Browse > Article
http://dx.doi.org/10.4134/JKMS.j190340

ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS  

Chen, Xiaomin (College of Science China University of Petroleum-Beijing)
Publication Information
Journal of the Korean Mathematical Society / v.57, no.3, 2020 , pp. 707-719 More about this Journal
Abstract
In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies -6 ⩽ s ⩽ 6 for n = 1 and -2n(2n + 1) ${\frac{4n^2-4n+3}{4n^2-4n-1}}$ ⩽ s ⩽ 2n(2n + 1) for n ⩾ 2. Secondly, for a (2n + 1)-dimensional weakly Einstein contact metric (κ, μ)-manifold with κ < 1, we prove that it is flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for n = 1 and that for n ⩾ 2 there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with κ < 0 is locally isomorphic to a solvable non-nilpotent Lie group.
Keywords
Weakly Einstein metric; Sasakian manifold; (${\kappa},\{\mu}$)-manifold; almost cosymplectic manifold; Einstein manifold;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Boeckx, A full classification of contact metric ($k,\;{\mu}$)-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219. http://projecteuclid.org/euclid.ijm/1255984960   DOI
2 B. Cappelletti-Montano, A. De Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), no. 10, 1343002, 55 pp. https://doi.org/10.1142/ S0129055X13430022
3 A. Carriazo and V. Martin-Molina, Almost cosymplectic and almost Kenmotsu ($k,\;-\mu},\;v$)-spaces, Mediterr. J. Math. 10 (2013), no. 3, 1551-1571. https://doi.org/10.1007/s00009-013-0246-4   DOI
4 P. Dacko, On almost cosymplectic manifolds with the structure vector field $\xi$ belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60.
5 H. Endo, On Ricci curvatures of almost cosymplectic manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 40 (1994), no. 1, 75-83.
6 H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), no. 3, 272-284.
7 Y. Euh, J. Park, and K. Sekigawa, A curvature identity on a 4-dimensional Riemannian manifold, Results Math. 63 (2013), no. 1-2, 107-114. https://doi.org/10.1007/s00025-011-0164-3   DOI
8 S. Hwang and G. Yun, Weakly Einstein critical point equation, Bull. Korean Math. Soc. 53 (2016), no. 4, 1087-1094. https://doi.org/10.4134/BKMS.b150521   DOI
9 T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector field on contact metric 3-manifolds, Pacific J. Math. 234 (2008), no. 2, 325-344. https://doi.org/10.2140/pjm.2008.234.325   DOI
10 T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), no. 4, 440-447. https://doi.org/10.4153/CMB-2000-052-6   DOI
11 D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. https://doi.org/10.1007/BF02761646   DOI
12 H. Baltazar, A. Da Silva, and F. Oliveira, Weakly Einstein critical metrics of the volume functional on compact manifolds with boundary, arXiv:1804.10706v2.
13 M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 285-294.   DOI
14 D. E. Blair, Riemannian geometry of contact and symplectic manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010. https://doi.org/10.1007/978-0-8176-4959-3