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Abstract. Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then
Malik [12] obtained the following inequality:

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|.

In this paper, we shall first improve as well as generalize the above inequality. Further, we

also improve the bounds of two known inequalities obtained by Govil et al. [8].

1. Introduction

Let p(z) be a polynomial of degree n. Then, according to a famous well-
known classical result due to Bernstein [3],

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)
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Inequality (1.1) is sharp and equality holds if p(z) has all its zeros at the
origin. If p(z) is a polynomial of degree n having no zero in |z| < 1, then
Erdös conjectured and later Lax [11] proved that

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.2)

Inequality (1.2) is best possible and equality holds for p(z) = a + bzn, where
|a| = |b|.

For the class of polynomials p(z) of degree n not vanishing in |z| < k, k ≥ 1,
Malik [12] proved

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|. (1.3)

The result is best possible and equality holds for p(z) = (z + k)n.

Chan and Malik [6] considered a polynomial of the type p(z) = ao +∑n
ν=µ aνz

ν , 1 ≤ µ ≤ n, and obtained the following extention of inequality

(1.3).

Theorem 1.1. ([6]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ
max
|z|=1

|p(z)|. (1.4)

The result is best possible and extremal polynomial is p(z) = (zµ + kµ)
n
µ , where

n is a multiple of µ.

Next, Bidkham and Dewan [4] generalized inequality (1.3) and obtained

Theorem 1.2. ([4]) If p(z) is a polynomial of degree n having no zero in
|z| < k, k ≥ 1, then for 1 ≤ R ≤ k,

max
|z|=R

|p′(z)| ≤ n(R+ k)n−1

(1 + k)n
max
|z|=1

|p(z)|. (1.5)

The result is best possible and equality in (1.5) holds for p(z) = (z + k)n.

Aziz and Zargar [2] considered the class of polynomials p(z) = a0+
∑n

ν=µ aνz
ν ,

1 ≤ µ ≤ n, not vanishing in |z| < k, k ≥ 1 and proved the following extension
of Theorem 1.1 and generalization of Theorem 1.2.

Theorem 1.3. ([2]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then for 0 < r ≤ R ≤ k,

max
|z|=R

|p′(z)| ≤ nRµ−1(Rµ + kµ)
n
µ
−1

(rµ + kµ)
n
µ

max
|z|=r
|p(z)|. (1.6)
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The result is best possible and equality in (1.6) holds for p(z) = (zµ + kµ)
n
µ ,

where n is a multiple of µ.

For a given polynomial p(z) =
∑n

ν=0 aνz
ν of degree n having no zero in

|z| < k, k ≥ 1, it is indeed desirable to know the dependence of

max
|z|=1

|p′(z)|/max
|z|=1

|p(z)|, (1.7)

on the coefficients a0, a1, . . ., am, 1 ≤ m ≤ n. It is clear that these coefficients
are not quite arbitrary. Govil et al. [8] obtained the following which gives the
dependence of (1.7) on a0, a1 and a2.

Theorem 1.4. ([8]) If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

×max
|z|=1

|p(z)|, (1.8)

where λ = k
n
a1
a0
, µ = 2k2

n(n−1)
a2
a0
.

It is really of interest to investigate inequalities in the reversed direction
of Bernstein type discussed above and Turán [15] was the first who obtained
such inequalities that if p(z) has all its zeros in z ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.9)

The result is sharp and equality holds in (1.9) for the polynomial having all
its zeros on |z| = 1.

Malik [12] generalized inequality (1.9) by proving that if p(z) is a polynomial
of degree n having all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k
max
|z|=1

|p(z)|. (1.10)

The result is sharp and extremal polynomial being p(z) = (z + k)n.

For the same class of polynomials, by involving certain co-efficients of the
polynomial, Govil et al. [8] obtained the following result.

Theorem 1.5. ([8]) If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having

all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n |an|+ |an−1|
(1 + k2)n |an|+ 2 |an−1|

max
|z|=1

|p(z)|. (1.11)
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2. Lemmas

The following lemmas are needed for the proofs of the theorems and the
corollaries in next section.

