}\right)-\lambda l_{1} \geq 0 ;
$$

(b) for all $j \in I$ and $a, b \in R$ there exists $\xi: R^{3} \rightarrow R$ such that if $\xi(a, a, b) \geq 0$ implies
$\xi\left(\int_{0}^{M} G(t, j)[T(t, x(t))+\lambda x(t)] d t, \int_{0}^{M} G(t, j)[T(t, x(t))+\lambda x(t)] d t, \gamma(j)\right) \geq 0$, where $\gamma \in C(J, R)$ is lower solution of (3.1);
(c) for all $x, y \in C(J, R)$ and $j \in J, \xi(x(j), x(j), y(j)) \geq 0$ implies

$$
\begin{gathered}
\xi\left(\int_{0}^{M} G(j, t)[T(t, x(t))+\lambda x(t)] d s, \int_{0}^{M} G(j, t)[T(t, x(t))+\lambda x(t)] d s\right. \\
\left.\int_{0}^{M} G(j, t)[T(t, y(t))+\lambda x(t)] d s\right) \geq 0
\end{gathered}
$$

(d) if $z_{n} \rightarrow z \in C(J, R)$ and $\xi\left(z_{n}, z_{n}, z_{n+1}\right) \geq 0$ implies $\xi\left(z_{n}, z_{n}, z\right) \geq 0$ for all $n \in N$.
Then, there exists a unique solution if a lower solution exists.
Proof. Let $U=C(J, R)$ and define $\mathcal{A}: U \rightarrow U$ by

$$
[\mathcal{A}(x)](j)=\int_{0}^{M} G(j, t)[T(t, x(t))+\lambda x(t)] d t, j \in J
$$

Note that solution of (3.1) is a fixed point of $\mathcal{A} . U$ is a partially ordered set with order relation.

$$
x \leq y \Leftrightarrow x(j) \leq y(j) \text { for all } j \in J \text {, where } x, y \in U .
$$

If we define

$$
S(x, x, y)=\sup 2|x(j)-y(j)| \text { for } x, y \in U, j \in J
$$

Then (U, S) is a complete S-metric space. Let us take a sequence $\left\{x_{n}\right\} \subseteq U$, which is monotonic, non-decreasing and converges to $x^{*} \in U$. Then for each $j \in J$,

$$
x_{1}(j) \leq x_{2}(j) \leq x_{3}(j) \leq \cdots \leq x_{n}(j) \leq \cdots
$$

Since the sequence $\left\{x_{n}(j)\right\}$ converges to $x^{*}(j)$ implies that $x_{n}(j) \leq x^{*}(j)$ for all $n \in N$ and $j \in J$. Therefore, $x_{n} \leq x^{*}$ for all $n \in N$. \mathcal{A} is non-decreasing, for all $y \leq x$ where $x, y \in U$, we have

$$
T(j, y)+\lambda y \leq T(j, x)+\lambda x,
$$

also $G(j, t) \geq 0$ for all $(j, t) \in J \times J$, therefore

$$
\begin{aligned}
{[\mathcal{A} x](t) } & =\int_{0}^{M} G(j, t)[T(t, x(t))+\lambda x(t)] d t \\
& \geq \int_{0}^{M} G(j, t)[T(t, y(t))+\lambda y(t)] d t=[\mathcal{A} y](j) .
\end{aligned}
$$

In addition, for $x \geq y$ using (a) and by the definition of $G(j, t)$, we have

