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Abstract. The object of the present paper is to introduce a type of non-

flat Riemannian manifold, called a weakly cyclic generalized B-symmetric
manifold (WCGBS)n. We obtain a sufficient condition for a weakly cyclic

generalized B-symmetric manifold to be a generalized quasi Einstein man-
ifold. Next we consider conformally flat weakly cyclic generalized B-

symmetric manifolds. Then we study Einstein (WCGBS)n (n > 2).

Finally, it is shown that the semi-symmetry and Weyl semi-symmetry are
equivalent in such a manifold.

1. Introduction

Let the manifold (Mn, g) (dimM = n ≥ 3) be connected and semi-Riemann-
ian, and the endowed metric g of signature (s, n− s), 0 ≤ s ≤ n. If s = n or 0
(resp., s = n−1 or 1), then (Mn, g) is a Riemannian or semi-Riemannian (resp.,
Lorentzian) manifold. A Riemannian manifold has mainly three notions of
curvature, namely, the Riemann-Christoffel curvature tensor K (simply called
curvature tensor), the Ricci tensor Ric and the scalar curvature r. Let ∇ be the
Levi-Civita connection on the manifold (Mn, g), which is the unique torsion
free metric connection.

As is well known, symmetric spaces play an important role in differential
geometry. The study of Riemannian symmetric spaces was initiated in the late
twenties by Cartan [3], who, in particular, obtained a classification of those
spaces. A Riemannian manifold is called locally symmetric [3] if∇K = 0, where
K is the Riemannian curvature tensor of (Mn, g). The class of Riemannian
symmetric manifolds is very natural generalization of the class of manifolds of
constant curvature.

A Riemannian manifold (Mn, g) (n ≥ 3) is called semi-symmetric if

(1) K. K = 0,
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holds on Mn. It is well known that the class of semi-symmetric manifolds in-
cludes the set of locally symmetric manifolds (∇K = 0) as a proper subset.
Semi-symmetric Riemannian manifolds were studied by Cartan [3] and Lich-
nerowich [8]. A fundamental study on such Riemannian manifolds was made
by Szabó [12] and Kowalski [7].

A Riemannian manifold (Mn, g) (n ≥ 3) is called Ricci semi-symmetric [12]
if

(2) K.Ric = 0,

where Ric is the Ricci tensor. The class of Ricci semi-symmetric manifolds
includes the set of Ricci-symmetric manifolds (∇Ric = 0) as a proper subset.

A Riemannian manifold (Mn, g) (n ≥ 3) is called Weyl semi-symmetric [7]
if

(3) K.C = 0,

where C is the Weyl conformal curvature tensor and is defined [1] as

C(U,X, Y ) = K(U,X, Y )− 1

n− 2

[
g(X,Y )R(U)− g(U, Y )R(X)

+Ric(X,Y )U −Ric(U, Y )X
]

+
r

(n− 1)(n− 2)

[
g(X,Y )U − g(U, Y )X

]
,

(4)

where R is the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor Ric, that is,

g(R(U), X) = Ric(U,X).

The notion of weakly symmetric manifolds introduced and studied by Tamássy
and Binh [13]. The existence of weakly symmetric manifolds was proved by
Prvanović [10] and a concrete example is given by De and Bandyopadhyay [2].

A Riemannian manifold (Mn, g) (n > 2) is called weakly Ricci symmetric
[14] if its Ricci tensor Ric of type (0, 2) is not identically zero and satisfies the
condition:

(5) (∇URic)(Y, V ) = A(U)Ric(Y, V ) +D(Y )Ric(V,U) + E(V )Ric(U, Y ),

where A, D and E are 1-forms which are not simultaneously zero and∇ denotes
the operator of covariant differentiation with respect to the metric g. Such an
n-dimensional Riemannian manifold is denoted by (WRS)n.

