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Abstract. The object of the present paper is to study weakly Z symmetric spacetimes

(WZS)4. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein

spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat (WZS)4
spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative

to the unit timelike vector field ρ. We also study (WZS)4 spacetimes with divergence

free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid

(WZS)4 spacetimes. Finally, we construct an example of a (WZS)4 spacetime.

1. Introduction

The present paper is concerned with certain investigations in general relativity
by the coordinate free method of differential geometry. In this method of study the
spacetime of general relativity is regarded as a connected four-dimensional pseudo-
Riemannian manifold (M4, g) with Lorentz metric g with signature (−,+,+,+).
The geometry of the Lorentz manifold begins with the study of the causal character
of vectors of the manifold. It is due to this causality that the Lorentz manifold
becomes a convenient choice for the study of general relativity and cosmology.

The Einstein’s equation [21] imply that the energy momentum tensor is of van-
ishing divergence. This requirement is satisfied if the energy momentum tensor
is covariant constant. Chaki and Roy [7] proved that a general relativistic space-
time with covariant constant energy momentum tensor is Ricci symmetric, that is,
∇S = 0, where S is the Ricci tensor of the spacetime and ∇ denotes the covariant
differentiation with respect to the metric tensor g. However if, ∇S 6= 0, then such
a spacetime may be called weakly Ricci symmetric spacetime [31]. We may say
that the Ricci symmetric condition is only a special case of weakly Ricci symmet-
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ric manifold. Recently, Mantica and Molinari [14] introduced weakly Z symmetric
manifolds which generalizes the notion of weakly Ricci symmetric manifolds. As a
special case, Mantica and Suh [15, 17] studied pseudo Z symmetric manifolds and
pseudo Z symmetric spacetimes. It is therefore meaningful to study the properties
of weakly Z symmetric spacetimes in general theory of relativity and cosmology.

In 1993 Tamássy and Binh [31] introduced the notion of weakly Ricci symmetric
manifolds. A non-flat pseudo-Riemannian manifold (Mn, g) (n > 2) is called weakly
Ricci symmetric if its Ricci tensor S of type (0, 2) is non-zero and satisfies the
condition

(1.1) (∇XS)(Y,Z) = A(X)S(Y,Z) +B(Y )S(X,Z) +D(Z)S(Y,X),

where ∇ denotes the Levi-Civita connection and A, B, D are 1-forms which are
non-zero simultaneously. Such an n-dimensional manifold is denoted by (WRS)n. If
A = B = D = 0, then the manifold reduces to a Ricci symmetric (∇S = 0) manifold.
Several authors studied spacetimes in several ways such as conformally flat almost
pseudo Ricci symmetric spacetimes by De, Özgür and De [10], m-projectively flat
spacetimes by Zengin [34], pseudo Z symmetric spacetimes by Mantica and Suh
[17, 18] and many others.

According to Yano [33] a vector field V is torse-forming if

∇XV = fX + ω(X)V,

where f is a scalar function, ω is a 1-form. Its properties in pseudo-Riemannian
manifolds were studied by Mikes and Rachunek [19]. The vector is named concir-
cular if ω is closed.

In a pseudo-Riemannian manifold (Mn, g), (n > 2), a (0,2) symmetric tensor is
a generalized Z tensor [16, 17] if

(1.2) Z(X,Y ) = S(X,Y ) + φg(X,Y ),

where φ is an arbitrary scalar function. The scalar Z is obtained by contracting
(1.2) over X and Y as follows:

(1.3) Z = r + nφ,

where the scalar curvature r = Σni=1εiS(ei, ei), g(ei, ei) = εi, εi = ±1, {ei} is an
orthonormal basis of the tangent space at each point of the manifold.

A pseudo-Riemannian manifold is said to be weakly Z symmetric [14], denoted
by (WZS)n, if the generalized Z tensor satisfies the condition

(1.4) (∇XZ)(U, V ) = A(X)Z(U, V ) +B(U)Z(X,V ) +D(V )Z(U,X),

where A, B and D are 1-forms not simultaneously zero. If φ = 0 we recover from
(1.4) a (WRS)n and its particular case pseudo Ricci symmetric manifolds (PRS)n.
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If φ = − r
n (classical Z tensor) and if A is replaced by 2A and B and D are replaced

by A, then

Z(U, V ) =
n− 1

n
P (U, V ),

where P (U, V ) is the projective Ricci tensor introduced by Chaki and Saha [8]
which is obtained by a contraction of the projective curvature tensor. It was a
generalization of the notion of weakly Ricci symmetric manifolds [31], pseudo Ricci
symmetric manifolds [5], pseudo projective Ricci symmetric manifolds [8].

