Browse > Article
http://dx.doi.org/10.4134/CKMS.c190275

ON SOME CLASSES OF WEAKLY Z-SYMMETRIC MANIFOLDS  

Lalnunsiami, Kingbawl (Department of Mathematics and Computer Science Mizoram University)
Singh, Jay Prakash (Department of Mathematics and Computer Science Mizoram University)
Publication Information
Communications of the Korean Mathematical Society / v.35, no.3, 2020 , pp. 935-951 More about this Journal
Abstract
The aim of the paper is to study some geometric properties of weakly Z-symmetric manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor are studied. We consider Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds. Next, it is shown that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifolds is of quasi constant curvature. Also, decomposable weakly Z-symmetric manifolds are studied and some examples are constructed to support the existence of such manifolds.
Keywords
Weakly Z-symmetric manifolds; Einstein weakly Z-symmetric manifolds; conformally flat weakly Z-symmetric manifolds; decomposable weakly Z-symmetric manifolds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3, World Scientific Publishing Co., Singapore, 1984.
2 A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
3 T. Q. Binh, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1993), no. 1-2, 103-107.
4 E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.   DOI
5 M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58.
6 M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen 58 (2001), no. 4, 683-691.
7 M. C. Chaki and B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122.
8 B. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26 (1972), 318-322.
9 S. Chern, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. https://doi.org/10.1007/BF02960745   DOI
10 U. C. De, On weakly symmetric structures on a Riemannian manifold, Facta Univ. Ser. Mech. Automat. Control Robot. 3 (2003), no. 14, 805-819.
11 U. C. De and S. Bandyopadhyay, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 54 (1999), no. 3-4, 377-381.
12 U. C. De, C. A. Mantica, and Y. J. Suh, On weakly cyclic Z symmetric manifolds, Acta Math. Hungar. 146 (2015), no. 1, 153-167. https://doi.org/10.1007/s10474-014-0462-9   DOI
13 U. C. De and P. Pal, On almost pseudo-Z-symmetric manifolds, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 53 (2014), no. 1, 25-43.
14 U. C. De and J. Sengupta, On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection, Novi Sad J. Math. 29 (1999), no. 3, 89-95.
15 F. Ozen and S. Altay, On weakly and pseudo-symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33 (2002), no. 10, 1477-1488.
16 U. C. De and A. A. Shaikh, Differential geometry of manifolds, Alpha Science International Ltd. Oxford, U.K., 263-272, 2007.
17 A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280. https://doi.org/10.1007/BF00151525   DOI
18 S. K. Hui, On weakly $W_3$-symmetric manifolds, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 50 (2011), no. 1, 53-71.
19 C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96. https://doi.org/10.1007/s10474-011-0166-3   DOI
20 C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp. https://doi.org/10.1142/S0219887812500041
21 M. Prvanovic, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 46 (1995), no. 1-2, 19-25.
22 J. A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtigung der Anwendungsgebiete, Bd X, Springer-Verlag, Berlin, 1954.
23 L. Tamassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, in Differential geometry and its applications (Eger, 1989), 663- 670, Colloq. Math. Soc. Janos Bolyai, 56, North-Holland, Amsterdam,1992.
24 L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.) 53 (1993), Commemoration Volume I, 140-148.
25 A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64. https://doi.org/10.1112/plms/s2-52.1.36   DOI