$$
\begin{aligned}
S(\mathcal{A} x, \mathcal{A} x, \mathcal{A} y) & =\sup _{2|\mathcal{A} x(j)-\mathcal{A} y(j)|, j \in J} \\
& \leq \sup _{j \in J} \int_{0}^{M} 2 G(j, t)|T(t, x(t))+\lambda x(t)-T(t, y(t))-\lambda y(t)| d t \\
& \leq \sup _{j \in J} \int_{0}^{M} 2 G(j, t)|\lambda \psi(x(t)-y(t))| d t \\
& \leq \sup _{j \in J} \int_{0}^{M} G(j, t) \lambda \psi(2|x(t)-y(t)|) d t \\
& \leq \lambda \psi(S(x, x, y)) \sup _{j \in J} \int_{0}^{M} G(j, t) d t \\
& =\lambda \psi(S(x, x, y)) \sup _{j \in J} \frac{1}{e^{\lambda M}-1}\left(\left.\frac{1}{\lambda} e^{\lambda(M+t-j)}\right|_{0} ^{j}+\left.\frac{1}{\lambda} e^{\lambda(t-j)}\right|_{j} ^{M}\right) \\
& =\lambda \psi(S(x, x, y)) \times \frac{1}{\lambda} \\
& =\psi(S(x, x, y))
\end{aligned}
$$

it implies that

$$
S(\mathcal{A} x, \mathcal{A} x, \mathcal{A} y) \leq \psi(S(x, x, y))
$$

Define $\alpha_{s}: U \times U \times U \rightarrow[0,+\infty)$ by

$$
\alpha_{s}(x, x, y)= \begin{cases}1, & \text { if } \xi(x(j), x(j), y(j)) \geq 0, j \in J \\ 0, & \text { otherwise }\end{cases}
$$

and $\beta_{s}: U \times U \times U \rightarrow[0,+\infty)$ by

$$
\beta_{s}(x, x, y)= \begin{cases}1, & \text { if } \xi(x(j), x(j), y(j)) \geq 0, j \in J \\ 0, & \text { otherwise }\end{cases}
$$

for all $x, y \in U$ with $x \geq y$. Then

$$
\alpha_{s}(x, x, y) S(\mathcal{A} x, \mathcal{A} x, \mathcal{A} y) \leq \beta_{s}(x, x, y) \psi(S(x, x, y))
$$

Hence mapping \mathcal{A} is $\alpha_{s^{-}}-\beta_{s^{-}} \psi$-contractive of type-A. Let $c_{\alpha_{s}}=c_{\beta_{s}}=1$. From (c) for all $x, y \in U$ with $x \geq y$, we get for $\alpha_{s}(x, x, y) \geq 1=c_{\alpha_{s}}$, we have $\xi(x(j), x(j), y(j)) \geq 0$. Then

$$
\xi(\mathcal{A} x(j), \mathcal{A} x(j), \mathcal{A} y(j)) \geq 0
$$

It implies that

$$
\alpha_{s}(\mathcal{A} x, \mathcal{A} x, \mathcal{A} y) \geq 1=c_{\alpha_{s}}
$$

And also, for $\beta_{s}(x, x, y) \leq 1=c_{\beta_{s}}$, we have $\xi(x(j), x(j), y(j)) \geq 0$. Then

$$
\xi(\mathcal{A} x(j), \mathcal{A} x(j), \mathcal{A} y(j)) \geq 0
$$

It implies that

$$
\beta_{s}(\mathcal{A} x, \mathcal{A} x, \mathcal{A} y) \leq 1=c_{\beta_{s}},
$$

this means that \mathcal{A} is $\alpha_{s}-\beta_{s}$-admissible. If γ is a lower solution of (3.1), from (b),

$$
\xi((\mathcal{A} \gamma)(j),(\mathcal{A} \gamma)(j), \gamma(j)) \geq 0 \quad \Longrightarrow \quad\left\{\begin{array}{l}
\alpha_{s}(\mathcal{A} \gamma, \mathcal{A} \gamma, \gamma) \geq c_{\alpha_{s}} \\
\beta_{s}(\mathcal{A} \gamma, \mathcal{A} \gamma, \gamma) \leq c_{\beta_{s}}
\end{array}\right.
$$

Now, we prove that $\mathcal{A} \gamma \geq \gamma$. Since γ is lower solution of the considered problem (3.1), therefore

$$
\left\{\begin{array}{l}
\gamma^{\prime}(j) \leq h(j, \gamma(j)), j \in J=[0, M] ; \\
\gamma(0) \leq \gamma(M),
\end{array}\right.
$$

for all $j \in J$ and $\lambda>0$. Hence

$$
\gamma^{\prime}(j)+\lambda \gamma(j) \leq h(j, \gamma(j))+\lambda \gamma(j),
$$

on multiplying by $e^{\lambda j}$, we have

$$
\left(\gamma(j) e^{\lambda j}\right)^{\prime} \leq(h(j, \gamma(j))+\lambda \gamma(j)) e^{\lambda j}
$$