Recently, Mantica and Suh studied pseudo Z symmetric Riemannian manifolds
[15] and recurrent Z forms on Riemannian manifolds [16], that is, Riemannian man-
ifolds on which the form Λ(Z)l = Zkldx

k satisfies the condition DΛ(Z)l = β ∧Λ(Z)l,
D being the exterior covariant derivative and β = βidx

i, the associated one-form.
It should be noted that the concept of Z recurrent form embraces both pseudo Z
symmetric and weakly Z symmetric manifolds.

On the otherhand, Lorentzian manifolds with Ricci tensor S of the form

(1.5) S(X,Y ) = ag(X,Y ) + bA(X)A(Y ),

where a and b are scalars and the vector field ρ metrically equivalent to the 1-
form A, that is, g(X, ρ) = A(X) for all X is a unit timelike vector field, that is,
g(ρ, ρ) = −1, are often named perfect fluid spacetimes. It is well known that any
Robertson-Walker spacetime is a perfect fluid spacetime [21]. The form (1.5) of the
Ricci tensor is implied by Einstein’s equation if the energy -matter content of the
spacetime is a perfect fluid with velocity vector ρ. The scalars a and b are linearly
related to the pressure p and the energy density σ measured in the locally comoving
initial frame.

Geometers identify the special form (1.5) of the Ricci tensor as the defining
property of quasi-Einstein manifolds [6]. Pseudo-Riemannian quasi-Einstein mani-
folds arose in the study of exact solutions of Einstein’s equations. Robertson-Walker
spacetimes are quasi-Einstein [3]. The importance of the study of the quasi-Einstein
spacetime lies in the fact that this spacetime represents the present state of the uni-
verse when the effects of viscosity and the heat flux have become negligible and the
matter content of the universe may be considered as a perfect fluid.

Shepley and Taub [28] studied perfect fluid spacetimes with equation of state
p = p(σ), p is the isotropic pressure and σ is the energy density and the additional
condition divC = 0, where C is the conformal curvature tensor and ‘div′ denotes
divergence. A related result was obtained by Sharma [27]. De et al [10] proved that
conformally flat almost pseudo-Ricci symmetric spacetimes, that is,

(∇XS)(Y, U) = (A(X) +B(X))S(Y,U) +A(Y )S(X,U) +A(Z)S(X,Y ),

are Robertson-Walker spacetimes.
Motivated by the above works, in the present paper we study (WZS)4 space-

times. Study of such a spacetime partly deals with the physical structure of the
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universe at a large scale and describes physical processes occurring throughout its
evolution and having observable consequences in the present time.

The paper is organized as follows:
After introduction in Section 2, we prove that a (WZS)4 spacetime is a quasi
Einstein spacetime and hence (WZS)4 can be taken as the model of the perfect
fluid spacetimes. In this section we prove that under certain condition the Lie
derivative of the energy momentum tensor of such a spacetime is zero. Section 3 is
devoted to study conformally flat (WZS)4 spacetimes. Section 4 is concerned with
the study of (WZS)4 spacetimes satisfying the condition divC = 0, where “div”
denotes divergence. In this section we first show that such a spacetime satisfying
the condition divC = 0 under certain assumption, the integral curves of the vector
field ρ are geodesic and the vector field ρ is irrotational. Next we prove that such
a spacetime is locally a product space. Also, we show that a (WZS)4 spacetime
under certain condition is the generalized Robertson-Walker spacetime. Moreover,
in this section it is shown that such a spacetime has vanishing vorticity tensor and
shear tensor and local cosmological structure of the spacetimes are of Petrov type
I, D or O. Section 5 deals with the study of dust fluid and viscous fluid (WZS)4
spacetimes. Here we prove an interesting result which states that under certain
condition a dust fluid (WZS)4 spacetime satisfying Einstein’s field equation with
cosmological constant is devoid of matter. Finally, we construct an example of a
(WZS)4 spacetime.

