DOI QR코드

DOI QR Code

FIXED POINT THEOREMS IN QUASI-METRIC SPACES

  • Abdelkarim Kari (Laboratory of Algebra, Analysis and Applications, Faculty of Sciences, Ben M'Sik, Hassan II University) ;
  • Mohamed Rossafi (LASMA Laboratory, Department of Mathematics, Faculty of Sciences, Dhar El Mahraz University) ;
  • Jung Rye Lee (Department of Data Sciences, Daejin University)
  • Received : 2022.05.20
  • Accepted : 2022.11.03
  • Published : 2023.06.15

Abstract

Fixed point theory is the center of focus for many mathematicians from last few decades. A lot of generalizations of the Banach contraction principle have been established. In this paper, we introduce the concepts of 𝜃-contraction and 𝜃-𝜑-contraction in quasi-metric spaces to study the existence of the fixed point for them.

Keywords

References

  1. S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations itegrales, Fund. Math., 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  2. P. Borisut, P. Kumam, V. Gupta and N. Mani, Generalized (ψ, α, β)-weak contractions for initial value problems, Math., 7 (2019), Paper No. 266.
  3. D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-464. https://doi.org/10.1090/S0002-9939-1969-0239559-9
  4. 4] G. Cicorta,s, Critical point theory on quasi-metric spaces, Nonlinear Funct. Anal. Appl., 12(4) (2007), 635-644.
  5. J. Collins and Zimmer, An asymmetric Arzela-Ascoli theorem, Topology Appl., 154(11) (2007), 2312-2322. https://doi.org/10.1016/j.topol.2007.03.006
  6. V. Gupta, N. Mani and N. Sharma, Fixed point theorems for weak (ψ, β)-mappings satisfying generalized C-condition and its application to boundary value problem, Comput. Math. Methods, 1(4) (2019), Article ID e1041.
  7. V. Gupta, W. Shatanawi and N. Mani, Fixed point theorems for (ψ, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fixed Point Theory Appl., 19 (2017), 1251-1267. https://doi.org/10.1007/s11784-016-0303-2
  8. N. Jamal, T. Abdeljawad, M. Sarwar, N. Mlaiki and P. S. Kumari, Some valid generalizations of Boyd and Wong inequality and (ψ, φ)-weak contraction in partially ordered b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), Article ID 9307302.
  9. M. Jleli, E. Karapinar and B. Samet, Further generalizations of the Banach contraction principle, J. Ineq. Appl., 2014 (2014), Paper No. 439.
  10. R. Kannan, Some results on fixed points II, Amer. Math. Monthly, 76 (1969), 405-408.
  11. A. Kari, M. Rossafi, E. Marhrani and M. Aamri, θ-φ-Contraction on (α, η)-complete rectangular b-metric spaces, Int. J. Math. Math. Sci., 2020 (2020), Article ID 5689458.
  12. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22 (2005), 73-99. https://doi.org/10.1007/s00526-004-0267-8
  13. A. Mielke and T. Roubcek, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571-597. https://doi.org/10.1137/S1540345903422860
  14. A. Mennucci, On asymmetric distances, Technical Report, Scuola Normale Superiore, Pisa, 2004.
  15. S. Park, On generalizations of the Ekeland-type variational principles, Nonlinear Anal., 39 (2000), 881-889. https://doi.org/10.1016/S0362-546X(98)00253-3
  16. S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
  17. M.O. Rieger and J. Zimmer, Young measure flow as a model for damage, Preprint 11/05, Bath Institute for Complex Systems, Bath, UK, 2005.
  18. S. Romaguera and P. Tirado, A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem, Fixed Point Theory Appl., 2015 (2015), Paper No. 183.
  19. B. Rome and M. Sarwar, Extension of the Banach contraction principle in multiplicative metric spaces, Military Technical Courier, 65 (2017), Issue 2.
  20. H. Saffaj, K. Chaira, M. Aamri and E.M. Marhrani, A generalization of contraction principle in quasi-metric spaces, Bull. Math. Anal. Appl., 9 (2017), 92-108.
  21. H. Saffaj, K. Chaira, M. Aamri and E.M. Marhrani, Fixed point theorems for generalized weakly contractive mappings in quasi-metric space, Adv. Fixed Point Theory, 7 (2017), 44-66.
  22. M. Sarwar, N. Jamal and Y. Li, Coincidence point results via generalized (ψ, φ)-weak contractions in partial ordered b-metric spaces with application, J. Nonlinear Sci. Appl., 10 (2017), 3719-3731. https://doi.org/10.22436/jnsa.010.07.29
  23. N. Shahzad, O. Valero, M.A. Alghamdi and M.A. Alghamdi, A fixed point theorem in partial quasimetric spaces and an application to software engineering, Appl. Math. Comput., 268 (2015), 1292-1301.
  24. W. Shatanawi, M.S. Noorani, H. Alsamir and A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, J. Math. Comput. Sci., 16 (2016), 516-528. https://doi.org/10.22436/jmcs.016.04.05
  25. W.A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675-684. https://doi.org/10.2307/2371174
  26. R. Ye, Q. Dong and G. Li, Viscosity approximation for fixed points of nonexpansive semigroup in Banach spaces, Nonlinear Funct. Anal. Appl., 15(4) (2010), 533-543.
  27. M.B. Zada and M. Sarwar, Common fixed point theorems for rational F𝓡-contractive pairs of mappings with applications, J. Ineq. Appl., 2019 (2019), Paper No. 11.
  28. M.B. Zada, M. Sarwar, F. Jarad and T. Abdeljawad, Common fixed point theorem via cyclic (α, β)-(ψ, φ)S-contraction with applications, Symmetry, 11 (2019), Paper No. 198.
  29. D.W. Zheng, Z.Y. Cai and P. Wang, New fixed point theorems for (θ, φ)-contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662-2670. https://doi.org/10.22436/jnsa.010.05.32