• Title/Summary/Keyword: weakly *-Einstein

Search Result 12, Processing Time 0.024 seconds

ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

  • Chen, Xiaomin
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.707-719
    • /
    • 2020
  • In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies -6 ⩽ s ⩽ 6 for n = 1 and -2n(2n + 1) ${\frac{4n^2-4n+3}{4n^2-4n-1}}$ ⩽ s ⩽ 2n(2n + 1) for n ⩾ 2. Secondly, for a (2n + 1)-dimensional weakly Einstein contact metric (κ, μ)-manifold with κ < 1, we prove that it is flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for n = 1 and that for n ⩾ 2 there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group.

ON EINSTEIN HERMITIAN MANIFOLDS II

  • Kim, Jae-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.289-294
    • /
    • 2009
  • We show that on a Hermitian surface M, if M is weakly *-Einstein and has J-invariant Ricci tensor then M is Einstein, and vice versa. As a consequence, we obtain that a compact *-Einstein Hermitian surface with J-invariant Ricci tensor is $K{\ddot{a}}hler$. In contrast with the 4- dimensional case, we show that there exists a compact Einstein Hermitian (4n + 2)-dimensional manifold which is not weakly *-Einstein.

WEAKLY EINSTEIN CRITICAL POINT EQUATION

  • Hwang, Seungsu;Yun, Gabjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1087-1094
    • /
    • 2016
  • On a compact n-dimensional manifold M, it has been conjectured that a critical point of the total scalar curvature, restricted to the space of metrics with constant scalar curvature of unit volume, is Einstein. In this paper, after derivng an interesting curvature identity, we show that the conjecture is true in dimension three and four when g is weakly Einstein. In higher dimensional case $n{\geq}5$, we also show that the conjecture is true under an additional Ricci curvature bound. Moreover, we prove that the manifold is isometric to a standard n-sphere when it is n-dimensional weakly Einstein and the kernel of the linearized scalar curvature operator is nontrivial.

ON WEAKLY CYCLIC GENERALIZED B-SYMMETRIC MANIFOLDS

  • Mohabbat Ali;Aziz Ullah Khan;Quddus Khan;Mohd Vasiulla
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1271-1280
    • /
    • 2023
  • The object of the present paper is to introduce a type of non-flat Riemannian manifold, called a weakly cyclic generalized B-symmetric manifold (W CGBS)n. We obtain a sufficient condition for a weakly cyclic generalized B-symmetric manifold to be a generalized quasi Einstein manifold. Next we consider conformally flat weakly cyclic generalized B-symmetric manifolds. Then we study Einstein (W CGBS)n (n > 2). Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are equivalent in such a manifold.

Some Symmetric Properties on (LCS)n-manifolds

  • Venkatesha, Venkatesha;Naveen Kumar, Rahuthanahalli Thimmegowda
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.149-156
    • /
    • 2015
  • We analyze the $(LCS)_n$-manifolds endowed with some symmetric properties, focusing on Ricci tensor and the 1-form ${\gamma}$. We study some properties of special Weakly Ricci-Symmetric $(LCS)_n$-manifolds and also shown that Weakly ${\phi}$-Ricci Symmetric $(LCS)_n$-manifold is an ${\eta}$-Einstein manifold.

ON SOME CLASSES OF WEAKLY Z-SYMMETRIC MANIFOLDS

  • Lalnunsiami, Kingbawl;Singh, Jay Prakash
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.935-951
    • /
    • 2020
  • The aim of the paper is to study some geometric properties of weakly Z-symmetric manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor are studied. We consider Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds. Next, it is shown that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifolds is of quasi constant curvature. Also, decomposable weakly Z-symmetric manifolds are studied and some examples are constructed to support the existence of such manifolds.

ON STABILITY OF EINSTEIN WARPED PRODUCT MANIFOLDS

  • Pyo, Yong-Soo;Kim, Hyun-Woong;Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.167-176
    • /
    • 2010
  • Let (B, $\check{g}$) and (N, $\hat{g}$) be Einstein manifolds. Then, we get a complete (necessary and sufficient) condition for the warped product manifold $B\;{\times}_f\;N\;:=\;(B\;{\times}\;N,\;\check{g}\;+\;f{\hat{g}}$) to be Einstein, and obtain a complete condition for the Einstein warped product manifold $B\;{\times}_f\;N$ to be weakly stable. Moreover, we get a complete condition for the map i : ($B,\;\check{g})\;{\times}\;(N,\;\hat{g})\;{\rightarrow}\;B\;{\times}_f\;N$, which is the identity map as a map, to be harmonic. Under the assumption that i is harmonic, we obtain a complete condition for $B\;{\times}_f\;N$ to be Einstein.

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.761-779
    • /
    • 2018
  • The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.