2. Weakly Z Symmetric Spacetimes

In this Section we prove that a (WZS)4 spacetime is a quasi-Einstein spacetime.
Interchanging U and V in (1.4) we obtain

(∇XZ)(V,U) = A(X)Z(V,U) +B(V )Z(U,X) +D(U)Z(X,V ).(2.1)

Substracting (2.1) from (1.4) we get

[B(U)−D(U)]Z(V,X) + [D(V )−B(V )]Z(X,U) = 0,

which implies

(2.2) [B(U)−D(U)]Z(V,X) = [B(V )−D(V )]Z(X,U).

If possible, let E(X) = g(X, ρ) = B(X) − D(X), for all vector fields X, where ρ
is a unit timelike vector field associated with the 1-form E, that is, g(ρ, ρ) = −1.
Then from (2.2) we have

(2.3) E(U)Z(V,X) = E(V )Z(X,U).

Taking a frame field and contracting (2.3) over X and V, we obtain

E(U)[r + 4φ] = S(U, ρ) + φE(U),
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which implies

(2.4) S(U, ρ) = [r + 3φ]E(U).

Putting V = ρ in (2.3) yields

(2.5) E(U)Z(X, ρ) = −Z(X,U),

since E(ρ) = g(ρ, ρ) = −1. Using (1.2) in (2.5) we obtain

(2.6) E(U){S(X, ρ) + φg(X, ρ)} = −{S(X,U) + φg(X,U)}.

In virtue of (2.4) and (2.6) we have

E(U)[{r + 3φ}E(X) + φE(X)] = −[S(X,U) + φg(X,U)],

which implies
S(X,U) = −φg(X,U)− (r + 4φ)E(X)E(U),

that is,

(2.7) S(X,U) = ag(X,U) + bE(X)E(U),

where a = −φ and b = −(r + 4φ).
Thus we can state the following:

Theorem 2.1. A (WZS)4 spacetime is a quasi-Einstein spacetime and hence a
perfect fluid spacetime.

We now consider a (WZS)4 spacetime with constant scalar curvature and the
associated scalar φ of the Z tensor is constant. Then a and b are constant.
The Einstein’s field equation with cosmological constant can be written as

(2.8) S(X,Y )− 1

2
rg(X,Y ) + λg(X,Y ) = κT (X,Y ),

where λ is the cosmological constant, κ is the gravitational conatant and T is the
energy-momentum tensor of type (0,2).

Using the equations (2.7) and (2.8) we obtain that

(2.9) (λ− r

2
+ a)g(X,Y ) + bE(X)E(Y ) = κT (X,Y ).

Let us suppose that the generator ρ of the spacetime is a Killing vector field.
Then

(2.10) (£ρg)(X,Y ) = 0,

where £ denotes the Lie derivative.
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Now

(£ρE)X = £ρE(X)− E(£ρX)

= £ρg(X, ρ)− g(£ρX, ρ)

= (£ρg)(X, ρ),

since £ρρ = 0, by using (2.10).
Now from (2.9) we obtain that

(2.11) (λ− r

2
+ a)(£ρg)(X,Y ) = κ(£ρT )(X,Y ).

Since κ 6= 0, equations (2.10) and (2.11) yield

(2.12) (£ρT )(X,Y ) = 0.

Thus we can state the following:

Theorem 2.2. In (WZS)4 spacetime with constant scalar curvature and constant
scalar Z obeying Einstein’s field equation, the energy-momentum tensor is invariant
along the vector field ρ, provided the vector field ρ is a Killing vector field.

3. Conformally Flat (WZS)4 Spacetimes

This section is devoted to study conformally flat (WZS)4 spacetimes. In a
conformally flat 4-dimensional Lorentzian manifold the curvature tensor R is of the
form

R(X,Y )U =
1

2
[S(Y, U)X − S(X,U)Y + g(Y,U)QX − g(X,U)QY ]

−r
6

[g(Y,U)X − g(X,U)Y ],(3.1)

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ).
Using (2.7) in (3.1) yields

R(X,Y )U =
1

2
[ag(Y,U) + bE(Y )E(U)− ag(X,U)Y − bE(X)E(U)Y

+ag(Y,U)X + bg(Y,U)E(X)ρ− ag(X,U)Y − bg(X,U)E(Y )ρ]

−r
6

[g(Y, U)X − g(X,U)Y ].

