References
- M.S. Abdo, A.W. Hanan and S.K. Panchal, Ulam-Hyers-Mittag-Leffler stability for a-Hilfer problem with fractional order and infinite delay, Results Appl. Math., 7 (2020), Article 100115.
- M.S. Abdo, S.T. Thabet and B. Ahmad, The existence and Ulam-Hyers stability results for ψ-Hilfer fractional integrodifferential equations, J. Pseudo-Dif. Oper. Appl., 11(4) (2020), 1757-1780. https://doi.org/10.1007/s11868-020-00355-x
- B.N. Abood, S.S. Redhwan, O. Bazighifan and K. Nonlaopon, Investigating a Generalized Fractional Quadratic Integral Equation, Fractal and Fractional, 6(5) (2022), 251.
- B.N. Abood, S.S. Redhwan and M.S. Abdo, Analytical and approximate solutions for generalized fractional quadratic integral equation,Nonlinear Funct. Anal. Appl., 26(3) (2021), 497-512.
- M.N. Alkord, S.L. Shaikh and S.S. Redhwan, The Generalized Hilfer-Type Integro-Differential Equation with Boundary Condition, Math. Stat. Eng. Appl., 71(4) (2022), 4639-4654.
- M.A. Almalahi, M.S. Abdo and S.K. Panchal, ψ-Hilfer fractional functional differential equation by Picard operator method, J. Appl. Nonlinear Dyn., 9(4) (2020), 685-702. https://doi.org/10.5890/JAND.2020.12.011
- M.A. Almalahi, O. Bazighifan, S.K. Panchal, S.S. Askar and G.I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal and Fractional, 5(4) (2021), 178.
- S.Y. Al-Mayyahi, M.S. Abdo, S.S. Redhwan and B.N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Int. J. Appl. Math., 51(1) (2021), 1-10.
- S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouyas and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Kor. Math. Soc., 55(6) (2018), 1639-1657.
- A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396-406. https://doi.org/10.1016/j.chaos.2017.04.027
- A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer, Model. Therm. Sci., 20(2) (2016), 763-769. https://doi.org/10.2298/TSCI160111018A
- M. Benchohra and S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroccan J. Pure and Appl. Anal., 1(1) (2015), 22-37. https://doi.org/10.7603/s40956-015-0002-9
- T.A. Burton and U.C. Kirk, A fixed point theorem of Krasnoselskii Schaefer type, Math. Nachrichten, 189 (1998), 23-31. https://doi.org/10.1002/mana.19981890103
- A. Debbouche, D. Baleanu and R.P. Agarwal, Nonlocal nonlinear integrodifferential equations of fractional orders, Boundary Value Prob., 2012(1) (2012), 1-10. https://doi.org/10.1186/1687-2770-2012-1
- K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, New York, 2010.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399-408. https://doi.org/10.1016/S0301-0104(02)00670-5
- A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of the Fractional Differential Equations, 204 North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
- A. Lachouri, M.S. Abdo, A. Ardjouni, B. Abdalla and T. Abdeljawad, Hilfer fractional differential inclusions with Erdelyi-Kober fractional integral boundary condition, Adv. Dif. Equ., 2021(1) (2021), 1-17. https://doi.org/10.1186/s13662-020-03162-2
- A.D. Mali and K.D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43(15) (2020), 8608-8631. https://doi.org/10.1002/mma.6521
- K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
- S.K. Ntouyas and D. Vivek, Existence and uniqueness results for sequential ψ-Hilfer fractional differential equations with multi-point boundary conditions, Acta Mathematica Universitatis Comenianae, (2021), 1-15.
- C. Nuchpong, S.K. Ntouyas and J. Tariboon, Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions, Open Math., 18(1) (2020), 1879-1894. https://doi.org/10.1515/math-2020-0122
- S.S. Redhwan and S.L. Shaikh, Analysis of implicit type of a generalized fractional differential equations with nonlinear integral boundary conditions, J. Math. Anal. Model., 1(1) (2020), 64-76. https://doi.org/10.48185/jmam.v1i1.14
- S.S. Redhwan, S.L. Shaikh and M.S. Abdo, Implicit fractional differential equation with antiperiodic boundary condition involving Caputo-Katugampola type, AIMS Mathematics, 5(4) (2020).
- S.S. Redhwan, S.L. Shaikh, M.S. Abdo, W. Shatanawi, K. Abodayeh, M.A. Almalahi and T. Aljaaidi, Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Mathematics, 7(2) (2022), 1856- 1872. https://doi.org/10.3934/math.2022107
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993.
- J.V.D.C. Sousa and E.C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, arXiv preprint arXiv:1709.03634. (2017).
- J.V.D.C. Sousa and E.C. de Oliveira. On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018),
- W. Sudsutad, C. Thaiprayoon and S.K. Ntouyas, Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions, AIMS Mathematics, 6(4) (2021), 4119-4141. https://doi.org/10.3934/math.2021244
- I. Suwan, M. Abdo, T. Abdeljawad, M. Mater, A. Boutiara and M. Almalahi, Existence theorems for Psi-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7(1) (2021), 171-186. https://doi.org/10.3934/math.2022010
- J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005