By integrating from 0 to j, we have

$$
\begin{equation*}
\gamma(j) e^{\lambda j} \leq \gamma(0)+\int_{0}^{j}[h(t, \gamma(t))+\lambda \gamma(t)] e^{\lambda t} d t . \tag{3.2}
\end{equation*}
$$

This implies that

$$
\begin{gather*}
\gamma(0) e^{\lambda M} \leq \gamma(M) e^{\lambda M} \leq \gamma(0)+\int_{0}^{M}[h(t, \gamma(t))+\lambda \gamma(t)] e^{\lambda t} d t \\
\gamma(0) \leq \int_{0}^{M} \frac{e^{\lambda t}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t \tag{3.3}
\end{gather*}
$$

From (3.2) and (3.3)

$$
\begin{aligned}
\gamma(j)^{\lambda j} & \leq \int_{0}^{M} \frac{e^{\lambda t}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t+\int_{0}^{j}[h(t, \gamma(t))+\lambda \gamma(t)] e^{\lambda t} d t \\
& \leq \int_{0}^{j} \frac{e^{\lambda(M+t)}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t+\int_{j}^{M} \frac{e^{\lambda t}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t
\end{aligned}
$$

and dividing by $e^{\lambda j}$, we obtain

$$
\gamma(j) \leq \int_{0}^{j} \frac{e^{\lambda(M+t-j)}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t+\int_{j}^{M} \frac{e^{\lambda(t-j)}}{e^{\lambda M}-1}[h(t, \gamma(t))+\lambda \gamma(t)] d t .
$$

Hence, by the definition of green function $G(j, t)$, we have

$$
\gamma(j) \leq \int_{0}^{M} G(j, t)[h(t, \gamma(t))+\lambda \gamma(t)] d t=[A \gamma](j)
$$

for all $j \in J$, which implies that $\mathcal{A} \gamma \geq \gamma$.
Finally, from (d) if $l_{n} \rightarrow l \in U$, for all n, we have

$$
\xi\left(l_{n}, l_{n}, l_{n+1}\right) \geq 0 \quad \Longrightarrow \quad \xi\left(l_{n}, l_{n}, l\right) \geq 0
$$

therefore

$$
\begin{aligned}
\alpha_{s}\left(l_{n}, l_{n}, l_{n+1}\right) \geq c_{\alpha_{s}} & \Longrightarrow \quad \alpha_{s}\left(l_{n}, l_{n}, l\right) \geq c_{\alpha_{s}}, \\
\beta_{s}\left(l_{n}, l_{n}, l_{n+1}\right) \leq c_{\beta_{s}} & \Longrightarrow \quad \beta_{s}\left(l_{n}, l_{n}, l\right) \leq c_{\beta_{s}} .
\end{aligned}
$$

Thus each postulates (a)-(e) of Theorem 2.8 hold. Therefore, \mathcal{A} has a fixed point that is given differential equation (3.1) has a solution. The solution's uniqueness can be verified using Theorem 2.15.

Theorem 3.5. If lower solution of the differential equation (3.1) replaced by upper solution, Theorem 3.4 still holds.

Acknowledgement: The first author is thankful to UGC New Delhi, India for financial support.