Let ρ⊥ denote the 3-dimensional distribution in a conformally flat (WZS)4 space-
times orthogonal to ρ, then

(3.2) R(X,Y )U = (a− r

6
)[g(Y,U)X − g(X,U)Y ]

for all X,Y ∈ ρ⊥ and

(3.3) R(X, ρ)ρ = −(a− r

6
)X,
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for every X ∈ ρ⊥. According to Karchar [13] a Lorentzian manifold is called
infinitesimal spatially isotropic relative to timelike unit vector field ρ if its curvature
tensor R satisfies the relations

R(X,Y )U = l[g(Y, U)X − g(X,U)Y ]

for all X,Y, U ∈ ρ⊥ and
R(X, ρ)ρ = mX

for all X ∈ ρ⊥, where l, m are real valued functions on the manifold. So by virtue
of (3.2) and (3.3) we can state the following:

Theorem 3.1. A conformally flat (WZS)4 spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field ρ.

4. (WZS)4 Spacetime Satisfying the Condition divC = 0

Suppose (Mn, g) is a pseudo-Riemannian manifold of dimension n and X is any
vector field on M. Then the divergence of the vector field X, denoted by divX, is
defined as

divX =

n∑
i=1

εig(∇eiX, ei),

where {ei} is an orthonormal basis of the tangent space TpM at any point p ∈ M
and εi = ±1. Again, if K is a tensor field of type (1,3), then its divergence divK is
a tensor field of type (0,3) defined as

(divK)(X1, ..., X3) =

n∑
i=1

εig((∇eiK)(X1, ..., X3), ei).

In this section we assume that the (WZS)4 spacetimes satisfy the condition
divC = 0, where C denotes the Weyl conformal curvature tensor and “div” denotes
divergence. Hence we have [11]

(4.1) (∇XS)(Y,U)− (∇US)(Y,X) =
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].

Using (2.7) in (4.1) we obtain

da(X)g(Y,U) + db(X)E(Y )E(U) + b[(∇XE)(Y )E(U)

+(∇XE)(U)E(Y )]− da(U)g(Y,X)− db(U)E(Y )E(X)

−b[(∇UE)(Y )E(X) + (∇UE)(X)E(Y )]

=
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].(4.2)

Taking a frame field and contracting over X and Y we get

−3da(U) + db(ρ)E(U) + bE(U)(δE)

+b(∇ρE)(U) + db(U) = −1

2
dr(U),(4.3)
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where

δE =

n∑
i=1

εi(∇eiE)(ei).

Putting X = Y = ρ in (4.2) yields

b(∇ρE)(U) = da(ρ)E)(U)− db(ρ)E(U)

+da(U)− db(U)− 1

6
[dr(ρ)E(U) + dr(U)].(4.4)

Using (4.4) in (4.3) we obtain

−2da(U) + da(ρ)E(U) + bE(U)(δE)

−1

6
dr(ρ)E(U) = −1

3
dr(U).(4.5)

Putting U = ρ in (4.5) we obtain

(4.6) −3da(ρ)− b(δE) = −1

2
dr(ρ).

Using (4.6) in (4.5) we get

(4.7) −2da(U)− 2da(ρ)E(U) +
1

3
dr(ρ)E(U) = −1

3
dr(U).

If possible, let r = a, then

(4.8) dr(U) = da(U).

and

(4.9) db(U) = 3da(U).

Again using (4.8) in (4.7), yields

(4.10) da(U) = −da(ρ)E(U).

Using (4.8) in (4.10) we get

(4.11) dr(U) = −dr(ρ)E(U).

Putting Y = ρ in (4.2) and using (4.10) we have

(4.12) (∇UE)(X)− (∇XE)(U) = 0,

since b 6= 0. This means that the 1-form E is closed, that is,

dE(X,Y ) = 0.
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Hence it follows that

(4.13) g(∇Xρ, Y ) = g(∇Y ρ,X),

for all X, Y.
Now using Y = ρ in (4.13) we get

(4.14) g(∇Xρ, ρ) = g(∇ρρ,X).

Since ρ is a unit timelike vector field, therefore g(∇Xρ, ρ) = 0, from (4.14) it follows
that g(∇ρρ,X) = 0 for all X. Hence ∇ρρ = 0. This means that the integral curves
of the vector field ρ are geodesic and the vector field ρ is irrotational.

Therefore we can state the following:

Theorem 4.1. In a (WZS)4 spacetime with divergence free Weyl conformal cur-
vature tensor under the assumption r = a, the integral curves of the vector field ρ
are geodesic and the vector field ρ is irrotational.

Using (4.10) and (4.11) in (4.4) we obtain

(4.15) (∇ρE)(U) = 0,

since b 6= 0. Now we consider the scalar function

(4.16) f =
1

6

dr(ρ)

b
.