Generalizing the notion of quasi-Einstein manifold, in [5], De and Ghosh
introduced the notion of generalized quasi-Einstein manifolds and studied its
geometrical properties with the existence of such notion by several nontrivial
examples. A Riemannian manifold is said to be generalized quasi-Einstein
manifold if its Ricci tensor Ric of type (0, 2) is not identically zero and satisfies
the condition:

(6) Ric(Y, V ) = αg(Y, V ) + βξ(Y )ξ(V ) + γη(Y )η(V ),
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where α, β, γ are smooth functions of which β ̸= 0, γ ̸= 0 and ξ, η are two
non-zero 1-forms such that

g(Y, P ) = ξ(Y ), g(Y,Q) = η(Y )

for every vector field Y . Such as an n-dimensional manifold is denoted by
G(QE)n.

In the subsequent paper [11] authors introduced a (0, 2) symmetric tensor
B as follows:

B(Y, V ) = aRic(Y, V ) + brg(Y, V ),

where a and b are non-zero arbitrary scalar functions and r is the scalar cur-
vature.

In this paper, we define a generalized B-tensor as follows:
A (0, 2)-type symmetric tensor B is called a generalized B-tensor if

(7) B(Y, V ) = aRic(Y, V ) + brg(Y, V ) + ψω(Y )ω(V ),

where ψ is an arbitrary scalar function and ω is a 1-form defined by

ω(Y ) = g(Y, ρ)

for a unit vector field ρ. The scalar B̃ is obtained by contracting (7) over Y
and V as follows:

(8) B̃ = (a+ nb)r + ψ.

Pseudo B-symmetric manifolds, weakly cyclic Z-symmetric manifolds and
weakly Z-symmetric manifolds have been studied in ([11], [6] and [9]), respec-
tively.

Inspired by these works, we introduce a new type of Riemannian manifold
called weakly cyclic generalized B-symmetric manifolds. A manifold is called
weakly cyclic generalized B-symmetric if the generalized B tensor of type (0, 2)
is non-zero and satisfies the condition:

(∇UB)(Y, V ) + (∇Y B)(V,U) + (∇V B)(U, Y )

= A(U)B(Y, V ) +D(Y )B(V,U) + E(V )B(U, Y ),
(9)

where A, D and E are 1-forms simultaneously non-zero. We denoted such a
manifold by (WCGBS)n.

A conformally-flat Riemannian manifold (Mn, g) (n > 3) is said to be of

generalized quasi constant curvature [5] if its curvature tensor K̃ of type (0, 4)
satisfies the condition:

K̃(U,X, Y, V ) = p[g(X,Y )g(U, V )− g(U, Y )g(X,V )]

+ q[g(U, V )H(X)H(Y ) + g(X,Y )H(U)H(V )

− g(U, Y )H(X)H(V )− g(X,V )H(U)H(Y )]

+ s[g(U, V )H(X)H(Y )− g(X,V )H(U)H(Y )

+ g(X,Y )H(U)H(V )− g(U, Y )H(X)H(V )],

(10)
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where

K̃(U,X, Y, V ) = g(K(U,X, Y ), V ),

and p, q, s are scalar functions of which q ̸= 0 and H is a non-zero 1-form
defined by

g(U, µ) = H(U)

for all U , µ being a unit vector field. In such a case p, q and s are called asso-
ciated scalars, H is called the associated 1-form and µ is called the generator
of the manifold.

In 1956, S. S. Chern [4] studied a type of Riemannian manifold whose cur-

vature tensor K̃ of type (0, 4) satisfies the condition:

(11) K̃(U,X, Y, V ) = I(X,Y )I(U, V )− I(U, Y )I(X,V ),

where I is a symmetric tensor of type (0, 2). Such an n-dimensional manifold
was called a special manifold with the associated symmetric tensor I and was
denoted by ψ(I)n. Such a manifold is important for the following reasons:

Firstly, for possessing some important properties relating to curvature and
characteristic classes and secondly, for containing a manifold of quasi-constant
curvature as a subclass.