Lemma 2.1. ([13]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then

µ

n

|aµ|
|a0|

kµ ≤ 1. (2.1)

Lemma 2.2. If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of degree

n having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,
µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)
≤ Rµ−1

Rµ + kµ
. (2.2)

Proof. Since p(z) 6= 0 in |z| < k, k > 0, the polynomial P (z) = p(Rz) 6= 0 in
|z| < k

R , k
R ≥ 1, where 0 < R ≤ k. Hence applying Lemma 2.1 to P (z), we get

µ

n

|aµ|Rµ

|a0|

(
k

R

)µ
≤ 1. (2.3)

Now, (2.3) becomes
µ

n

|aµ|
|a0|

kµ ≤ 1,

which is equivalent to

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)
≤ Rµ−1

Rµ + kµ
.

�

Lemma 2.3. ([5]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,

exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt

 ≤
(
kµ +Rµ

kµ + rµ

)n
µ

. (2.4)

Lemma 2.4. ([13]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
1 + µ

n |
aµ
a0
|kµ+1

1 + kµ+1 + µ
n |
aµ
a0
|(kµ+1 + k2µ)

max
|z|=1

|p(z)|. (2.5)
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Inequality (2.5) is sharp and equality holds for the polynomial p(z) = (zµ +

kµ)
n
µ , where n is a multiple of µ.

Lemma 2.5. ([9]) If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k > 0, then for 0 < r ≤ R ≤ k,

max
|z|=R

|p(z)| ≤ exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt


×max
|z|=r
|p(z)|. (2.6)

Lemma 2.6. ([14]) If p(z) is the polynomial of degree n having no zero in
|z| < k, k ≥ 1, then for |z| ≤ k, |ξ| ≤ k, where ξ is a real or complex number,
we have

(ξ − z)p′(z) + np(z) 6= 0. (2.7)

Lemma 2.7. ([8]) If f(z) is analytic and |f(z)| ≤ 1 in |z| ≤ 1, then for
|z| ≤ 1,

|f(z)| ≤ (1− |a|)|z|2 + |bz|+ |a|(1− |a|)
|a|(1− |a|)|z|2 + |bz|+ (1− |a|)

, (2.8)

where a = f(0), b = f ′(0). The example

f(z) =
a+ b

1+az − z
2

1− b
1+az − az2

,

shows that the estimate is sharp.

Lemma 2.8. ([7]) If p(z) is a polynomial of degree n, then on |z| = 1,

|p′(z)|+ |q′(z)| ≤ nmax
|z|=1

|p(z)|, (2.9)

where

q(z) = znp

(
1

z

)
.

Lemma 2.9. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having no zero

in |z| < k, k ≥ 1, then

1− 1

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

≥ 0, (2.10)

where λ = k
n
a1
a0
, µ = 2k2

n(n−1)
a2
a0
.
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Proof. From Lemma 2.1, we have

|λ| = k

n

|a1|
|a0|
≤ 1.

Now,
(1− k + k2 + k|λ|)− (1 + k2|λ|) = k(k − 1)(1− |λ|) ≥ 0

or
(1− k + k2 + k|λ|) ≥ (1 + k2|λ|),

which implies that

(1+k)
[
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

]
≥ (1− |λ|)(1 + k2|λ|)

+ k(n− 1)|µ− λ2|,
which is equivalent to

1− 1

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

≥ 0.

�

Lemma 2.10. ([8]) If p(z) is a polynomial of degree n, then

max
|z|=1

|p′(z)| ≥ nmax
|z|=1

|p(z)| −max
|z|=1

|q′(z)|, (2.11)

where

q(z) = znp

(
1

z

)
.

Lemma 2.11. ([10]) If p(z) =
∑n

ν=0 aνz
ν be a polynomial of degree n having

no zero in |z| < k, k ≥ 1, then

n

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1−|λ|)(1−k+k2+k|λ|)+k(n−1)|µ−λ2|

≤ n 1 + k|λ|
1 + k2 + 2k|λ|

, (2.12)

where λ = k
n
a1
a0
, µ = 2k2

n(n−1)
a2
a0
.

Lemma 2.11 was conjectured by Govil et al. [8] and later precisely proved
by Krishnadas et al [10].

Lemma 2.12. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having all its

zeros in |z| ≤ k, k ≤ 1, then

n

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

≥ n |an|+ |an−1|
(1 + k2)n |an|+ 2 |an−1|

, (2.13)
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where ω = 1
nk

an−1

an
, Ω = 2

n(n−1)k2
an−2

an
.

