References
- R.P. Agarwal, M. Benchohra and S. Hamanani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
- H.M. Ahmed, Controllability for Sobolev type fractional integro-differential systems in a Banach space, Advances Diff. Equa., 2012(1) (2012), 1-10. https://doi.org/10.1186/1687-1847-2012-1
- A. Abed, M. Younis and A. Hamoud, Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM, Nonlinear Funct. Anal. Appl., 27(1) (2022), 189-201.
- H.M. Ahmed, Approximate controllability via resolvent operators of Sobolev-type fractional stochastic integrodifferential equations with fractional Brownian motion and Poisson jumps, Bull. Iranian Math. Soc., 45(4) (2019), 1045-1059. https://doi.org/10.1007/s41980-018-0183-x
- H.M. Ahmed, M.M. El-Borai, H.M. El-Owaidy and A.S. Ghanem, Existence solution and controllability of Sobolev type delay nonlinear fractional integro-differential system, Mathematics, 7(1) (2019), 79.
- H.M. Ahmed, M.M. El-Borai, AS Okb El Bab and M.E. Ramadan, Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarkes subdifferential, J. Ineq. Appl., 2019(1) (2019), 1-23. https://doi.org/10.1186/s13660-019-1955-4
- W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems. Birkhuser, Berlin (2011).
- A. Anguraj, P. Karthikeyan and G.M. N'Guerekata, Nonlocal Cauchy problem for some fractional abstract integrodifferential equations in Banach space, Commun. Math. Anal., 6 (2009), 31-35.
- K. Balachandran and J.P. Dauer, Controllability of nonlinear systems via fixed point theorems, J. Opti. Theory Appl., 53 (1987), 345-352. https://doi.org/10.1007/BF00938943
- K. Balachandran and J.P. Dauer, Controllability of nonlinear systems in Banach spaces: A survey, J. Opti. Theory Appl., 115 (2002), 7-28. https://doi.org/10.1023/A:1019668728098
- K. Balachandran and J.Y. Park, Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Anal. : Hybrid Systems, 3 (2009), 363-367. https://doi.org/10.1016/j.nahs.2009.01.014
- B. Bonilla, M. Rivero, L. Rodriguez-Germa and J.J. Trujillo, Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput., 187 (2007), 79-88.
- K. Diethelm and A.D. Freed, On the solution of nonlinear fractional-order differential equation used in the modeling of viscoelasticity. In: F.keil, W.Mackens, H.Voss, J. Werther (Eds), Scientific Computing in Chemical Engineering IIComputational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg (1999), 217-224.
- A. Hamoud and K. Ghadle, Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math., 60(3) (2018), 375-395. https://doi.org/10.12732/ijam.v31i3.3
- A. Hamoud, K. Ghadle, M. Bani Issa and Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math., 31(3) (2018), 333-348. https://doi.org/10.12732/ijam.v31i3.3
- A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech., 5(1) (2019), 58-69.
- A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations, Advan. Theory Nonlinear Anal. Appl., 4(4) (2020), 321-331. https://doi.org/10.31197/atnaa.799854
- A. Hamoud, M. SH. Bani Issa and K. Ghadle, Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Funct. Anal. Appl., 23(4) (2018), 797-805. https://doi.org/10.7862/rf.2018.9
- K. Hussain, A. Hamoud and N. Mohammed, Some new uniqueness results for fractional integro-differential equations, Nonlinear Funct. Anal. Appl., 24(4) (2019), 827-836.
- A. Hamoud and K. Ghadle, Some new results on nonlinear fractional iterative Volterra-Fredholm integro differential equations, TWMS J. Appl. Eng. Math., 12(4) (2022), 1283-1294. https://doi.org/10.5890/DNC.2023.12.013
- J.W. Hanneken, D.M. Vaught and B.N. Narahari Achar, Enumeration of the real zeros of the Mittag-Leffler function Eα(z), 1 < α < 2. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.) Advances in Fractional Calculus, pp. 15-26. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6042-7 2.
- P. Karthikeyan, Some results for boundary value problem of an integrodifferential equations with fractional order, Dynamic Syst. Appl., 20 (2011), 17-24.
- K. Karthikeyan and J.J. Trujillo, Existence and uniqueness results for fractional integrodifferential equations with boundary value conditions, Commu. Nonlinear Sci. Numer. Simu., 17 (2012), 4037-4043. https://doi.org/10.1016/j.cnsns.2011.11.036
- A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential equations, Elsevier, Amsterdam, 2006.
- J. Klamka, Controllability of Dynamical Systems, Kluwer Academic, Dordrecht, 1991.
- V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69 (2008), 3337-3343. https://doi.org/10.1016/j.na.2007.09.025
- V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equation, Nonlinear Anal., 69 (2008), 2677-2682. https://doi.org/10.1016/j.na.2007.08.042
- T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86-94. https://doi.org/10.1007/s00033-019-1130-2
- T. Li and G. Viglialoro, Analysis and explicit solvability of degenerate tensorial problems, Bound. Value Probl., 2018 (2018), 21-34. https://doi.org/10.1186/s13661-018-0939-5
- W. Lin, Global existence theory and chaos control of fractional differential equation, J. Math. Anal. Appl., 332 (2007), 709-726. https://doi.org/10.1016/j.jmaa.2006.10.040
- S. Magar, A. Hamoud, A. Khandagale and K. Ghadle, Generalized Shehu transform to Ψ-Hilfer-Prabhakar fractional derivative and its regularized version, Advances in the Theory of Nonlinear Analysis and its Application, 6(3) (2022), 364-379. https://doi.org/10.31197/atnaa.1032207
- A. Pazy, Semigroups of Linear operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- M. Raja, V. Vijayakumar, A. Shukla, K. Sooppy Nisar and S. Rezapour, New discussion on nonlocal controllability for fractional evolution system of order 1 < r < 2, Advances in Difference Equations, 2021 (2021), 1-19. https://doi.org/10.1186/s13662-020-03162-2
- A. Sharif, and A. Hamoud, On ψ-Caputo fractional nonlinear Volterra-Fredholm integrodifferential equations, Disconti. Nonlinearity and Complexity, 11(1) (2022), 97-106. https://doi.org/10.5890/DNC.2022.03.008
- D.R. Smart, Fixed point Theorems, Cambridge University Press, Cambridge 66 1980.
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
- D. Tamizharasan and K. Karthikeyan, Controllability results for fractional integrodifferential systems with boundary conditions, Indian J. Pure Appl. Math., 52 (2021), 39-45. https://doi.org/10.1007/s13226-021-00129-1
- P. Wang, Y. Wang, C. Jiang and T. Li, Convergence of solutions for functional integrodifferential equations with nonlinear boundary conditions, Adv. Diff. Equ. 2019 (2019), 521.
- S. Zhang, Positive solutions for boundary value problems for nonlinear fractional differential equations, Elec. J. Diff. Equ., 36 (2006), 1-12.