Then using (4.9) we get

(4.17) ∇Xf =
1

2

dr(ρ)

b2
dr(X) +

1

6b
d2r(ρ,X).

On the other hand, (4.11) implies that

d2r(Y,X) = −d2r(ρ, Y )E(X)− dr(ρ)(∇Y E)(X),

from which we get

(4.18) d2r(ρ, Y )E(X) = d2r(ρ,X)E(Y ),

since (∇XE)(Y ) = (∇Y E)(X) and d2r(Y,X) = d2r(X,Y ).
Putting X = ρ in (4.18), it follows that

(4.19) d2r(Y, ρ) = −d2r(ρ, ρ)E(Y ).

Then using (4.19) in (4.17) we obtain

∇Xf = −dr(ρ)

2b2
dr(ρ)E(X)− 1

6b
d2r(ρ, ρ)E(X),



770 Uday Chand De

which implies that

(4.20) ∇Xf = µE(X),

where µ = 1
6b [−d

2r(ρ, ρ)− 3dr(ρ)dr(ρ)].
Using (4.20), it is easy to show that

ω(X) =
1

6

dr(ρ)

b
E(X) = fE(X)

is closed. In fact, dω(X,Y ) = 0.
Using (4.10), (4.11),(4.12) in (4.2) we obtain that

−dr(ρ)E(X)g(Y, U) + b[(∇XE)(Y )E(U) + (∇XE)(U)E(Y )]

+dr(ρ)E(U)g(Y,X)− b[(∇UE)(Y )E(X) + (∇UE)(X)E(Y )]

=
1

6
[−g(Y,U)dr(ρ)E(X) + g(X,Y )dr(ρ)E(U)].(4.21)

Putting U = ρ in (4.21) and using (4.15) we get

(4.22) (∇XE)(Y ) = (f − dr(ρ)

b
)g(X,Y ) + (ω(X)− dr(ρ)

b
E(X))E(Y ).

From (4.22) it follows that

(4.23) ∇Xρ = (f − dr(ρ)

b
)X + (ω(X)− dr(ρ)

b
E(X))ρ.

Let ρ⊥ denote the 3-dimensional distribution in a (WZS)4 spacetime orthogonal to
ρ. If X and Y belong to ρ⊥, then

(4.24) g(X, ρ) = 0.

and

(4.25) g(Y, ρ) = 0.

Since (∇Xg)(Y, ρ) = 0, it follows from (4.23) and (4.25) that

g(∇XY, ρ) = g(∇Xρ, Y ) = (f − dr(ρ)

b
)g(X,Y ).

Similarly, we get

g(∇YX, ρ) = g(∇Y ρ,X) = (f − dr(ρ)

b
)g(X,Y ).

Hence

(4.26) g(∇XY, ρ) = g(∇YX, ρ).
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Now [X,Y ] = ∇XY −∇YX and therefore by (4.26) we have

g([X,Y ], ρ) = g(∇XY −∇YX, ρ) = 0.

Hence [X,Y ] is orthogonal to ρ. That is, [X,Y ] belongs to ρ⊥. Thus the distribu-
tion ρ⊥ is involutive [4]. Hence from Frobenius’ theorem [4] it follows that ρ⊥ is
integrable. This implies that if a (WZS)4 spacetime satisfies divC = 0, then it is
locally a product space. Hence we have the following:

Theorem 4.2. If a (WZS)4 spacetime satisfies divC = 0 and fulfilling the condi-
tion r = a, then it is locally a product space.

From (4.22) we can write

(4.27) (∇XE)(Y ) = βg(X,Y ) + F (X)E(Y ),

where β = (f − dr(ρ)
b ) and F (X) = (ω(X) − dr(ρ)

b E(X)). Obviously the 1-form F
is closed. In local components this reads as ∇kEj = FkEj + βgkj .

Therefore the vector field ρ corresponding to the 1-form E defined by g(X, ρ) =
E(X) is a concircular vector field [26, 32]. Since ρ is a unit timelike vector field,
that is, g(ρ, ρ) = −1, (4.27) can be written as

(4.28) (∇XE)(Y ) = β{g(X,Y ) + E(X)E(Y )}.

Thus we obtain the following:

Theorem 4.3. If a (WZS)4 spacetime satisfies divC = 0 and fulfilling the condi-
tion r = a , then ρ is a concircular vector field.

Remark 4.4. In Theorem 3.2 of [16] the authors prove the above Theorem under
a restriction on φ.

