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Abstract. In this paper, we prove that every weakly Einstein slope metric, which is con-

formally flat on a manifold M of dimension n ≥ 3, is either a locally Minkowski metric or

a Riemannian metric. We also prove the same result for conformally flat weakly Einstein

Kropina metrics.

1. Introduction

The study of conformal properties has proven to be highly significant, encom-
passing both physical and geometrical domains. The theory of conformal trans-
formations deserves extra attention because of Weyl’s famous theorem [13] which
indicates that the conformal and projective properties of a Finsler metric determine
its metric relationships uniquely. Along with the geometrical importance in the
general theory of relativity, it has been observed that conformal transformations
preserve structure up to time orientation, and light-like geodesics up to parameter-
ization. In Riemannian conformal geometry, there are several significant local and
global discoveries that contribute to a deeper understanding of Riemann manifolds.
For example, Poincaré metric on Bn is a conformally flat Riemannian metric of
curvature K = −1.

Finsler geometry explores the impact of external forces, such as wind and cur-
rent, and has led to extensive investigations on killing, homothetic, and confor-
mal vector fields. Conformal transformation on M gives rise to conformal vector
fields. The conformal transformations between two Finsler metrics preserve Ricci
curvature, Landsberg curvature, mean Landsberg curvature, and S-curvature were
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established by S. Bacso [3]. Kang [11] affirmed that any conformally flat Randers
metric of scalar flag curvature is projectively flat and such metrics were character-
ized entirely. Recently, in [14], authors characterized the conformal transformations
between two non-Riemannian general (α, β)-metrics.

Two Finsler metrics F and F̃ are said to be conformally related, if they satisfy
F = ek(x)F̃ , where k(x) is a scalar function on M. Also, if F̃ is a Minkowski metric
then F is called a conformally flat Finsler metric. Conformal fields on Riemann-
Finsler spaces contain all killing fields and homothetic fields. Conformal changes
are more significant, whenever the conformal factor is constant, i.e., homothetic
because this leaves geodesics invariant. As a matter of fact, for dimension, n ≥ 3,
the Beltrami theorem states that the necessary and sufficient condition for Rieman-
nian metric to be projectively flat is that it is of constant curvature. This implies
conformal flatness, whereas its Finsler analogous does not hold.

In [2] Asanov proved that tangent Minkowski spaces of special-relativistic
Finsler space FSR are conformally flat. This motivated an attractive way to propose
Finslerian extension of electromagnetic field equations. Many Finsler geometers
have explored the theory of conformal transformation of the Finsler metrics. In [9]
Hashuiguchi initiated the study of Finsler conformal metrics and gave geometrical
meaning to it. In [10] Hashuiguchi and Ichijyō introduced a conformally invariant
linear connection for an (α, β)-metric, and based on their connection, they provided
a condition that Randers metric is conformally flat.

A Finsler metric F on a manifold M is called weakly Einstein metric, if its Ricci
curvature satisfies Ric= (n−1)(3θ/F+σ)F 2, where θ = ti(x)yi is a 1-form and σ(x)
is a scalar function. A Finsler metric F is known as an Einstein metric, if θ = 0.
Every Riemannian surface is Einstein, although not necessarily of Ricci constant,
according to the definition of Einstein metrics. In [5], the Schur-type lemma assures
that every Einstein Riemannian metric on a manifold of dimension n ≥ 3, is Ricci
constant. Precisely, for n = 3, necessary and sufficient for a Riemannian metric to be
Einstein is that its sectional curvature is constant. Chen and Cheng [6] established
a significant result stating that conformally flat weakly Einstein (α, β)-metrics can
only be either Riemannian or locally Minkowski metrics. Recently, conformally flat
weakly Einstein exponential metric, cubic metric, and the fourth root have been
studied in [17, 18, 19].

In this paper, firstly we prove an important result that a weakly Einstein con-
formally flat slope metric is Ricci flat. Consequently, this result is used to prove
that any weakly Einstein conformally flat slope metric is either a Riemannian or a
locally Minkowski metric. In section 4, we prove similar results for weakly Einstein
conformally flat Kropina metric.