Proof. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≤ 1, then q(z) = znp
(
1
z

)
is a polynomial of degree at most n having

no zero in |z| < 1/k, 1/k ≥ 1. Applying Lemma 2.12 to q(z), we have

n

1 + 1
k

(1− |ω|)(1 + 1
k2
|ω|) + (n− 1) 1k |Ω− ω

2|
(1− |ω|)(1− 1

k + 1
k2

+ 1
k |ω|) + (n− 1) 1k |Ω− ω2|

≤ n
1 + 1

k |ω|
1 + 1

k2
+ 2 1

k |ω|
,

which is equivalent to

n− n

1 + 1
k

(1− |ω|)(1 + 1
k2
|ω|) + (n− 1) 1k |Ω− ω

2|
(1− |ω|)(1− 1

k + 1
k2

+ 1
k |ω|) + (n− 1) 1k |Ω− ω2|

≥ n− n
1 + 1

k |ω|
1 + 1

k2
+ 2 1

k |ω|
.

This simplifies to

n

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

≥ n |an|+ |an−1|
(1 + k2)n |an|+ 2 |an−1|

.

�

3. Main results

In this paper, under the same set of hypotheses, we first obtain an improve-
ment of Theorem 1.3 by involving some of the coefficients of the polynomial
p(z). In fact, we obtain

Theorem 3.1. If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then for 0 < r ≤ R ≤ k,

max
|z|=R

|p′(z)| ≤ n

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)

× exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt


× max
|z|=r
|p(z)|. (3.1)
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Proof. Since p(z) 6= 0 in |z| < k, k > 0, the polynomial P (z) = p(Rz) 6= 0 in
|z| < k

R , k
R ≥ 1, where 0 < R ≤ k. Hence applying Lemma 2.4 to P (z), we

have

max
|z|=1

|P ′(z)| ≤ n
1 + µ

n |
aµ
a0
|Rµ

(
k
R

)µ+1

1 +
(
k
R

)µ+1
+ µ

n |
aµ
a0
|Rµ

(
kµ+1

Rµ+1 + k2µ

R2µ

) max
|z|=1

|P (z)|.

This gives

R max
|z|=R

|p′(z)| ≤ n
1 + µ

n |
aµ
a0
|Rµ

(
k
R

)µ+1

1 +
(
k
R

)µ+1
+ µ

n |
aµ
a0
|Rµ

(
kµ+1

Rµ+1 + k2µ

R2µ

) max
|z|=R

|p(z)|,

which is equivalent to

max
|z|=R

|p′(z)| ≤ n
1 + µ

n |
aµ
a0
|kµ+1

R

R+ kµ+1

Rµ + µ
n
|aµ|
|a0|

(
Rkµ+1

R + Rk2µ

Rµ

) max
|z|=R

|p(z)|

= n
Rµ + µ

n
|aµ|
|a0|k

µ+1Rµ−1

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)
max
|z|=R

|p(z)|.

Using Lemma 2.5 for max
|z|=R

|p(z)|, we obtain

max
|z|=R

|p′(z)| = n

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)

× exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1+kµ+1+ µ
n
|aµ|
|a0| (k

µ+1tµ+k2µt)
dt

max
|z|=r
|p(z)|.

This completes the proof of Theorem 3.1. �

Remark 3.2. To show that Theorem 3.1 is in general, an improvement of
Theorem 1.3, it is sufficient to show that

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)

× exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt

 (3.2)

≤ Rµ−1

Rµ + kµ

(
kµ +Rµ

kµ + rµ

)n
µ

.
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By Lemma 2.2, we have

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)
≤ Rµ−1

Rµ + kµ
. (3.3)

Also by Lemma 2.3, we have

exp

n
∫ R

r

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt

 ≤
(
kµ +Rµ

kµ + rµ

)n
µ

. (3.4)

Multiplying inequalities (3.3) and (3.4), we have inequality (3.2).

Remark 3.3. Using inequality (3.2) of Remark 3.2, Theorem 3.1 reduces to
Theorem 1.3 which further generalizes Theorem 1.2.

Remark 3.4. Putting r = 1, in Theorem 3.1, we have the following general-
ization of Lemma 2.4 proved by Qazi [13].