The object of the present paper is to study (WCGBS)n. The paper is
presented as follows:

After introduction in Section 2, we obtain a sufficient condition for a
(WCGBS)n to be a generalized quasi-Einstein manifold G(QE)n. In Sec-
tion 3, we have proved that the conformally flat (WCGBS)n is a manifold
of generalized quasi-constant curvature. Also, it is shown that a (WCGBS)n,
which is a generalized quasi-constant curvature, is a manifold of ψ(I)n. Section
4, deals with Einstein (WCGBS)n (n > 2). In the last section, we have proved
that in a (WCGBS)n (n > 2), semi-symmetry and Weyl semi-symmetry are
equivalent.

2. Sufficient condition for a (WCGBS)n to be a generalized quasi
Einstein manifold

In this section, we study a weakly cyclic generalized B-symmetric manifold
(WCGBS)n. Here, a sufficient condition is discussed for a (WCGBS)n to be
a generalized quasi-Einstein manifold G(QE)n.

Interchanging Y and V in (9), we get

(∇UB)(V, Y ) + (∇V B)(Y,U) + (∇Y B)(U, V )

= A(U)B(V, Y ) +D(V )B(Y,U) + E(Y )B(U, V ).
(12)

Subtracting (12) from (9), we have

(13) [D(Y )− E(Y )]B(V,U) = [D(V )− E(V )]B(U, Y ).

If possible, let

(14) J(U) = g(U, µ) = D(U)− E(U)
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for all vector field U , where µ is a unit vector field associated with 1-form J
such that J(ρ) = g(ρ, µ) = 0. Then the relation (13) becomes

(15) J(Y )B(V,U) = J(V )B(U, Y ).

Contracting (15) over U and V and using (8), we get

(16) J(R(Y )) =
J(Y )

a

[
{a+ (n− 1)b}r + ψ

]
.

Setting V = µ in (15), we get

(17) J(Y )B(µ,U) = B(U, Y ),

which in view of (7) and (16), the relation (17) reduces to

(18) Ric(U, Y ) =
b

a
r g(U, Y ) +

{a+ nbr + ψ

a

}
J(U)J(Y )− ψ

a
ω(U)ω(Y ).

The relation (18) takes the form

Ric(U, Y ) = αg(U, Y ) + βJ(U)J(Y ) + γω(U)ω(Y ),

where α = b
ar, β =

{
a+nbr+ψ

a

}
and γ = −ψ

a . Hence the manifold under

consideration is a generalized quasi-Einstein manifold.
Thus, we have the following result:

Theorem 2.1. If the vector field µ defined by (14) is a unit vector field, then
(WCGBS)n is a generalized quasi-Einstein manifold .

3. Conformally flat (WCGBS)n (n > 3)

In this section, we consider the conformally flat (WCGBS)n(n > 3). Since,

in a conformally flat Riemannian manifold, the curvature tensor K̃ of type
(0, 4) is of the form

K̃(U,X, Y, V ) =
1

(n− 2)

[
Ric(X,Y )g(U, V )−Ric(U, Y )g(X,V )

+Ric(U, V )g(X,Y )−Ric(X,V )g(U, Y )
]

(19)

− r

(n− 1)(n− 2)

[
g(X,Y )g(U, V )− g(U, Y )g(X,V )

]
.

Using (18) in (19) and simplifying, we get

K̃(U,X, Y, V ) = p
[
g(X,Y )g(U, V )− g(U, Y )g(X,V )

]
+ q

[
g(U, V )J(X)J(Y )− g(X,V )J(U)J(Y )

+ g(X,Y )J(U)J(V )− g(U, Y )J(X)J(V )
]

+ s
[
g(U, V )ω(X)ω(Y )− g(X,V )ω(U)ω(Y )

+ g(X,Y )ω(U)ω(V )− g(U, Y )ω(X)ω(V )
]
,
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where p = − 1
(n−2)

[
2b
a r +

r
(n−1)

]
, q = (a+nbr+ψ)

a(n−2) and s = − ψ
a(n−2) , which is a

form of generalized quasi-constant curvature.
Hence we can state the following:

Theorem 3.1. If the vector field µ defined by (14) is a unit vector field, then
the conformally flat (WCGBS)n is a manifold of generalized quasi-constant
curvature.

