DOI QR코드

DOI QR Code

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord (Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University Aurangabad) ;
  • Sadikali L. Shaikh (Department of Mathematics, Maulana Azad College of arts, Science and Commerce) ;
  • Saleh S. Redhwan (Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University Aurangabad) ;
  • Mohammed S. Abdo (Department of Mathematics, Hodeidah University)
  • Received : 2022.09.30
  • Accepted : 2022.12.27
  • Published : 2023.06.15

Abstract

In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.

Keywords

References

  1. M.S. Abdo, A.W. Hanan and S.K. Panchal, Ulam-Hyers-Mittag-Leffler stability for a-Hilfer problem with fractional order and infinite delay, Results Appl. Math., 7 (2020), Article 100115.
  2. M.S. Abdo, S.T. Thabet and B. Ahmad, The existence and Ulam-Hyers stability results for ψ-Hilfer fractional integrodifferential equations, J. Pseudo-Dif. Oper. Appl., 11(4) (2020), 1757-1780. https://doi.org/10.1007/s11868-020-00355-x
  3. B.N. Abood, S.S. Redhwan, O. Bazighifan and K. Nonlaopon, Investigating a Generalized Fractional Quadratic Integral Equation, Fractal and Fractional, 6(5) (2022), 251.
  4. B.N. Abood, S.S. Redhwan and M.S. Abdo, Analytical and approximate solutions for generalized fractional quadratic integral equation,Nonlinear Funct. Anal. Appl., 26(3) (2021), 497-512.
  5. M.N. Alkord, S.L. Shaikh and S.S. Redhwan, The Generalized Hilfer-Type Integro-Differential Equation with Boundary Condition, Math. Stat. Eng. Appl., 71(4) (2022), 4639-4654.
  6. M.A. Almalahi, M.S. Abdo and S.K. Panchal, ψ-Hilfer fractional functional differential equation by Picard operator method, J. Appl. Nonlinear Dyn., 9(4) (2020), 685-702. https://doi.org/10.5890/JAND.2020.12.011
  7. M.A. Almalahi, O. Bazighifan, S.K. Panchal, S.S. Askar and G.I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal and Fractional, 5(4) (2021), 178.
  8. S.Y. Al-Mayyahi, M.S. Abdo, S.S. Redhwan and B.N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Int. J. Appl. Math., 51(1) (2021), 1-10.
  9. S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouyas and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Kor. Math. Soc., 55(6) (2018), 1639-1657.
  10. A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406. https://doi.org/10.1016/j.chaos.2017.04.027
  11. A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer, Model. Therm. Sci., 20(2) (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
  12. M. Benchohra and S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure and Appl. Anal., 1(1) (2015), 22-37. https://doi.org/10.7603/s40956-015-0002-9
  13. T.A. Burton and U.C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachrichten, 189 (1998), 23-31. https://doi.org/10.1002/mana.19981890103
  14. A. Debbouche, D. Baleanu and R.P. Agarwal, Nonlocal nonlinear integrodifferential equations of fractional orders, Boundary Value Prob., 2012(1) (2012), 1-10. https://doi.org/10.1186/1687-2770-2012-1
  15. K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, New York, 2010.
  16. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  17. R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399-408. https://doi.org/10.1016/S0301-0104(02)00670-5
  18. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, 204 North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  19. A. Lachouri, M.S. Abdo, A. Ardjouni, B. Abdalla and T. Abdeljawad, Hilfer fractional differential inclusions with Erdelyi-Kober fractional integral boundary condition, Adv. Dif. Equ., 2021(1) (2021), 1-17. https://doi.org/10.1186/s13662-020-03162-2
  20. A.D. Mali and K.D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43(15) (2020), 8608-8631. https://doi.org/10.1002/mma.6521
  21. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  22. S.K. Ntouyas and D. Vivek, Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions, Acta Mathematica Universitatis Comenianae, (2021), 1-15.
  23. C. Nuchpong, S.K. Ntouyas and J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18(1) (2020), 1879-1894. https://doi.org/10.1515/math-2020-0122
  24. S.S. Redhwan and S.L. Shaikh, Analysis of implicit type of a generalized fractional differential equations with nonlinear integral boundary conditions, J. Math. Anal. Model., 1(1) (2020), 64-76. https://doi.org/10.48185/jmam.v1i1.14
  25. S.S. Redhwan, S.L. Shaikh and M.S. Abdo, Implicit fractional differential equation with antiperiodic boundary condition involving Caputo-Katugampola type, AIMS Mathematics, 5(4) (2020).
  26. S.S. Redhwan, S.L. Shaikh, M.S. Abdo, W. Shatanawi, K. Abodayeh, M.A. Almalahi and T. Aljaaidi, Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Mathematics, 7(2) (2022), 1856- 1872. https://doi.org/10.3934/math.2022107
  27. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993.
  28. J.V.D.C. Sousa and E.C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv preprint arXiv:1709.03634. (2017).
  29. J.V.D.C. Sousa and E.C. de Oliveira. On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018),
  30. W. Sudsutad, C. Thaiprayoon and S.K. Ntouyas, Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Mathematics, 6(4) (2021), 4119-4141. https://doi.org/10.3934/math.2021244
  31. I. Suwan, M. Abdo, T. Abdeljawad, M. Mater, A. Boutiara and M. Almalahi, Existence theorems for Psi-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7(1) (2021), 171-186. https://doi.org/10.3934/math.2022010
  32. J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  https://doi.org/10.1016/j.cnsns.2018.01.005