ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

Xiaomin Chen

Abstract

In this article we study almost contact manifolds admitting weakly Einstein metrics. We first prove that if a $(2 n+1)$-dimensional Sasakian manifold admits a weakly Einstein metric, then its scalar curvature s satisfies $-6 \leqslant s \leqslant 6$ for $n=1$ and $-2 n(2 n+1) \frac{4 n^{2}-4 n+3}{4 n^{2}-4 n-1} \leqslant$ $s \leqslant 2 n(2 n+1)$ for $n \geqslant 2$. Secondly, for a $(2 n+1)$-dimensional weakly Einstein contact metric (κ, μ)-manifold with $\kappa<1$, we prove that it is flat or is locally isomorphic to the Lie group $S U(2), S L(2)$, or $E(1,1)$ for $n=1$ and that for $n \geqslant 2$ there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with $0<\kappa<1$. For $\kappa<0$, we get a classification of weakly Einstein contact metric (κ, μ)-manifolds. Finally, it is proved that a weakly Einstein almost cosymplectic (κ, μ)-manifold with $\kappa<0$ is locally isomorphic to a solvable non-nilpotent Lie group.

1. Introduction

An n-dimensional Riemannian manifold (M, g) is said to be weakly Einstein if its Riemannian tensor R satisfies

$$
\begin{equation*}
\breve{R}=\frac{|R|^{2}}{n} g \tag{1}
\end{equation*}
$$

Here \breve{R} is a (0,2)-type tensor defined as

$$
\breve{R}(X, Y)=\sum_{i, j, k=1}^{n} R\left(X, e_{i}, e_{j}, e_{k}\right) R\left(Y, e_{i}, e_{j}, e_{k}\right)
$$

for an orthonormal frame $\left\{e_{i}\right\}, i=1,2, \ldots, n$. The concept was introduced by Euh, Park and Sekigawa in [11]. We also notice that if a weakly Einstein metric is critical to the functional

$$
g \mapsto \int_{M}\left|s_{g}\right|^{2} d v_{g}
$$

Received May 10, 2019; Revised July 20, 2019; Accepted September 2, 2019.
2010 Mathematics Subject Classification. Primary 53C25, 53D10.
Key words and phrases. Weakly Einstein metric, Sasakian manifold, (κ, μ)-manifold, almost cosymplectic manifold, Einstein manifold.

The author is supported by Natural Science Foundation of Beijing, China (Grant No. 1194025).
where s_{g} is the scalar curvature of M (see [2]), then it becomes an Einstein metric. Moreover, it is easy to verify that for a 4-dimensional manifold, Einstein metrics are in fact weakly Einstein metrics. However, when $\operatorname{dim} M>4$ a generic Einstein metric is not necessary a weakly Einstein metric. Based on the fact, Hwang-Yun considered whether an n-dimensional weakly Einstein metric that is a nontrivial solution to the critical point equation is Einstein (cf. [12]). More recently, Baltazar-Silva-Oliveira [1] classified a four dimensional weakly Einstein manifold with Miao-Tam critical metric under some assumptions on scalar curvature.

In the present paper, we study odd-dimensional manifolds with weakly Einstein metrics. First we consider a Sasakian manifold admitting a weakly Einstein metric and obtain the following result.

Theorem 1.1. Let $M^{2 n+1}$ be a weakly Einstein Sasakian manifold. Then the scalar curvature s satisfies

$$
\begin{cases}-6 \leqslant s \leqslant 6, & \text { for } n=1 \\ -2 n(2 n+1) \frac{4 n^{2}-4 n+3}{4 n^{2}-4 n-1} \leqslant s \leqslant 2 n(2 n+1), & \text { for } n \geqslant 2\end{cases}
$$

and the right equality holds if and only if M is a conformal flat Einstein manifold.

On the other hand, we observe that a remarkable class of contact metric manifolds is a (κ, μ)-space, originally introduced by D. E. Blair, T. Koufogiorgos and V. J. Papantoniou in [4], whose curvature tensor satisfies

$$
\begin{equation*}
R(X, Y) \xi=\kappa(\eta(Y) X-\eta(X) Y)+\mu(\eta(Y) h X-\eta(X) h Y) \tag{2}
\end{equation*}
$$

for any vector fields X, Y, where κ and μ are constants and $h:=\frac{1}{2} \mathcal{L}_{\xi} \phi$ is a self-dual operator. Moreover, Blair et al. proved the following classification theorem.

Theorem 1.2 ([4, Theorem 3]). Let M be a 3-dimensional (κ, μ)-manifold. Then $\kappa \leqslant 1$. If $\kappa=1$, then $h=0$ and M is a Sasakian manifold. If $\kappa<$ 1 , then M is locally isometric to one of the unimodular Lie groups $S U(2)$, $S L(2, \mathbb{R}), E(2), E(1,1)$ with a left-invariant metric.