Since Fj is closed it is locally a gradient of a suitable scalar function, that is,
Fj = ∇jσ (see [12] page 242-243); setting Xj = Eje

−σ we have (see [18])

∇kXj = e−σ(∇kEj − Ej∇kσ) = e−σ{FkEj − EjFk + βgkj} = (e−σβ)gkj

and consequently
∇kXj = θgkj ,

being θ = e−σβ a scalar function and XjX
j = −e−2σ < 0 is a time-like vector.

The previous equation can be written in the form ∇kXj +∇jXk = 2θgkj , that is,
Xj is a conformal Killing vector [30]. We recall now the definition of a generalized
Robertson-Walker spacetime [1, 24, 25]

Definition 4.5. An n(n ≥ 3)-dimensional Lorentzian manifold is named generalized
Robertson-Walker spacetime if the metric takes the local shape:

(4.29) ds2 = −(dt)2 + q(t)2g∗αβdx
αdxβ ,
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where g∗αβ = g∗αβ(xγ) are functions of xγ only (α, β, γ = 2, 3, ..., n) and q is a function
of t only.

The generalized Robertson Walker spacetime is thus the warped product −1×
q2M∗ [1, 24, 25] where M∗ is a n− 1 dimensional Riemannian manifold. If M∗ is a
3-dimensional Riemannian manifold of constant curvature, the spacetime is called
Robertson-Walker spacetime. The following deep result was recently proved in the
paper [9].

Theorem 4.6.([9]) Let M be an n (n ≥ 3) dimensional Lorentzian manifold. Then
the spacetime is a generalized Robertson-Walker spacetime if and only if it admits
a time-like vector of the form ∇kXj = θgkj .

In view of these results if a (WZS)4 spacetime satisfies divC = 0 and fulfills
the condition r = a, then it admits a concircular vector field rescalable to a timelike
vector of the form ∇kXj = θgkj and so becomes a generalized Robertson-Walker
spacetime. Hence we conclude the following:

Theorem 4.7. If a (WZS)4 spacetime satisfies divC = 0 and fulfills the condition
r = a, then the spacetime is the generalized Robertson-Walker spacetime.

Finally, we consider (WZS)4 spacetime with divC = 0. From Theorem 2.1
it follows that (WZS)4 is a perfect fluid spacetime. Then the energymomentum
tensor T is of the form [20, 21]

T (X,Y ) = (p+ σ)E(X)E(Y ) + pg(X,Y ),

where σ is the energy density and p is the isotropic pressure of the fluid. The velocity
vector field ρ of the fluid corresponding to the 1-form E is a timelike vector field.
We assume that the velocity vector field of the fluid is hypersurface orthogonal and
the energy density is constant over a hypersurface orthogonal to ρ. From Theorem
we obtain the integral curves of the vector field ρ in a spacetime with divC = 0 are
geodesics, the Roy Choudhury equation [23] for the fluid can be written as

(4.30) (∇XE)(Y ) = ω̃(X,Y ) + τ(X,Y ) + β{g(X,Y ) + E(X)E(Y )},

where ω̃ is the vorticity tensor and τ is the shear tensor.
Comparing (4.28) and (4.30) we get

(4.31) ω̃(X,Y ) + τ(X,Y ) = 0.

Again from Theorem it follows that ρ is irrotational. Thus the spacetime under
consideration is vorticity-free. Therefore ω̃(X,Y ) = 0 and consequently (4.31)
implies that τ(X,Y ) = 0. Thus we can state the following:

Theorem 4.8. If a (WZS)4 spacetime satisfies divC = 0 and fulfilling the condi-
tion r = a, then the fluid has vanishing vorticity and vanishing shear.

According to Petrov classification a spacetime can be devided into six types
denoted by I, II, III, D, N and O [22]. Again Barnes [2] has proved that if a
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perfect fluid spacetime is shear free, vorticity free and the velocity vector field
is hypersurface orthogonal and the energy density is constant over a hypersurface
orthogonal to the velocity vector field, then the possible local cosmological structure
of the spacetime are of Petrov type I, D or O. Thus from Theorem we can state
the following:

Theorem 4.9. If in a (WZS)4 spacetime satisfying divC = 0 and fulfilling the
condition r = a, the velocity vector field is always hypersurface orthogonal, then the
possible local cosmological structure of the spacetime are of Petrov type I, D or O.