Corollary 3.5. If p(z) = a0 +
∑n

ν=µ aνz
ν , 1 ≤ µ ≤ n, is a polynomial of

degree n having no zero in |z| < k, k ≥ 1, then for 1 ≤ R ≤ k,

max
|z|=R

|p′(z)| ≤ n

µ
n
|aµ|
|a0|k

µ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1Rµ + k2µR)

× exp

n
∫ R

1

µ
n
|aµ|
|a0|k

µ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n
|aµ|
|a0| (k

µ+1tµ + k2µt)
dt


×max
|z|=1

|p(z)|. (3.5)

Remark 3.6. If we assign r = R = 1 and µ = 1 in Theorem 3.1, we obtain
the following inequality proved by Govil et al. [8], which further improves the
bound given by inequality (1.3) due to Malik [12].

Corollary 3.7. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having no

zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
1 + 1

n

∣∣∣a1a0 ∣∣∣ k2
1 + k2 + 2 1

n

∣∣∣a1a0 ∣∣∣ k2 max
|z|=1

|p(z)|. (3.6)



430 R. Soraisam, N. K. Singha and B. Chanam

Remark 3.8. Using the fact

1

n

∣∣∣∣a1a0
∣∣∣∣ k ≤ 1

from Lemma 2.1, inequality (3.6) of Corollary 3.7 reduces to inequality (1.3)
proved by Malik [12].

Remark 3.9. Putting r = R = µ = k = 1, inequality (3.1) of Theorem 3.1
reduces to Erdös-Lax inequality (1.2).

Next, we consider polynomials of degree n ≥ 3 and prove the following
theorem which is an improvement of Theorem 1.4 by involving min

|z|=k
|p(z)|. In

fact, we prove

Theorem 3.10. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n ≥ 3 having

no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

max
|z|=1

|p(z)|

− n

kn

(
1− 1

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

)
× min
|z|=k

|p(z)|, (3.7)

where λ = k
n
a1
a0
, µ = 2k2

n(n−1)
a2
a0
. The result is best possible and equality in (3.7)

holds for

p(z) = a0
1

kn
(z + k)n1

(
z2 + 2kz

na− n1
n− n1

+ k2
)n−n1

3

,

where a is an arbitrary real number and n1 is an integer such that n3 ≤ n1 ≤ n,
n− n1 is even.

Proof. Consider a new polynomial Q(z) = p(z) + mαzn, where α is a real or
complex number such that |α| <

(
1
k

)n
, m = min

|z|=k
|p(z)|.

Now, on |z| = k

|mαzn| < m
1

kn
kn

= m

≤ |p(z)|.

Then by Rouche’s theorem, p(z) and Q(z) must have same number of zeros in
|z| < k and hence Q(z) has no zero in |z| < k. And for |z| < k, |ξ| < k, where
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ξ is a real or complex number, by Lemma 2.6, we have

nQ(z) + (ξ − z)Q′(z) 6= 0,

that is,

nQ(z)− zQ′(z) 6= −ξQ′(z). (3.8)

Consequently, for |z| ≤ k ∣∣∣∣ Q′(z)

nQ(z)− zQ′(z)

∣∣∣∣ ≤ 1

k
. (3.9)

Hence if

f(z) =
kQ′(kz)

nQ(kz)− kzQ′(kz)
, (3.10)

then |f(z)| ≤ 1 for |z| ≤ 1.
Also

f(0) =
ka1
na0

= λ (3.11)

and

f ′(0) = (n− 1)

{
2k2a2

n(n− 1)a0
−
(
ka1
na0

)2
}

= (n− 1)(µ− λ2). (3.12)

Then for |z| ≤ 1, we use Lemma 2.7 to conclude that

|f(z)| ≤ (1− |λ|)|z|2 + (n− 1)|µ− λ2||z|+ |λ|(1− |λ|)
|λ|(1− |λ|)|z|2 + (n− 1)|µ− λ2||z|+ (1− |λ|)

.

Thus in particular for |z| = 1, we have

|Q′(z)| ≤ 1

k

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2

|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2
|nQ(z)− zQ′(z)|.