Moreover, this structure can occur on $S U(2)$ or $S O(3)$ when $1-\lambda-\mu / 2>0$ and $1+\lambda-\mu / 2>0$, on $S L(2, \mathbb{R})$ or $O(1,2)$ when $1-\lambda-\mu / 2<0$ and $1+\lambda-\mu / 2>0$ or $1-\lambda-\mu / 2<0$ and $1+\lambda-\mu / 2<0$, on $E(2)$ when $1-\lambda-\mu / 2=0$ and $\mu<2$, including a flat structure when $\mu=0$, and on $E(1,1)$ when $1+\lambda-\mu / 2=0$ and $\mu>2$.

For a non-Sasakian (κ, μ)-manifold M, Boeckx [5] introduced an invariant

$$
I_{M}=\frac{1-\frac{\mu}{2}}{\sqrt{1-\kappa}}
$$

and proved the following conclusion:

Theorem 1.3 ([5, Corollary 5]). Let M be a non-Sasakian ($\kappa, \mu)$-space. Then it is locally isometric, up to a D-homothetic transformation, to the unit tangent sphere bundle of some space of constant curvature (different from 1) if and only if $I_{M}>-1$.

In view of Theorem 1.2 and Theorem 1.3, we obtain:
Theorem 1.4. A 3-dimensional weakly Einstein contact metric (κ, μ)-manifold for $\kappa<1$ is flat, or is locally isomorphic to the Lie group $S U(2), S L(2, \mathbb{R})$, $E(1,1)$ endowed with a left-invariant metric.

For the dimensions $\geqslant 5$ there are no weakly Einstein metrics on contact metric (κ, μ)-manifolds with $0<\kappa<1$. If $M^{2 n+1}(n>1)$ is a weakly Einstein contact metric (κ, μ)-manifold with $\kappa<0$, then $\mu>\frac{n-2+\sqrt{9 n^{2}-16 n+8}}{2 n-1}$ or $\mu<\frac{n-2-\sqrt{9 n^{2}-16 n+8}}{2 n-1}$. In particular, when $\mu<\frac{n-2-\sqrt{9 n^{2}-16 n+8}}{2 n-1}$, M is locally isometric, up to a D-homothetic transformation, to the unit tangent sphere bundle of some space of constant curvature.

Finally, we notice that Endo considered another class of odd-dimensional manifolds, which are said to be almost cosymplectic (κ, μ)-manifolds, and it is proved that $\kappa \leqslant 0$ and the equality holds if and only if the almost cosymplectic (κ, μ)-manifolds are cosymplectic (cf. [10]). Since Blair [5] proved that a cosymplectic manifold is locally the product of a Kähler manifold and an interval or unit circle S^{1}, we are only require to consider the case where $\kappa<0$. For an almost cosymplectic (κ, μ)-manifold with $\kappa<0$, if it is equipped with a weakly Einstein metric, we obtain the following conclusion.
Theorem 1.5. A weakly Einstein almost cosymplectic (κ, μ)-manifold for $\kappa<$ 0 is locally isomorphic to a solvable non-nilpotent Lie group G_{λ} endowed with an almost cosymplectic structure, where $\lambda=\sqrt{-\kappa}$.

In order to prove these conclusions, in Section 2 we recall some basic concepts and formulas. The proofs of theorems will be given in Section 3, Section 4 and Section 5, respectively.

2. Preliminaries

2.1. Weakly Einstein metrics

In a local coordinate system the components of the (0,4)-Riemannian curvature tensor are given by $R_{i j k l}=g\left(R\left(e_{i}, e_{j}\right) e_{k}, e_{l}\right)$. Throughout the paper the Einstein convention of summing over the repeated indices will be adopted. The Ricci tensor Ric is obtained by the contraction $(R i c)_{j k}=R_{j k}=g^{i l} R_{i j k l}$. $s=g^{i k} R_{i k}$ will denote the scalar curvature and $(\text { Ric })_{i k}=R_{i k}-\frac{s}{n} g_{i k}$ the traceless Ricci tensor.

We say that a Riemannian manifold $\left(M^{n}, g\right)$ is weakly Einstein if the Riemannian tensor R satisfies (1), i.e.,

$$
\breve{R}_{i j}=\frac{|R|^{2}}{n} g_{i j}
$$

for an orthonormal frame $\left\{e_{i}\right\}, i=1,2, \ldots, n$, where the 2-tensor $\breve{R}_{i j}$ is defined as $\breve{R}_{i j}=R_{i p q r} R_{j p q r}$ and $|R|^{2}=R_{i j k l} R_{i j k l}$.