2. Preliminaries

In this section, we give some definitions and results related to Finsler spaces.
For more elaborate understanding related to Finsler spaces and conformal geometry,
refer [4, 8, 15].
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Definition 2.1. ([15]) Let M be a connected (smooth) manifold. A Finsler metric
on M is a non-negative function on tangent bundle F : TM → [0,∞) which satisfies:

1. Positive homogeneity, i.e., F (x, λy) = λF (x, y), ∀λ > 0;

2. F is smooth on slit tangent bundle TM\{0};
3. Strong convexity: The n× n Hessian matrix formed by

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
(x, y) =

[
1

2
F 2

]
yiyj

,

is positive definite on slit tangent bundle TM/{0}.
The space (M,F ) is called Finsler space. Finsler geometry encompasses several
important quantities that vanish in the Riemannian case, such as Cartan torsion,
S-curvature, Landsberg curvature, etc. Let y ∈ TxM, be a non-zero vector, the the
Cartan torsion Cy = Cijkdx

i ⊗ dxj ⊗ dxk : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

.

Suppose y ∈ TxM0, define Iy : TxM → R by

Iy(u) =

n∑
i=1

gijCy(u, ∂i, ∂j),

where {∂i} is standard basis for TxM at x ∈ M. The family I := {Iy}y∈TM0
is

called mean Cartan torsion. Mean Cartan torsion for an (α, β)-metric is given in
Lemma 3.2.

The class of (α, β)-metrics forms a rich class of Finsler metrics. It has also been
discovered that (α, β)-metrics have vital applications in physics, biology, and ecology
[1]. The study of (α, β)-metrics can help us better explore Finsler’s geometric
qualities. Hence, these metrics are worth studying deeply.

Definition 2.2. ([1]) Let F = αφ(s); s = β/α, where φ is a smooth function on
an open interval (−b0, b0), α =

√
aij(x)yiyj is a Riemannian metric, β = bi(x)yi is

a 1-form on an n-dimensional manifold with ||β|| < b0. Then F is Finsler metric if
and only if following conditions are satisfied:

φ(s) > 0, φ(s)− sφ′
(s) + (b2 − s2)φ

′′
(s) > 0 ∀ |s| ≤ b < b0.

Now, we discuss the geometrical motivation behind slope metric and Kropina metric.
Suppose a person is walking on the surface S with speed v and gravity of magnitude
g along a path making an angle ε with sea level. S is considered to be embedded
in Euclidean space R3 with parametrization (x, y) → (x, y, z = f(x, y)), where
f : R2 → R is a smooth function. Using Okubo’s method [1] we get slope metric as

F (x, y, ẋ, ẏ) =
α2

vα− g
2β
,
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where

α =

√
(1 + fx

2)ẋ2 + 2fxfyẋẏ + (1 + fy
2)ẏ2,

β = fxẋ+ fy ẏ.

For the sake of simplicity, we take v = g
2 , and obtain the usual form of slope metric

F = α2

α−β . See [16] for more details for slope metric.

Kropina metrics are non regular (α, β)-metrics where φ(s) = 1
s , i.e., F = α2

β .

The concept is proposed by Russian physicist V. K. Kropina [12]. Despite having
singularities (β = 0), it is useful in the Lagrangian function’s representation of
the general dynamic system. Suppose an open sea is represented as a Riemannian
manifold (M,h) under the influence of wind W = W i ∂

∂xi such that h(W,W ) = 1.
The singular solution of Zermelo navigation problem in this case was found to be
geodesics of Kropina metric [20]. Since both metrics serve as vital tools for analyzing
time-minimization problems, further study on them is highly worthwhile.

The fundamental tensor of F = αφ(s) is given by

gij = ρaij + ρ0bibj + ρ1(biαj + bjαi) + ρ2αiαj ,

where,

αi := α−1aijy
j , ρ := φ(φ− sφ

′
), ρ0 := φφ

′′
+ φ

′
φ

′
,

ρ1 := −s(φφ
′′

+ φ
′
φ

′
) + φφ

′
, ρ2 := s{s(φφ

′′
+ φ

′
φ

′
)− φ

′
φ

′
}.

Let us suppose

δ :=
ρ0 − ε2ρ2

ρ
, ε :=

ρ1
ρ2
, τ :=

δ

1 + δb2
,

By some computations, we get

gij := ρ−1{aij − τbibj − ηY iY j},

where

η :=
µ

1 + Y 2µ
, µ :=

ρ2
ρ
, Y :=

√
1 + (λ+ ε)s+ λεb2, Y i :=

yi

α
+λbi, λ :=

ε− δs
1 + δb2

.