(3.13)

If q(z) = znQ(1z ), then on |z| = 1, |nQ(z) − zQ′(z)| = |q′(z)|. Therefore
inequality (3.13) becomes

|Q′(z)| ≤ 1

k

(1− |λ|) + (n− 1)|µ− λ2|k + |λ|(1− |λ|)k2

|λ|(1− |λ|) + (n− 1)|µ− λ2|k + (1− |λ|)k2
|q′(z)|. (3.14)

From Lemma 2.8, we have

max
|z|=1

(
|Q′(z)|+ |q′(z)|

)
≤ nmax

|z|=1
|Q(z)|. (3.15)

Combining inequalities (3.14) and (3.15), we get

max
|z|=1

|Q′(z)| ≤ n

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

max
|z|=1

|Q(z)|,
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which is equivalent to

max
|z|=1

|p′(z) + αmnzn−1| ≤ n

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

×max
|z|=1

|p(z) + αmzn|. (3.16)

Suppose z0 on |z| = 1 is such that

max
|z|=1

|p′(z)| = |p′(z0)|. (3.17)

Now,

|p′(z0) + nαmzn−10 | ≤ max
|z|=1

|p′(z) + nαmzn−1|. (3.18)

In the left hand side of inequality (3.18) for suitable choice of the argument of
α, we have

|p′(z0) + nαmzn−10 | = |p′(z0)|+ n|α|m. (3.19)

Using (3.19) and (3.17) in inequality (3.18), we have

max
|z|=1

|p′(z)|+ n|α|m ≤ max
|z|=1

|p′(z) + nαmzn−1|. (3.20)

Combining inequalities (3.20) and (3.16), we have

max
|z|=1

|p′(z)|+ n|α|m ≤ n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

×max
|z|=1

|p(z) + αmzn|. (3.21)

Again suppose z1 on |z| = 1 is such that

max
|z|=1

|p(z) + αmzn| = |p(z1) + αmzn1 |

≤ |p(z1)|+ |α|m
≤ max
|z|=1

|p(z)|+ |α|m. (3.22)

Using inequality (3.22) in inequality (3.21), we have

max
|z|=1

|p′(z)| ≤ n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

×
{

max
|z|=1

|p(z)|+ |α|m
}
− n|α|m,
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which on taking limit as |α| → 1
kn becomes

max
|z|=1

|p′(z)| ≤ n

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

×
{

max
|z|=1

|p(z)|+ 1

kn
m

}
− n 1

kn
m,

which on simplification gives

max
|z|=1

|p′(z)| ≤ n

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

max
|z|=1

|p(z)|

− n
kn

{
1− 1

1+k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|)+k(n− 1)|µ− λ2|

}
m.

This completes the proof of Theorem 3.10. �

Remark 3.11. To show that Theorem 3.10 is indeed an improvement of
Theorem 1.4, it is sufficient to show(

1− 1

1 + k

(1− |λ|)(1 + k2|λ|) + k(n− 1)|µ− λ2|
(1− |λ|)(1− k + k2 + k|λ|) + k(n− 1)|µ− λ2|

)
≥ 0. (3.23)

From Lemma 2.9, we have inequality (3.23).

Remark 3.12. Using inequality (2.12) of Lemma 2.11, Theorem 3.10 reduces
to the following result which improves the bound given by Govil et al. [8,
Theorem 1, (10)].

Corollary 3.13. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n ≥ 3 having

no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n 1 + k|λ|
1 + k2 + 2k|λ|

max
|z|=1

|p(z)|

− n

kn

(
1− 1 + k|λ|

1 + k2 + 2k|λ|

)
min
|z|=k

|p(z)|, (3.24)

where λ = k
n
a1
a0
.

Remark 3.14. Using the fact

|λ| = 1

n

∣∣∣∣a1a0
∣∣∣∣ k ≤ 1

from Lemma 2.1, inequality (3.24) of Corollary 3.13 reduces to the following
result which is an improvement of inequality (1.3) proved by Malik [12].
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Corollary 3.15. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n ≥ 3 having

no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)| − n

kn−1 + kn
min
|z|=k

|p(z)|. (3.25)

Remark 3.16. Putting k=1 in Theorem 3.10, we obtain the following in-
equality proved by Aziz and Dawood [1], which further improves the bound
given by Erdös-Lax inequality (1.2).

Corollary 3.17. If p(z) is a polynomial of degree n ≥ 3 having no zero in
|z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

2

{
max
|z|=1

|p(z)| − min
|z|=1
|p(z)|

}
. (3.26)

As an application of Theorem 3.10, we obtain the following result which is
an improvement of the result proved by Govil et al. [8, Corollary 2, (17)].

Theorem 3.18. If p(z) =
∑n

ν=0 aνz
ν , a0 6= 0, is a polynomial of degree n ≥ 3

having all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

×
{

max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
, (3.27)

where ω = 1
nk

an−1

an
, Ω = 2

n(n−1)k2
an−2

an
.