Let us consider a (0, 2) type symmetric tensor field defined by

(20) I(U,X) = ag(U,X) + bN(U)N(X) + cω(U)ω(X),

where N and ω are 1-forms defined by N(U) = g(U, ξ) and ω(U) = g(U, ρ)
such that N(ρ) = ω(ξ) = g(ρ, ξ) = 0 then, from (11) the Riemannian curvature
tensor for ψ(I)n leads to

K̃(U,X, Y, V ) = p
[
g(X,Y )g(U, V )− g(U, Y )g(X,V )

]
+ q

[
g(X,Y )N(U)N(V ) + g(U, V )N(X)N(Y )

− g(U, Y )N(X)N(V )− g(X,V )N(U)N(Y )
]

+ s
[
g(X,Y )ω(U)ω(V ) + g(U, V )ω(X)ω(Y )

− g(U, Y )ω(X)ω(V )− g(X,V )ω(U)ω(Y )
]
,

(21)

where p = a2, q = ab and s = ac are scalars, which represents a form of
generalized quasi-constant curvature, provided that N and ω commute to each
other, that is N(U)ω(X) = N(X)ω(U).

Hence we can state the following:

Theorem 3.2. If (WCGBS)n is a generalized quasi-constant curvature and
the two 1-forms N , ω satisfy the law of commutative, then it is a manifold of
ψ(I)n.

4. Einstein (WCGBS)n (n > 2)

This section deals with Einstein (WCGBS)n (n > 2). The Ricci tensor of
an Einstein manifold is given by

(22) Ric(Y, V ) =
r

n
g(Y, V ),

which implies

(23) (∇URic)(Y, V ) = 0.

Let ρ be a parallel unit vector field such that

A(ρ) = D(ρ) = E(ρ) = 0.

Then we have

(24) (∇Uω)(Y, V ) = 0 and ∇Uρ = 0.
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Now, taking covariant derivative of (7) along U , we get

(∇UB)(Y, V ) = a(∇URic)(Y, V ) + bU(r)g(Y, V ) + U(ψ)ω(Y )ω(V )

+ ψ
[
(∇Uω)(Y )ω(V ) + ω(Y )(∇Uω)(V )

]
.

(25)

By virtue of (24), the foregoing equation takes the form

(26) (∇UB)(Y, V ) = U(ψ)ω(Y )ω(V ).

Using (7) and (26), then the relation (9) reduces to

U(ψ)ω(Y )ω(V ) + Y (ψ)ω(V )ω(U) + V (ψ)ω(U)ω(Y )

=
(a
n
r + br

)[
A(U)g(Y, V ) +D(Y )g(V,U) + E(V )g(U, Y )

]
+ ψ

[
A(U)ω(Y )ω(V ) +D(Y )ω(U)ω(V ) + E(V )ω(U)ω(Y )

]
.

(27)

Contracting equation (27) over Y and V , we get

(28) U(ψ)
[
2ρ(ψ) + 1

]
=

(a
n
r + br

)[
nA(U) +D(U) + E(U)

]
+ ψA(U).

Similarly, we can find by contraction over V and U , and U and Y

(29) U(ψ)
[
2ρ(ψ) + 1

]
=

(a
n
r + br

)[
A(U) + nD(U) + E(U)

]
+ ψD(U)

and

(30) U(ψ)
[
2ρ(ψ) + 1

]
=

(a
n
r + br

)[
A(U) +D(U) + nE(U)

]
+ ψE(U).

Adding equations (28), (29) and (30), we have

(31) 3U(ψ)
[
2ρ(ψ) + 1

]
=

[
(n+ 2)

(a
n
r + br

)
+ ψ

][
A(U) +D(U) + E(U)

]
.