Next, geodesic coefficients of an (α, β)-metric is defined as follows:

Definition 2.3. ([1]) The general formula for geodesic spray coefficients of an
(α, β)-metric F is

Gi = Giα + αQsi0 + Θ{−2Qαs0 + r00}
yi

α
+ Ψ{−2Qαs0 + r00}bi,
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where Giα denote the spray coefficients of α.

Q :=
φ

′

φ− sφ′ ,Θ :=
φφ

′ − s(φφ′” + φ
′
φ

′
)

2φ[φ− sφ′ + (b2 − s2)φ′′ ]
,Ψ :=

φ
′′

2[φ− sφ′ + (b2 − s2)φ′′ ]
.

Let us define some useful notations related to Levi-Civita connection of α. For an

(α, β)-metric, define bi;jθ
j := dbj − bjθji , where θi := dxi and θji := Γjikdx

k denote
the Levi-Civita connection form α. Let us put

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

rj := birij , r := bibjrij , r0 := rjy
j , sj := bisij , s0 := sjy

j

ri0 := rijy
j , r00 := rijy

iyj , si0 := sijy
j , sij := aimsmj , rij := aimrmj ,

qij := rims
m
j , tij := sims

m
j , qj := biqij , tj := bitij .

Definition 2.4. Two Finsler metrics F and F̃ on a manifold M are said to be
conformally related if F̃ = ec(x)F, where c := c(x) is a scalar function on M, called
the conformal factor.

Remark 2.5. A Finsler metric which is conformally related to Minkowski metric
is called conformally flat Finsler metric.

Definition 2.6. Let (M,F ) be an n-dimensional smooth Finsler manifold. Let φ
be a diffeomorphism on M . Let φ∗ : TxM → Tφ(x)M be tangent map at point x.
Then φ is called conformal transformation on M, if it satisfies

F (φ(x), φ∗(y)) = e2c(x)F (x, y),

where y ∈ TxM and c = c(x) is a function on M, called conformal factor. Now, we

define a linear transformation Ry : TxM → TxM defined as Ry(u) := Rik(y)uk ∂
∂xi

and

Rik = 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

Also, Ry satisfies homogeneity condition as Rλy = λ2Ry, ∀λ > 0.
This family R := {Ry}y∈TM0 is known as Riemann curvature. The Ricci

curvature is defined as the trace of Riemann curvature i.e., Ric(x, y) := Rmm(x, y).
A Finsler metric F on an n-dimensional manifold M is called weakly Einstein

metric, if Ricci curvature satisfies:

(2.1) Ric = (n− 1)

(
3θ

F
+ σ

)
F 2,

where θ = ti(x)yi is a 1-form and σ = σ(x) is a scalar function on M . If θ = 0,
then F is known as Einstein metric. Also, if Ric = 0, we say F is Ricci flat.
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3. On Weakly Einstein Slope Metric

Theorem 3.1. Let F = F (x, y) be slope metric which is conformally flat on a
manifold M of dimension n ≥ 3. Suppose that F is weakly Einstein metric, i.e.,

(3.1) Ric = (n− 1)

(
3θ

F
+ σ

)
F 2,

where θ = ti(x)yi is 1-form and σ = σ(x) is a scalar function on M . Then, F is
either Riemannian metric or a locally Minkowski metric.

In order to prove our main Theorem 3.1, we recall some lemmas. Firsly, we calculate
Ricci curvature of F for which we need to compute mean Cartan torsion of an (α, β)-
metric given by following:

Lemma 3.2. ([7]) For an (α, β)-metric F = α(β/α), the mean Cartan torsion is
given by

Ii = − 1

2F

Φ

∆
(φ− sφ

′
)hi,

where
Φ := −(n∆ + 1 + sQ)(Q− sQ

′
)− (b2 − s2)(1 + sQ)Q

′′
,

∆ := 1 + sQ+ (b2 − s2)Q
′
, hi := bi − α−1syi

and yi := aijy
j.