5. Dust Fluid and Viscous Fluid (WZS)4 Spacetimes

In a dust or pressureless fluid spacetime, the energy momentum tensor T is of
the form [29]

(5.1) T (X,Y ) = σE(X)E(Y ),

where σ is the energy density of the dust-like matter and E is a non-zero 1-form
such that g(X, ρ) = E(X), for all X, ρ being the velocity vector field of the flow,
that is, g(ρ, ρ) = −1. In Theorem 2.1, it is proved that a (WZS)4 spacetime is a
quasi Einstein spacetime, that is,

(5.2) S(X,Y ) = ag(X,Y ) + bE(X)E(Y ),

where a = −φ, b = −(r + 4φ). Einstein’s field equation with cosmological constant
is

(5.3) S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = κT (X,Y ),

where λ is the cosmological constant and κ is the gravitational constant.
Using (5.1) and (5.2) in (5.3), we obtain

(5.4) (a− r

2
+ λ)g(X,Y ) + bE(X)E(Y ) = κσE(X)E(Y ).

Taking a frame field after contraction over X and Y we have

4(a− r

2
+ λ)− b = −κσ,

which implies

(5.5) λ =
1

4
(2r − 4a+ b− κσ).

Again, if we put X = Y = ρ in (5.4), we get

−(a− r

2
+ λ) + b = κσ,
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which implies that

(5.6) λ =
r

2
− a+ b− κσ.

Combining equation (5.5) and (5.6), we obtain that

σ = − (r + 4φ)

κ
.

Therefore

σ = −Z
κ
,

using (1.3). Thus we can state the following:

Theorem 5.1. A dust fluid (WZS)4 spacetime satisfying Einstein’s field equation
with cosmological constant is vacuum, provided the scalar Z vanishes.

Let us consider the energy momentum tensor T of a viscous fluid spacetime in
the following form [20, 21]:

(5.7) T (X,Y ) = pg(X,Y ) + (σ + p)E(X)E(Y ) + P (X,Y ),

where σ, p are the energy density and isotropic pressure respectively and P denotes
the anisotropic pressure tensor of the fluid.

Using (5.2) and (5.3) in (5.7), we get

(5.8) (a− r
2

+λ)g(X,Y )+bE(X)E(Y ) = κ[pg(X,Y )+(σ+p)E(X)E(Y )+P (X,Y )].

Putting X = Y = ρ in (5.8), yields

−(a− r

2
+ λ) + b = κ[−p+ (σ + p) + I],

where I = P (ρ, ρ), which implies

(5.9) σ = − 1

κ
[
r

2
+ λ+ 3φ+ Iκ].

Again contracting (5.8) over X and Y, we get

4(a− r

2
+ λ)− b = κ[4p− (σ + p) + J ],

where J =Trace of P , which implies

(5.10) p =
1

κ
[λ− r

2
− φ− κ(I + J)

3
]

Hence we can state the following:
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Theorem 5.2. In a viscous fluid (WZS)4 spacetime obeying Einstein’s equation
with cosmological constant, the energy density and isotropic pressure are given by
the relations (5.9) and (5.10).

We now discuss whether a viscous fluid (WZS)4 spacetime can admit heat flux
or not. If possible, let the energy momentum tensor T be of the following form
[20, 21]:

(5.11) T (X,Y ) = pg(X,Y ) + (σ + p)E(X)E(Y ) + E(X)F (Y ) + E(Y )F (X),

where F (X) = g(X, ξ) for all vector fields X; ξ being the heat flux vector field.
Thus we have g(ρ, ξ) = 0, that is, F (ρ) = 0.

Using (5.2) and (5.3) in (5.11) we obtain that

(a− r

2
+ λ)g(X,Y ) + bE(X)E(Y ) = κ[pg(X,Y ) + (σ + p)E(X)E(Y )

+E(X)F (Y ) + E(Y )F (X)].(5.12)

Putting Y = ρ in (5.12), yields

(a− r

2
+ λ− b+ σκ)E(X) + κF (X) = 0,

which implies

(5.13) F (X) = − 1

κ
(3φ+

r

2
+ λ+ κσ)E(X),

where a = −φ, and b = −(r + 4φ).
Thus we are in a position to state the following:

Theorem 5.3. A viscous fluid (WZS)4 spacetime obeying Einstein’s field equation
with cosmological constant admits heat flux, provided 3φ+ r

2 + λ+ κσ 6= 0.