References

[1] R.P. Agarwal, M.A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Applicable Anal., 87(1) (2008), 109-116.
[2] M.S. Asgari and Z. Badehian, Fixed point theorems for $\alpha-\psi$-contractive mappings in partially ordered sets and application to ordinary differential equations, Bull. Iranian Math. Soc., 41(6) (2015), 1375-1386.
[3] M.S. Asgari and Z. Badehian, Fixed point theorems for $\alpha-\beta-\psi$-contractive mappings in partially ordered sets, J. Nonlinear Sci. Appl., 8(5) (2015), 518-528.
[4] L. Ćirić, N. Cakić, M. Rajović and J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl., 2009 (2008), 1-11.
[5] M.B. Devi, N. Priyobarta and Y. Rohen, Fixed point theorems for $(\alpha, \beta)-(\phi, \psi)$-rational contractive type mappings, J. Math. Comput. Sci., 11(1) (2021), 955-969.
[6] J. Harjani and K. Sadarangan, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71(7-8) (2009), 3403-3410.
[7] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., 72(3-4) (2010), 1188-1197.
[8] P. Kumam, C. Vetro and F. Vetro, Fixed points for weak-contractions in partial metric spaces, Abst. Appl. Anal., 2013 (2013).
[9] N. Mlaiki, U. Celik, N. Tas, N.Y. Özgür and A. Mukheimer, Wardowski type contractions and the fixed-circle problem on S-metric spaces, J. Math., Article ID 9127486 (2018).
[10] N. Mlaiki, N.Y. Özgür and N. Tas, New fixed-point theorems on an S-metric space via simulation functions, Mathematics, $\mathbf{7}(7)$ (2019): 583.
[11] H.K. Nashine and B. Samet, Fixed point results for mappings satisfying (ψ, ϕ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74(6) (2011), 2201-2209.
[12] J.J. Nieto, R. Pouso and R. Rodrguez-Lpez, Fixed point theorems in ordered abstract spaces, Proc.Amer. Math.Soc., 135(8) (2007), 2505-2517.
[13] J.J. Nieto and R. Rodrguez-Lpez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, 22(3) (225), 223-239.
[14] D. Paesano and P. Vetro, Common fixed points in a partially ordered partial metric space, Inte. J. Anal., 2013 (2013).
[15] N. Priyobarta, B. Khomdram, Y. Rohen and N. Saleem, On Generalized Rational Geraghty Contraction Mappings in Metric Spaces, J. Math., 2021 (2021).
[16] N. Priyobarta, Y. Rohen, S. Thounaojam and S. Radenović, Some remarks on α admissibility in S-metric spaces, J. Ineq. Appl., 2022(1) (2022), 1-6.
[17] A. Ran and M. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132(5) (2004), 1435-1443.
[18] N. Saleem, M. Abbas and Z. Raza, Fixed fuzzy point results of generalized Suzuki type F-contraction mappings in ordered metric spaces, Georgian Math. J., 27 (2) (2020), 307320.
[19] N. Saleem, I. Habib and M.D. Sen, Some new results on coincidence points for multivalued Suzuki-type mappings in fairly complete spaces, Computation, 8(1):17 (2020).
$[20]$ B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha \psi$-contractive type mappings, Nonlinear Anal., 75(4) (2012), 2154-2165.
[21] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S metric spaces, Matematički vesnik., 64(3) (2012), 258-266.
[22] T. Stephen, Y. Rohen, N. Saleem, M.B. Devi and K.A. Singh, Fixed points of generalized α-Meir-Keeler contraction mappings in S_{b}-metric spaces, J. Funct. Spaces, 2021(21) (2021):4684290.
[23] Nihal Tas, New fixed-disc results via bilateral type contractions on S-metric spaces, Arastrma Makalesi, 24(1) (2022), 408-416.
[24] M. Zhou, X.L. Liu and S. Radenović, $S-\gamma-\Phi-\varphi$-contractive type mappings in S-metric spaces, J. Nonlinear Sci. App., 10(4) (2017).
[25] M. Zhou, N. Saleem, X. Liu, A. Fulga and A.F. Roldán López de Hierro, A new approach to proinov-type fixed-point results in non-archimedean fuzzy metric spaces, Mathematics, 2021 9(23):3001 (2021).

[^0]: ${ }^{0}$ Received October 18, 2022. Revised December 2, 2022. Accepted December 6, 2022.
 ${ }^{0} 2020$ Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 ${ }^{0}$ Keywords: Partially ordered sets, S-metric space, $\alpha_{s}-\beta_{s}-\psi$-contractive mapping, fixed point.
 ${ }^{0}$ Corresponding author: D. Chand(deepak07872@gmail.com).