Suppose F = αφ(s), s = β/α is a conformally flat (α, β)-metric on a manifold
M . Then, there exists a locally Minkowski metric F̃ = α̃φ(β̃/α̃), which satisfy
F = ekF̃ , where k = k(x) is a scalar function. We consider the following notations
to determine Ricci curvature of a (α, β)-metric.

ki :=
∂k

∂xi
, k0 := kiy

i, kij :=
∂2k

∂xi∂xj
, kiα̃ := ãijkj , k00 := kijy

iyj ,

||∇k||2
F̃

:= g̃ijkikj , b̃i := ãij b̃j , f := kib
i, f1 := kij b̃

iyj , f2 := kij b̃
ib̃j .

Next, we recall the Lemma from [6]:

Lemma 3.3. ([6]) Let F = αφ(s), s = β/α be a conformally flat (α, β)-metric on
a manifold M , i.e., there exists a locally Minkowski metric F̃ = α̃φ(s̃), s = β/α,
such that F = exp(k)F̃ , where k = k(x) is a scalar function on M. Then, the Ricci
curvature of F is given by:

(3.2) Ric = c1||∇k||2α̃α̃2 + c2k
2
0 + c3k0fα̃+ c4f

2α̃+ c5f1α̃+ c6α̃
2 + c7k00

where,
c6 := c61ã

ijkij + c62f2,

c61 := − φ

φ− sφ′ , c62 :=
φφ

′′

(φ− sφ′)[(φ− sφ′) + (b2 − s2)φ′′ ]
.
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All the coefficients c1, c2, c3, c4, c5, c6 and c7 are dependent on s only and indepen-
dent of α̃, k0, k00, f1, f, f2 and ãijkij .

Next, we prove the following lemma:

Lemma 3.4. Let F = αφ(s), s = β/α, be weakly Einstein conformally flat slope
metric on a manifold M, of dimension n ≥ 3. Then, Ric=0.

Proof. In order to prove Lemma 3.4, let us suppose F is conformally flat weakly
Einstein slope metric on a manifold M . If b̃ = 0, then F = ekα̃ is Riemannian
metric. Next, we assume b̃ 6= 0, Using equations 3.1 and 3.2, we get that
(3.3)

(n− 1)

(
3θ

F
+ σ

)
F 2 = c1||∇k||2α̃α̃2 + c2k

2
0 + c3k0fα̃+ c4f

2α̃+ c5f1α̃+ c6α̃
2 + c7k00

Let us suppose

χ1 := (2s− 1), χ2 := (1− 3s+ 2b2),

with the help of Maple, we obtain the coefficients of equation 3.3 as follows:

c1 := −1

2

c̃1
χ3
1χ

2
2φ
, c2 := −1

4

c̃2
χ3
1χ

4
2φ
, c3 :=

c̃3
4χ4

2χ
3
1φ
, c4 :=

c̃4
4χ4

2χ
3
1φ
, c5 :=

c̃5
4χ4

2χ
3
1φ
,

c6 :=
c̃6
χ1χ2

, c7 :=
c̃7

2χ1χ2
2

.

In order to simplify the calculations, consider an orthonormal basis at x with respect
to α̃ such that

α̃ =

√√√√ n∑
i=1

(yi)2, β̃ = b̃y1.

Next, we take the coordinate transformations as follows: Ψ : (s, uA)→ (yi) defined
as

y1 =
s√

b̃2 − s2
ᾱ, yA = uA, where, ᾱ =

√√√√ n∑
i=2

(uA)2.

Here, index conventions are 1 ≤ i, j, ...,≤ n and 2 ≤ A,B, ...,≤ n. Hence, we have

α̃ =
b̃√

b̃2 − s2
ᾱ, β̃ =

b̃s√
b̃2 − s2

ᾱ.

Thus,

(3.4) F = ek(x)α̃φ(s) = ek(x)
b̃√

b̃2 − s2
α̃φ(s), s =

β̃

α̃
,
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Further, in this coordinate system we have

θ =
t1s√
b̃2 − s2

ᾱ+ t̄0, f = k1b̃, f1 =
b̃sk11√
b̃2 − s2

ᾱ+ b̃k̄10, f2 = k11b̃
2,

k0 =
k1s√
b̃2 − s2

ᾱ+ k̄0, k00 =
k11s

2

b̃2 − s2
ᾱ2 +

2k̄10s√
b̃2 − s2

α̃+ k̄00,

where

t̄0 :=

n∑
A=2

tAy
A, k̄0 =

n∑
A=2

kAy
A, k̄10 :=

n∑
A=2

k1Ay
A, k̄00 :=

n∑
A,B=2

kABy
AyB .