On an n-dimensional Riemannian manifold (M^{n}, g) for $n \geqslant 3$, the Weyl tensor is defined by

$$
\begin{align*}
W_{i j k l}= & R_{i j k l}+\frac{1}{n-2}\left(g_{i k} R_{j l}-g_{i l} R_{j k}-g_{j k} R_{i l}+g_{j l} R_{i k}\right) \\
& -\frac{s}{(n-1)(n-2)}\left(g_{j l} g_{i k}-g_{i l} g_{j k}\right) \tag{3}
\end{align*}
$$

Here, we remark that the curvature tensor of Blair [3] is different from ours by a sign. It is well-known that the Weyl tensor W identically vanishes for $n=3$. From (3), we conclude (see [12, Eq. (6)])

$$
\begin{equation*}
\left.|R|^{2}=\frac{2 s^{2}}{n(n-1)}+\frac{4}{n-2} \right\rvert\, \text { Ric }\left.\right|^{2}+|W|^{2} \tag{4}
\end{equation*}
$$

where s denotes the scalar curvature of M and Ric $=$ Ric $-\frac{s}{n} g$ is the traceless Ricci tensor.

2.2. Almost contact manifolds

In the following we suppose that M is a $(2 n+1)$-dimensional smooth manifold. An almost contact structure on M is a triple (ϕ, ξ, η), where ϕ is a $(1,1)$-tensor field, ξ a unit vector field, called Reeb vector field, η a one-form dual to ξ satisfying $\phi^{2}=-I+\eta \otimes \xi, \eta \circ \phi=0, \phi \circ \xi=0$. A smooth manifold with such a structure is called an almost contact manifold.

A Riemannian metric g on M is called compatible with the almost contact structure if

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad g(X, \xi)=\eta(X)
$$

for any $X, Y \in \mathfrak{X}(M)$. An almost contact structure together with a compatible metric is called an almost contact metric structure and (M, ϕ, ξ, η, g) is called an almost contact metric manifold. Such an almost contact metric manifold is called a contact metric manifold if $d \eta=\omega$, where ω denotes the fundamental 2-form on M defined by $\omega(X, Y):=g(\phi X, Y)$ for all $X, Y \in \mathfrak{X}(M)$. An almost contact structure (ϕ, ξ, η) is said to be normal if the corresponding complex structure J on $M \times \mathbb{R}$ is integrable. If a contact metric manifold M is normal, it is said be a Sasakian manifold. For a Sasakian manifold, the following equations hold ([3]):

$$
\begin{align*}
R(X, Y) \xi & =\eta(Y) X-\eta(X) Y \tag{5}\\
Q \xi & =2 n \xi \tag{6}
\end{align*}
$$

Here Q is the Ricci operator defined by $\operatorname{Ric}(X, Y)=g(Q X, Y)$ for any vectors X, Y.

Now we recall that there is an operator $h=\frac{1}{2} \mathcal{L}_{\xi} \phi$ which is a self-dual operator. For a contact metric manifold, it is proved the following relations [4]:

$$
\operatorname{trace}(h)=0, \quad h \xi=0, \quad \phi h=-h \phi, \quad g(h X, Y)=g(X, h Y), \quad \forall X, Y \in \mathfrak{X}(M)
$$

We notice that the above formulas also hold in almost cosymplectic manifolds (see [9]).

As the generalization of the condition $R(X, Y) \xi=0$, Blair et al. defined a so-called (κ, μ)-nullity distribution on a contact metric manifold:

$$
\begin{aligned}
N_{x}(\kappa, \mu):=\left\{Z \in T_{x} M \mid R(X, Y) Z=\right. & \kappa(g(Y, Z) X-g(X, Z) Y) \\
& +\mu(g(Y, Z) h X-g(X, Z) h Y)\}
\end{aligned}
$$

for two real numbers $\kappa, \mu \in \mathbb{R}$ (see [4]). A contact metric manifold is called a contact metric (κ, μ)-manifold if the Reeb vector field ξ belongs to the (κ, μ) nullity distribution, namely the condition (2) is satisfied.

Let (M, ϕ, ξ, η) be an almost contact metric manifold. If the fundamental 2-form ω and 1-form η are closed, then M is called an almost cosymplectic manifold. Moreover, if M is normal, it is said to be cosymplectic. An almost cosymplectic (κ, μ)-manifold is an almost cosymplectic manifold satisfying (2). This class of almost contact manifold was firstly considered in [10]. In particular, any cosymplectic manifold is an almost cosymplectic (κ, μ)-manifold with $\kappa=0$ and any μ. Endo proved that if $\kappa \neq 0$ any almost cosymplectic (κ, μ) manifolds are not cosymplectic ([10]). When $\kappa<0$ and $\mu=0$, Dacko in [8] proved that M is necessarily an almost cosymplectic manifold with Kählerian leaves, moreover gave a full description of the local structure of this class.