Proof. If p(z) =
∑n

ν=0 aνz
ν , a0 6= 0, is a polynomial of degree n ≥ 3, then

q(z) = znp(1/z) is also a polynomial of degree n ≥ 3, then on |z| = 1,

|p(z)| = |q(z)|. (3.28)

Also by Lemma 2.10, we have

max
|z|=1

|p′(z)| ≥ nmax
|z|=1

|p(z)| −max
|z|=1

|q′(z)|,

that is

nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)| ≤ max
|z|=1

|q′(z)|. (3.29)
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If p(z) has all its zeros in |z| ≤ k, k ≤ 1, then q(z) has no zero in |z| < 1/k,
1/k ≥ 1. Hence applying Theorem 3.10 to q(z), we have

max
|z|=1

|q′(z)|≤ n

1 + 1
k

(1− |ω|)(1 + 1
k2
|ω|) + (n− 1) 1k |Ω− ω

2|
(1− |ω|)(1− 1

k + 1
k2

+ 1
k |ω|) + (n− 1) 1k |Ω− ω2|

max
|z|=1

|q(z)|

− nkn
{

1− 1

1+ 1
k

(1− |ω|)(1 + 1
k2
|ω|) + (n− 1) 1k |Ω− ω

2|
(1−|ω|)(1− 1

k+ 1
k2

+ 1
k |ω|)+(n−1) 1k |Ω−ω2|

}
× min
|z|=k

|q(z)|, (3.30)

where ω = 1
nk

an−1

an
, Ω = 2

n(n−1)k2
an−2

an
.

Since q(z) = znp(1/z),

min
|z|= 1

k

|q(z)| = min
|z|= 1

k

|znp(1/z)|

=
1

kn
min
|z|= 1

k

|p(1/z)|

=
1

kn
min
|z|=k

|p(z)|. (3.31)

Combining inequalities (3.29) and (3.30) and then using (3.28) and (3.31), we
obtain

nmax
|z|=1

|p(z)| −max
|z|=1

|p′(z)|

≤ n

1 + 1
k

(1− |ω|)(1 + 1
k2
|ω|) + (n− 1) 1k |Ω− ω

2|
(1− |ω|)(1− 1

k + 1
k2

+ 1
k |ω|) + (n− 1) 1k |Ω− ω2|

max
|z|=1

|p(z)|

− nkn

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

1

kn
min
|z|=k

|p(z)|,

which is equivalent to

max
|z|=1

|p′(z)| ≥ n

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

×
{

max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
. (3.32)

Hence, the proof of Theorem 3.18 is complete. �

Remark 3.19. Theorem 3.18 improves upon the result of Govil et al. [8,
Corollary 2,(17)] by involving min

|z|=k
|p(z)|.
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So, to show that Theorem 3.18 is an improvement of the result due to Govil
et al. [8, Corollary 2, (17)], it is sufficient to show

n

1 + k

(1− |ω|)(1 + k2|ω|) + (n− 1)k|Ω− ω2|
(1− |ω|)(1− k + k2 + k|ω|) + (n− 1)k|Ω− ω2|

≥ 0,

which is equivalent to show
1− |ω| ≥ 0.

Applying Lemma 2.1 to q(z) = znp
(
1
z

)
, where p(z) is as defined in Theorem

3.18, we have

|ω| = 1

nk

|an−1|
|an|

≤ 1.

Remark 3.20. Using inequality (2.13) of Lemma 2.12, Theorem 3.18 reduces
to the following result which is an improvement of Theorem 1.5 due to Govil
et al. [8].

Corollary 3.21. If p(z) =
∑n

ν=0 aνz
ν , a0 6= 0, is a polynomial of degree n ≥ 3

having all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|p′(z)| ≥ n |an|+ |an−1|
(1 + k2)n |an|+ 2 |an−1|

{
max
|z|=1

|p(z)|+ min
|z|=k

|p(z)|
}
. (3.33)

Remark 3.22. Putting k = 1 in Theorem 3.18, we obtain the following
refinement of inequality (1.9) which was proved by Aziz and Dawood [1].

Corollary 3.23. If p(z) =
∑n

ν=0 aνz
ν , a0 6= 0, is a polynomial of degree n ≥ 3

having all its zeros in z ≤ 1, then

max
|z|=1

|p′(z)| ≥ n

2

{
max
|z|=1

|p(z)|+ min
|z|=1
|p(z)|

}
. (3.34)
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