Simplying equation 3.3 using 3.4, we get

(n− 1)ek(3t1b̃s+ σek b̃2φ)

b̃2 − s2
= [c1b̃||∇k||2α̃ + c2k

2
1s

2 + c3b̃
2k21s+ c4k

2
1 b̃

4 + c5k11b̃
2s

+(c61δ
ijkij + c62k11b̃

2)b̃2 + c7k11s
2]

α̃2

b̃2 − s2
+ c2k̄

2
0 + c7k̄00

(3.5)

(3.6) 3(n− 1)ektAb̃φ = (2c2s+ c3b̃
2)k1kA + (c5b̃

2 + 2c7s)k1A.

On taking φ(s) := 1/(1− s), s = β/α, on using Maple to multiply 3.5, with 4(b2 −
s2)χ3

1χ
4
2φ

2, we get the following equation:

(3.7) A14s
14 + A13s

13 + ...+ A0,

where Ai are polynomials, especially we have where A14 = (−2304nk1α+3168k1α),
A13 = (−21936k1α−4992b2k1α−3456nk10α+ 3840nb2k1α+ 3168k0

√
b2 − s2 +

5184k10α−2304nk0
√
b2 − s2). As the right-hand side of 3.5 is a rational polynomial

with respect to s, whereas the left-hand side is an irrational polynomial with respect
to s. Hence, we get σ = 0, t1 = 0. Similarly, from 3.6, we get tA = 0, which implies
θ = 0, consequently, we get from equation 3.1 that Ric = 0. This completes the
proof that weakly Einstein slope metrics are Ricci flat. 2

Now we are ready to prove Theorem 3.1:

Proof. Suppose F be an (α, β)-metric expressed as F = αφ(s), s = β/α on a
manifold M, where α =

√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi is

a 1-form on M. Two Finsler metrics F and F̃ are conformal to each other on an
n-dimensional manifold M if and only if there exists a scalar function k = k(x)
such that F (x, y) = ekF̃ (x, y). It is simple to check that F̃ = α̃φ(β̃/α̃) is also an
(α, β)-metric, where α̃ = e−k(x)α, β̃ = e−k(x)β. Take α̃ =

√
ãij(x)yiyj , β = b̃i(x)yi

with ãij = e−2k(x)aij , b̃i = e−k(x)bi.
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A Finsler metric F = F (x, y) on a manifold M is called a conformally flat metric
if there exists a locally Minkowski metric F̃ , such that F = ek(x)F̃ , where k = k(x)
is a scalar function on M .

If we take b̃ = 0, we get that F = ekα̃ is a Riemannian metric. Without loss of
generality, we assume that F is a non-Riemannian metric. Hence, we are going to
assume b̃ 6= 0.

Using the proof of the above lemma, we have σ = ti = 0. Hence, from equation
3.5 there exists a function η := η(s) such that

(3.8) c2kAkB + c7kAB = η(s)δAB .

On taking A 6= B, equation 3.8 takes form

(3.9) c2kAkB + c7kAB = 0.

On multiplying equation 3.9 with 4χ3
1χ

4
2, using Maple we get an identity with respect

to s in the form

(3.10) P9s
9 + P8s

8 + ...+ P1s+ P0 = 0,

where coefficients Pi are collected as follows:

(3.11) P9 = (2304n− 3168)kAkB ,

(3.12) P8 = −2592kAB + 4992kAkBb
2 + 15600kAkB − 11136nkAkBb

2 + 1728nkAB

and all other coefficients Pi(0 ≤ i ≤ 7) are polynomials in kA, kB and kAB .
For n ≥ 3, we can easily get from equation 3.11 that kAkB = 0, consequently

equation 3.12 implies kAB = 0.
In equation 3.6, denote c57 := c5b̃

2 + 2c7s. It is trivial to see c57 6= 0 and as
kA = 0, equation 3.6 becomes c57k1A = 0, which implies k1A = 0. In this case,
equation 3.5 reduces to the following:

(3.13) (c1b̃
2 + c2s

2 + c3b̃
2s+ c4b̃

4)k21 + (c5b̃
2s+ c61b̃

2 + c62b̃
4 + c7s

2)k11 = 0

Using Maple to multiply equation 3.13 with 4χ4
2, we get the following identity in s:

(3.14) B8s
8 + B7s

7 + ...B1s+ B0 = 0,

where coefficients can be precisely collected as

(3.15) B8 = (288n− 396)k21,

(3.16) B7 = (1356k21 − 480k21nb
2 − 960k21n+ 624k21b

2 − 324k11 + 216k11n),

also the other coefficients Bi(0 ≤ i ≤ 6) are polynomials of k1 and k11.
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The identity in 3.14, firstly implies k1 = 0, consequently using this into equation
3.16, we get that k11 = 0 also (since n ≥ 3). Hence, ki = 0, which implies k(x) is a
constant. And this proves that F is a locally Minkowski metric. 2

4. On Weakly Einstein Kropina Metric

Theorem 4.1. Let F be Kropina metric on a manifold M of dimension n ≥ 3 such
that F is conformally flat. Suppose that F is a weakly Einstein metric then F is
either a Riemannian metric or a locally Minkowski metric.

Before proving Theorem 4.1, we prove the following Lemma:

Lemma 4.2. Let F = αφ(s), s = β/α, be weakly Einstein conformally flat Kropina
metric on a manifold M, of dimension n ≥ 3. Then, Ric=0.

Proof. Proceeding similarly as in the last proof Ricci curvature of weakly Einstein
Kropina metric takes form 3.3, where constants are as follows:

c1 := − c̃1
4b2

, c2 :=
c̃2
4b4

, c3 :=
c̃3
4b4

, c4 :=
c̃4
2b2

, c5 :=
c̃5
2b2

, c6 :=
−c̃6
2b2

, c7 :=
−c̃7
2b2

,

where c̃i are polynomials in s. On taking φ(s) := 1/s, in equation 3.5 and using

Maple to multiply this equation with Ψ := 4(b2− s2)
3
2 s2b4, we get an identity with

respect to s as follows:

(4.1) C9s
9 + C8s

8 + ...+ C1s+ C0 = 0,

where some of the coefficients can be collected as:

C9 = 12(1− n)k1α,

C8 = 12
√
b2 − s2(1− n)k0,

C0 = 4e2Kb6α2
√
b2 − s2σ(1− n).

From equation 4.1, we know that Ci = 0, (i = 0, 1, ..., 9) which gives σ = 0, similarly
we can get t1 = tA = 0. This implies θ = 0. Since σ and θ both vanish so from
equation 3.1, we can conclude Ric=0. This proves the fact that conformally flat
weakly Einstein Kropina metric is Ricci-flat. 2

Now we are ready to prove our Theorem 4.1.

Proof. For the sake of generalilty, we take b̃ 6= 0, since if b̃ = 0, F is Riemannian
metric. From the above discussion we see that σ = ti = 0, which follows from
equation 3.5 that there exists is a function ζ := ζ(s) satisfying

(4.2) c2kAkB + c7kAB = ζ(s)δAB .

For A 6= B, above equation reduces to

(4.3) c2kAkB + c7kAB = 0.



Conformally Flat Weakly Einstein Finsler Metrics 621

Using Maple to multiply above equation by 4b4, we get an identity in terms of s as
follows:

(4.4) 12(n− 1)kAkBs
4 + 4(n− 1)kABb

2s2 + (3− n)b4[2kAB − kAkB ] = 0.

It is clear to see that the equation 4.4, gives kAkB = 0 and kAB = 0. Now consider
equation 3.6 and denote c57 := c5b̃

2 +2c7s. It is clear to observe that c57 6= 0, which
implies that equation 3.6 yields c57k1A = 0. This gives k1A = 0. This shows that
equation 3.5 reduces to

(4.5) (c1b̃
2 + c2s

2 + c3b̃
2s+ c4b̃

4)k21 + (c5b̃
2s+ c61b̃

2 + c62b̃
4 + c7s

2)k11 = 0.

In order to simplfy equation 4.5, we use Maple to multiply it by b4, we get an
equation in s as follows:

(4.6) 3(n− 1)k21s
6 − (n− 1)(3k21b

2 + k11b
2)s4 = 0.

From equation 4.6, it is trivial to conclude k1 = 0 and consequently, k11 = 0, which
implies ki = 0, i.e., k(x) is a constant. This proves that F is a locally Minkowski
metric. 2
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