We briefly recall the structure, referring to [8] for more details. Let λ be a real positive number and \mathfrak{g}_{λ} be the solvable non-nilpotent Lie algebra with basis $\left\{\xi, X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$ and non-zero Lie brackets

$$
\left[\xi, X_{i}\right]=-\lambda X_{i}, \quad\left[\xi, Y_{i}\right]=\lambda Y_{i}
$$

for each $i \in\{1, \ldots, n\}$. Let G_{λ} be a Lie group whose Lie algebra is \mathfrak{g}_{λ} and let (ϕ, ξ, η, g) be the left-invariant almost cosymplectic structure defined by

$$
\begin{gathered}
g\left(X_{i}, X_{j}\right)=g\left(Y_{i}, Y_{j}\right)=\delta_{i j}, \quad g\left(X_{i}, Y_{j}\right)=0, \quad g\left(\xi, X_{i}\right)=g\left(\xi, Y_{i}\right)=0, \\
\phi \xi=0, \quad \phi X_{i}=Y_{i}, \quad \phi Y_{i}=-X_{i}, \quad \eta=g(\cdot, \xi) .
\end{gathered}
$$

Theorem 2.1 ([8, Theorem 4]). An almost cosymplectic ($\kappa, 0$)-manifold for some $\kappa<0$ is locally isomorphic to the above Lie group G_{λ} endowed with the above almost cosymplectic structure, where $\lambda=\sqrt{-\kappa}$.

Throughout this paper we write the indices $i, j, k, l \in\{0,1,2, \ldots, 2 n\}, a, b, c, d$ $\in\{1,2, \ldots, 2 n\}, \alpha, \beta, \gamma, \delta \in\{1,2, \ldots, n\}$ and $A, B, C, D \in\{n+1, n+2, \ldots, 2 n\}$. Write

$$
h_{i j}=g\left(h e_{i}, e_{j}\right), \quad R_{i j 0 k}=g\left(R\left(e_{i}, e_{j}\right) \xi, e_{k}\right), \quad \operatorname{Ric}(\xi, \xi)=R_{00}=R_{i 00 i}
$$

3. Proof of Theorem 1.1

In this section we assume that M is a $2 n+1$-dimensional Sasakian manifold and $\left\{e_{i}\right\}_{i=0}^{2 n}$ is a local orthonormal frame of M such that $e_{0}=\xi, e_{n+i}=\phi e_{i}$ for $i=1,2, \ldots, n$.

Using (5) and (6), it follows from (3) that

$$
\begin{align*}
W_{i j 0 l}= & R_{i j 0 l}+\frac{1}{2 n-1}\left(g_{i 0} R_{j l}-g_{i l} R_{j 0}-g_{j 0} R_{i l}+g_{j l} R_{i 0}\right) \\
& -\frac{s}{2 n(2 n-1)}\left(g_{j l} g_{i 0}-g_{i l} g_{j 0}\right) \\
= & {\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right]\left(g_{j 0} g_{i l}-g_{i 0} g_{j l}\right) } \tag{7}\\
& +\frac{1}{2 n-1}\left(g_{i 0} R_{j l}-g_{j 0} R_{i l}\right) .
\end{align*}
$$

Since W is totally trace-free, we have

$$
\begin{aligned}
W_{i j a 0} W_{i j a 0}= & {\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right]\left(g_{j 0} g_{i a}-g_{i 0} g_{j a}\right) W_{i j 0 a} } \\
& +\frac{1}{2 n-1}\left(g_{i 0} R_{j a}-g_{j 0} R_{i a}\right) W_{i j 0 a} \\
= & {\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right]\left(W_{b 00 a} g_{b a}-W_{0 b 0 a} g_{b a}\right) } \\
& +\frac{1}{2 n-1}\left(W_{0 j 0 a} R_{j a}-W_{i 00 a} R_{i a}\right) \\
= & 2\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right] W_{a 00 a}+\frac{2}{2 n-1} W_{0 b 0 a} R_{b a} \\
= & -\frac{2}{2 n-1}\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right] R_{a a}+\frac{2}{(2 n-1)^{2}} R_{b a}^{2} \\
= & -\left[1-\frac{1}{2 n-1}\left(2 n-\frac{s}{2 n}\right)\right] \frac{2(s-2 n)}{2 n-1} \\
& +\frac{2}{(2 n-1)^{2}}\left(-4 n^{2}+\left|R_{i} c\right|^{2}+\frac{s^{2}}{2 n+1}\right) \\
= & \frac{2}{(2 n-1)^{2}}\left[\mid \text { Ric }\left.\right|^{2}-\frac{s^{2}}{2 n(2 n+1)}+2 s-2 n(2 n+1)\right] .
\end{aligned}
$$