Let the scalar function ψ be constant. Then (31) reduces to[
(n+ 2)

(a
n
r + br

)
+ ψ

][
A(U) +D(U) + E(U)

]
= 0,

which gives[
A(U) +D(U) + E(U)

]
= 0 if

[
(n+ 2)

(a
n
r + br

)
+ ψ

]
̸= 0.

Hence, we can state the following:

Theorem 4.1. If in an Einstein (WCGBS)n, the vector field ρ is a unit
parallel vector field, then the sum of 1-forms vanishes if and only if the scalar

function ψ is constant and ψ ̸= −(n+ 2)
(
a
nr + br

)
.

Replacing Y and V by U in (9), we have

(32) (∇UB)(U,U) =
1

3

[
A(U) +D(U) + E(U)

]
B(U,U).

In view of Theorem 4.1, the above equation gives

(33) (∇UB)(U,U) = 0,
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which implies that the generalized B-tensor is covariantly constant in the di-
rection of U .

Hence, we can state the following:

Theorem 4.2. If in an Einstein (WCGBS)n, the vector field ρ is a unit
parallel vector field, then the generalized B tensor is covariantly constant in the

direction of U if and only if ψ is constant, provided that ψ ̸= −(n+2)
(
a
nr+br

)
.

5. Equivalence of semi-symmetry and Weyl semi-symmetry in a
(WCGBS)n (n > 2)

Now, we consider that the unit vector field µ defined in (14) is parallel in
(WCGBS)n (n > 2). The condition of Ricci semi-symmetry yields

(34) (K(U,X)Ric)(Y, V ) = −Ric(K(U,X)Y, V )−Ric(Y,K(U,X)V ).

Using (18) in the equation (34), we get

(K(U,X)Ric)(Y, V )

=
ψ

a

[
ω(K(U,X)Y )ω(V ) + ω(Y )ω(K(U,X)V )

]
−
{
a+ nbr + ψ

}[
J(K(U,X)Y )J(V ) + J(Y )J(K(U,X)V )

]
.

Let us suppose, if possible K ·Ric = 0, then we have

ψ

a

[
ω(K(U,X)Y )ω(V ) + ω(Y )ω(K(U,X)V )

]
−
{
a+ nbr + ψ

}[
J(K(U,X)Y )J(V ) + J(Y )J(K(U,X)V )

]
= 0.

(35)

Setting U = µ in (35), we get{
a+ nbr + ψ

}
J(K(U,X)V ) = 0,

which implies

Either J(K(U,X)V ) = 0 or a+ nbr + ψ = 0.

Let if possible, a+ nbr + ψ ̸= 0, then we have

J(K(U,X)V ) = 0.

Hence, we can conclude the following:

Theorem 5.1. (WCGBS)n is a semi-symmetric manifold if and only if
J(K(U,X)V ) = 0, provided a+ nbr + ψ ̸= 0.

Now, we consider that µ is a parallel unit vector field then we have ∇Uµ = 0.
Applying Ricci identity we have J(K(U,X)V ) = 0. From Theorem 5.1, we have
(WCGBS)n is a Ricci semi-symmetric manifold, that is, K.Ric = 0, provided
that a+ nbr + ψ ̸= 0.
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Now the Weyl conformal curvature tensor is given by

(36) C = K − 1

(n− 2)
g ∧Ric+ 1

(n− 1)(n− 2)
G,

where ∧ denotes the Kulkarni-Nomizu product defined by

g ∧Ric(U,X)Y = Ric(X,Y )U −Ric(U, Y )X

+ g(X,Y )R(U)− g(U, Y )R(X),
(37)

and
G(U,X, Y ) = g(X,Y )U − g(U, Y )X,

which implies
K.C = K.K (since K.Ric = 0).

Thus the following theorem holds:

Theorem 5.2. In (WCGBS)n (n > 2), semi-symmetry and Weyl semi-
symmetry are equivalent, provided a+ nbr + ψ ̸= 0.
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