6. Example of a (WZS)4 Spacetime

In this section we prove the existence of a (WZS)4 spacetime by constructing
a non-trivial concrete example.

We consider a Lorentzian manifold (M4, g) endowed with the Lorentzian metric
g given by

(6.1) ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 − (dx4)2,

where i, j = 1, 2, 3, 4.
The only non-vanishing components of the Christoffel symbols, the curvature tensor,
the Ricci tensor, the Z tensor and the derivatives of the components of Z tensors
are

Γ1
22 = −x1, Γ2

33 = − x2

(x1)2
, Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
,
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S12 = − 1

x1x2
, Z12 = − 1

x1x2
, Z12,1 =

2

(x1)2x2
, Z12,2 =

1

(x2)2x1
.

We shall now show that this M4 is a (WZS)4 spacetime i.e., it satisfies the defining
relation (1.4).

We choose the associated 1-form as follows:

Ai(x) =

{
− 3
x1 , for i=1

0, otherwise

Bi(x) =

{
1
x1 , for i=1
0, otherwise

and

Di(x) =

{
− 1
x2 , for i=2

0, otherwise

at any point x ∈ R4.
Now equation (1.4) reduces to

(6.2) Z12,1 = A1Z12 +B1Z12 +D2Z11,

(6.3) Z12,2 = A2Z12 +B1Z22 +D2Z12.

Clearly, equations (6.2) and (6.3) satisfy the defining condition of (WZS)4. So the
manifold under consideration is a (WZS)4 spacetime.

7. Conclusion

In general relativity the matter content of the spacetime is described by the
energy momentum tensor T which is to be determined from physical considerations
dealing with the distribution of matter and energy. Since the matter content of
the universe is assumed to behave like a perfect fluid in the standard cosmological
models, the physical motivation for studying Lorentzian manifolds is the assump-
tion that a gravitational field may be effectively modeled by some Lorentzian metric
defined on a suitable four dimensional manifold M . The Einstein’s equations are
fundamental in the construction of cosmological models which imply that the mat-
ter determines the geometry of the spacetime and conversely the motion of matter
is determined by the metric tensor of the space which is non-flat. Relativistic fluid
models are of considerable interest in several areas of astrophysics, plasma physics
and nuclear physics. Theories of relativistic stars (which would be models for super-
massive stars) are also based on relativistic fluid models. The problem of accretion
onto a neutron stars or a black hole is usually set in the framework of relativistic
fluid models.

The physical motivation for studying various types of spacetime models in cos-
mology is to obtain the information of different phases in the evolution of the uni-
verse, which may be classified into three phases, namely, the initial phase, the
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intermediate phase and the final phase. The initial phase is just after the Big Bang
when the effects of both viscosity and heat flux were quite pronounced. The inter-
mediate phase is that when the effect of viscosity was no longer significant but the
heat flux was till not negligible. The final phase, which extends to the present state
of the universe when both the effects of viscosity and heat flux have become negligi-
ble and the matter content of the universe may be assumed to be perfect fluid. The
study of (WZS)4 spacetimes is important because such a spacetime represents the
third phase in the evaluation of the universe. Consequently, the investigations of
(WZS)4 spacetime helps us to have a deeper understanding of the global character
of the universe including the topology, because the nature of the singularities can
be defined from a differential geometric stand point.

Quasi Einstein manifolds arose during the study of exact solutions of the Ein-
stein field equations. It is proved that a (WZS)4 spacetime is a quasi-Einstein
spactime. So a (WZS)4 spacetime can be taken as a model of the perfect fluid
spacetime in general relativity. Also it is shown that a (WZS)4 spacetime satisfying
divergence free conformal curvature tensor under certain condition is a generalized
Robertson-Walker spacetime and the nature of the spacetime is of vanishing vortic-
ity and vanishing shear. Moreover a (WZS)4 spacetime satisfying divergence free
conformal curvature tensor under certain condition, if the velocity vector field is
always hypersurface orthogonal, then the possible local cosmological structure of
the spacetime are of Petrov type I, D or O.
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[31] L. Tamássy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds,
Tensor (N.S.), 53(1993), 140–148.

[32] K. Yano, Concircular geometry I, Concircular transformations, Proc. Imp. Acad.
Tokyo, 16(1940), 195–200.

[33] K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad.
Tokyo, 20(1944), 340–345.

[34] F. O. Zengin, M-Projectively flat spacetimes, Math. Rep., 14(64)/4(2012), 363–370.