Here we have used $R_{a a}=s-2 n$ and Ric $=\operatorname{Ric}-\frac{s}{2 n+1}$.
On the other hand, using (5) we directly compute

$$
\begin{aligned}
\breve{R}(\xi, \xi) & =R_{0 i j k} R_{0 i j k}=\left(g_{0 j} g_{i k}-g_{0 i} g_{j k}\right) R_{i j 0 k} \\
& =R_{i 00 i}-R_{0 j 0 j}=2 R_{00}=4 n
\end{aligned}
$$

Therefore for a $2 n+1$-dimensional contact metric manifold, (4) should become

$$
\begin{equation*}
4 n=\frac{1}{2 n+1}\left(\frac{2 s^{2}}{2 n(2 n+1)}+\frac{4}{2 n-1}|R i c|^{2}+|W|^{2}\right) . \tag{9}
\end{equation*}
$$

It is well know that when $n=1, W=0$, then

$$
4|R i c|^{2}=12-\frac{s^{2}}{3}
$$

Thus we have

$$
-6 \leqslant s \leqslant 6
$$

Next we assume $n \geqslant 2$ and the following lemma is clear.

Lemma 3.1.

$$
|W|^{2}=2 W_{i j a 0} W_{i j a 0}+W_{d c a b} W_{d c a b}
$$

Proof. For the indices $i, j, k, l \in\{0,1,2, \ldots, 2 n\}$ and $a, b, c, d \in\{1,2, \ldots, 2 n\}$, we directly compute

$$
\begin{aligned}
|W|^{2} & =W_{i j k l} W_{i j k l}=W_{i j 0 l} W_{i j 0 l}+W_{i j a l} W_{i j a l} \\
& =W_{i j 0 l} W_{i j 0 l}+W_{i j a 0} W_{i j a 0}+W_{i j a b} W_{i j a b} \\
& =2 W_{i j a 0} W_{i j a 0}+W_{i j a b} W_{i j a b} \\
& =2 W_{i j a 0} W_{i j a 0}+W_{d 0 a b} W_{d 0 a b}+W_{0 c a b} W_{0 c a b}+W_{d c a b} W_{d c a b} \\
& =2 W_{i j a 0} W_{i j a 0}+2 W_{d 0 a b} W_{d 0 a b}+W_{d c a b} W_{d c a b} \\
& =2 W_{i j a 0} W_{i j a 0}+W_{d c a b} W_{d c a b}
\end{aligned}
$$

since $W_{d 0 a b}=0$ for any $a, b, d \in\{1,2, \ldots, 2 n\}$ by (7).
By Lemma 3.1, substituting (8) into (9) gives

$$
\begin{aligned}
4 n(2 n+1)= & \left.\frac{2 s^{2}}{2 n(2 n+1)}+\frac{4}{2 n-1} \right\rvert\, \text { Ric }\left.^{2}\right|^{2}+\frac{4}{(2 n-1)^{2}}\left[\mid \text { Ric }\left.\right|^{2}\right. \\
& \left.-\frac{s^{2}}{2 n(2 n+1)}+2 s-2 n(2 n+1)\right]+W_{d c a b} W_{d c a b}
\end{aligned}
$$

Since $W_{d c a b} W_{d c a b} \geqslant 0$, we conclude

$$
0 \geqslant \frac{4 n^{2}-4 n-1}{n(2 n+1)} s^{2}+8 n|R i c|^{2}+8 s-4 n(2 n+1)\left(4 n^{2}-4 n+3\right)
$$

that is,

$$
4 n \mid \text { Ric }\left.\right|^{2} \leqslant-\frac{4 n^{2}-4 n-1}{2 n(2 n+1)} s^{2}-4 s+2 n(2 n+1)\left(4 n^{2}-4 n+3\right)
$$

Hence

$$
-\frac{4 n^{2}-4 n-1}{2 n(2 n+1)} s^{2}-4 s+2 n(2 n+1)\left(4 n^{2}-4 n+3\right) \geqslant 0
$$

Because $n \geqslant 2$, we obtain

$$
-2 n(2 n+1) \frac{4 n^{2}-4 n+3}{4 n^{2}-4 n-1} \leqslant s \leqslant 2 n(2 n+1)
$$

Moreover, when the right equality holds, from (9) we find $W=0$, i.e., M is conformal flat. We complete the proof of Theorem 1.1.

4. Proof of Theorem 1.4

In this section we suppose that $\left(M^{2 n+1}, \phi, \eta, \xi, g\right)$ is a contact metric (κ, μ) manifold. It is proved that $\kappa \leqslant 1$ and if $\kappa=1$, then $h=0$, i.e., M is a Sasakian manifold by Theorem 1.2. Thus we only need to consider the case where $\kappa<1$. For the contact metric (κ, μ)-manifold the following lemma was given.

Lemma 4.1 ([13]). Let $\left(M^{2 n+1}, \phi, \eta, \xi, g\right)$ be a contact metric (κ, μ)-manifold with $\kappa<1$. For every $p \in M$, there exist an open neighborhood W of p and orthonormal local vector fields $X_{i}, \phi X_{i}$, and ξ for $i=1, \ldots, n$, defined on W, such that

$$
h X_{i}=\lambda X_{i}, \quad h \phi X_{i}=-\lambda \phi X_{i}, \quad h \xi=0
$$

for $i=1, \ldots, n$, where $\lambda=\sqrt{1-\kappa}$.
By Lemma 4.1, we can take a local orthonormal frame $\left\{e_{0}=\xi, e_{1}, \ldots, e_{2 n}\right\}$ of M such that $e_{n+i}=\phi e_{i}$ and $h e_{i}=\lambda e_{i}$ and $h e_{n+i}=-\lambda e_{n+i}$ for $i=1,2, \ldots, n$. If M admits a weakly Einstein metric, by (1) we have

$$
\begin{equation*}
\breve{R}(\xi, \xi)=\frac{1}{2 n+1}|R|^{2} . \tag{10}
\end{equation*}
$$

We first compute $\breve{R}(\xi, \xi)$. Since $h^{2}=(\kappa-1) \phi^{2}$ (see [14, Eq. (3.3)]), by (2) we obtain

$$
\begin{align*}
\breve{R}(\xi, \xi) & =R_{i j 0 k} R_{i j 0 k}=\left[\kappa\left(g_{0 j} g_{i k}-g_{0 i} g_{j k}\right)+\mu\left(g_{0 j} h_{i k}-g_{0 i} h_{j k}\right)\right] R_{i j 0 k} \\
& =2 \kappa R_{i 00 i}+2 \mu\left(R_{i 00 k} h_{i k}\right) \\
& =2 \kappa R_{00}+2 \mu\left[\kappa\left(g_{i k}-g_{0 i} g_{0 k}\right)+\mu\left(h_{i k}\right)\right] h_{i k} \tag{11}\\
& =4 n\left(\kappa^{2}-\mu^{2}(\kappa-1)\right) .
\end{align*}
$$

We can prove the following lemma.

Lemma 4.2 .

$$
\begin{aligned}
|R|^{2}= & 2 \breve{R}(\xi, \xi)+R_{\alpha \beta \delta \gamma} R_{\alpha \beta \delta \gamma}+4 R_{\alpha \beta \delta A} R_{\alpha \beta \delta A}+2 R_{\alpha \beta A B} R_{\alpha \beta A B} \\
& +4 R_{\alpha A \beta B} R_{\alpha A \beta B}+4 R_{A B \alpha C} R_{A B \alpha C}+R_{A B C D} R_{A B C D} .
\end{aligned}
$$

Proof. First, similar to the proof of Lemma 3.1 we derive
(12) $|R|^{2}=R_{i j k l} R_{i j k l}=2 R_{i j a 0} R_{i j a 0}+R_{a b c d} R_{a b c d}=2 \breve{R}(\xi, \xi)+R_{a b c d} R_{a b c d}$.

Moreover, we compute

$$
\begin{aligned}
R_{c d a b} R_{c d a b}= & R_{\alpha d a b} R_{\alpha d a b}+R_{A d a b} R_{A d a b} \\
= & R_{\alpha \beta a b} R_{\alpha \beta a b}+R_{\alpha A a b} R_{\alpha A a b}+R_{A \alpha a b} R_{A \alpha a b}+R_{A B a b} R_{A B a b} \\
= & R_{\alpha \beta \delta b} R_{\alpha \beta \delta b}+R_{\alpha \beta A b} R_{\alpha \beta A b}+2\left(R_{\alpha A \beta b} R_{\alpha A \beta b}+R_{\alpha A B b} R_{\alpha A B b}\right) \\
& +R_{A B \alpha b} R_{A B \alpha b}+R_{A B C b} R_{A B C b} \\
= & R_{\alpha \beta \delta \gamma} R_{\alpha \beta \delta \gamma}+R_{\alpha \beta \delta A} R_{\alpha \beta \delta A}+R_{\alpha \beta A \delta} R_{\alpha \beta A \delta}+R_{\alpha \beta A B} R_{\alpha \beta A B} \\
& +2\left(R_{\alpha A \beta \delta} R_{\alpha A \beta \delta}+R_{\alpha A \beta B} R_{\alpha A \beta B}+R_{\alpha A B \beta} R_{\alpha A B \beta}\right. \\
& \left.+R_{\alpha A B C} R_{\alpha A B C}\right)+R_{A B \alpha \beta} R_{A B \alpha \beta}+R_{A B \alpha C} R_{A B \alpha C}
\end{aligned}
$$

$$
\begin{aligned}
& +R_{A B C \alpha} R_{A B C \alpha}+R_{A B C D} R_{A B C D} \\
= & R_{\alpha \beta \delta \gamma} R_{\alpha \beta \delta \gamma}+4 R_{\alpha \beta \delta A} R_{\alpha \beta \delta A}+2 R_{\alpha \beta A B} R_{\alpha \beta A B} \\
& +4 R_{\alpha A \beta B} R_{\alpha A \beta B}+4 R_{A B \alpha C} R_{A B \alpha C}+R_{A B C D} R_{A B C D} .
\end{aligned}
$$

We complete the proof the lemma by substituting the above formula into (12).

Proposition 4.3 ([4, Theorem 1]). Let $M^{2 n+1}(\phi, \eta, \xi, g)$ be a contact metric manifold with belonging to the (κ, μ)-nullity distribution. If $\kappa<1, M^{2 n+1}$ admits three mutually orthogonal and integrable distributions $\mathcal{D}(0), \mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ determined by the eigenspaces of h, where $\lambda=\sqrt{1-\kappa}$. Moreover,

$$
\begin{aligned}
R\left(X_{\lambda}, Y_{\lambda}\right) Z_{-\lambda} & =(\kappa-\mu)\left[g\left(\phi Y_{\lambda}, Z_{-\lambda}\right) \phi X_{\lambda}-g\left(\phi X_{\lambda}, Z_{-\lambda}\right) \phi Y_{\lambda}\right], \\
R\left(X_{-\lambda}, Y_{-\lambda}\right) Z_{\lambda} & =(\kappa-\mu)\left[g\left(\phi Y_{-\lambda}, Z_{\lambda}\right) \phi X_{-\lambda}-g\left(\phi X_{-\lambda}, Z_{\lambda}\right) \phi Y_{-\lambda}\right], \\
R\left(X_{\lambda}, Y_{-\lambda}\right) Z_{-\lambda} & =\kappa g\left(\phi X_{\lambda}, Z_{-\lambda}\right) \phi Y_{-\lambda}+\mu g\left(\phi X_{\lambda}, Y_{-\lambda}\right) \phi Z_{-\lambda}, \\
R\left(X_{\lambda}, Y_{-\lambda}\right) Z_{\lambda} & =-\kappa g\left(\phi Y_{-\lambda}, Z_{\lambda}\right) \phi X_{\lambda}-\mu g\left(\phi Y_{-\lambda}, X_{\lambda}\right) \phi Z_{\lambda}, \\
R\left(X_{\lambda}, Y_{\lambda}\right) Z_{\lambda} & =[2(1+\lambda)-\mu]\left[g\left(Y_{\lambda}, Z_{\lambda}\right) X_{\lambda}-g\left(X_{\lambda}, Z_{\lambda}\right) Y_{\lambda}\right], \\
R\left(X_{-\lambda}, Y_{-\lambda}\right) Z_{-\lambda} & =[2(1-\lambda)-\mu]\left[g\left(Y_{-\lambda}, Z_{-\lambda}\right) X_{-\lambda}-g\left(X_{-\lambda}, Z_{-\lambda}\right) Y_{-\lambda}\right],
\end{aligned}
$$

where $X_{\lambda}, Y_{\lambda}, Z_{\lambda} \in \mathcal{D}(\lambda)$ and $X_{-\lambda}, Y_{-\lambda}, Z_{-\lambda} \in \mathcal{D}(-\lambda)$.
By Proposition 4.3, we can get

$$
\begin{aligned}
R_{\alpha \beta \delta \gamma} & =[2(1+\lambda)-\mu]\left(g_{\beta \delta} g_{\alpha \gamma}-g_{\alpha \delta} g_{\beta \gamma}\right) \\
R_{\alpha \beta \delta A} & =0 \\
R_{\alpha \beta A B} & =(\kappa-\mu)\left(g_{\bar{\beta} A} g_{\bar{\alpha} B}-g_{\bar{\alpha} A} g_{\bar{\beta} B}\right) \\
R_{\alpha A \beta B} & =-\kappa g_{\bar{A} \beta} g_{\bar{\alpha} B}-\mu g_{\bar{A} \alpha} g_{\bar{\beta} B} \\
R_{A B \alpha C} & =0, \\
R_{A B C D} & =[2(1-\lambda)-\mu]\left(g_{B C} g_{A D}-g_{A C} g_{B D}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
R_{\alpha \beta \delta \gamma}^{2} & =2 n(n-1)[2(1+\lambda)-\mu]^{2} \\
R_{\alpha \beta \delta A}^{2} & =0 \\
R_{\alpha \beta A B}^{2} & =2 n(n-1)(\kappa-\mu)^{2}, \\
R_{\alpha A \beta B}^{2} & =\left(\kappa^{2}+\mu^{2}\right) n^{2}+2 n \kappa \mu, \\
R_{A B \alpha C}^{2} & =0 \\
R_{A B C D}^{2} & =2 n(n-1)[2(1-\lambda)-\mu]^{2} .
\end{aligned}
$$

Therefore by Lemma 4.2 and (11) we conclude

$$
|R|^{2}=8 n\left(\kappa^{2}-(k-1) \mu^{2}\right)+2 n(n-1)[2(1+\lambda)-\mu]^{2}+4 n(n-1)(\kappa-\mu)^{2}
$$

$$
\begin{equation*}
+4\left[\left(\kappa^{2}+\mu^{2}\right) n^{2}+2 n \kappa \mu\right]+2 n(n-1)[2(1-\lambda)-\mu]^{2} . \tag{13}
\end{equation*}
$$

Substituting (13) into (10) and using (11), we have

$$
\begin{equation*}
-(2 n-1) \mu^{2} \kappa=(n-1)\left[4\left(1+\lambda^{2}\right)+\mu^{2}-4 \mu\right]-2(n-2) \kappa \mu . \tag{14}
\end{equation*}
$$

Now we divide into two cases to discuss.
Case I: $\boldsymbol{n}=1$. Then (14) implies $(\mu+2) \mu \kappa=0$. If $\kappa=\mu=0, M$ is flat (see [3, Theorem 7.5]).

By Theorem 1.2 , when $\kappa=0, \mu \neq 0$, then $1+\lambda-\frac{\mu}{2}=2-\frac{\mu}{2}, 1-\lambda-\frac{\mu}{2}=-\frac{\mu}{2}$, and M is locally isometric to the Lie group $S U(2), S L(2, \mathbb{R})$ or $E(1,1)$.

When $0 \neq \kappa<1$ and $\mu=0$, we know $1+\lambda-\frac{\mu}{2}=1+\lambda>0$. When $0 \neq \kappa<1$ and $\mu=-2$, then $1+\lambda-\mu / 2=2+\lambda>0$. Both cases imply that M is locally isometric to the Lie group $S U(2)$ or $S L(2, \mathbb{R})$ by Theorem 1.2.

Case II: $\boldsymbol{n}>\mathbf{1}$. Since $\lambda^{2}=1-k$, it follows from (14) that

$$
\begin{equation*}
\left[-\mu^{2}(2 n-1)+2 \mu(n-2)+4(n-1)\right] \kappa=(n-1)\left[4+(\mu-2)^{2}\right] \tag{15}
\end{equation*}
$$

Moreover, when $0<\kappa<1$, we find

$$
\left[-\mu^{2}(2 n-1)+2 \mu(n-2)+4(n-1)\right]>(n-1)\left[4+(\mu-2)^{2}\right] .
$$

That is,

$$
(3 n-2) \mu^{2}-2(3 n-4) \mu+4(n-1)<0 .
$$

Because $n>1$, it is easy to prove that the above inequality has no solution.
When $\kappa<0$, Equation (15) implies

$$
-\mu^{2}(2 n-1)+2 \mu(n-2)+4(n-1)<0
$$

that is,

$$
\mu>\frac{n-2+\sqrt{9 n^{2}-16 n+8}}{2 n-1} \quad \text { or } \quad \mu<\frac{n-2-\sqrt{9 n^{2}-16 n+8}}{2 n-1} .
$$

In particular, when $\mu<\frac{n-2-\sqrt{9 n^{2}-16 n+8}}{2 n-1}$, we know $\mu<0$ since $n>1$. Hence the invariant I_{M} (see introduction) must be greater than -1 . Therefore, we complete the proof by Theorem 1.3.

5. Proof of Theorem 1.5

In this section let us assume that $\left(M^{2 n+1}, \phi, \eta, \xi, g\right)$ is an almost cosymplectic (κ, μ)-manifold, namely an almost cosymplectic manifold satisfies (2). First the following relations are provided (see [6, Eq. (3.22), (3.23)]):

$$
\begin{equation*}
h^{2}=\kappa \phi^{2}, Q=\mu h+2 n \kappa \eta \otimes \xi \tag{16}
\end{equation*}
$$

In particular, $Q \xi=2 n \kappa \xi$ because of $h \xi=0$. From (16), $\operatorname{trace}\left(h^{2}\right)=-2 n \kappa$. Furthermore, since $\kappa \phi^{2}=h^{2}, \kappa \leq 0$ and the equality holds if and only if the almost cosymplectic (κ, μ)-manifolds are cosymplectic. Therefore, we will concentrate on the case $\kappa<0$.

Since $\operatorname{trace}\left(h^{2}\right)=-2 n \kappa$, as the calculation of (11), making use of (2) we obtain

$$
\begin{equation*}
\breve{R}(\xi, \xi)=4 n\left(\kappa^{2}-\mu^{2} \kappa\right) \tag{17}
\end{equation*}
$$

For an almost cosymplectic (κ, μ)-manifold with $\kappa<0$, we also have a similar lemma to Lemma 4.1.

Lemma 5.1. Let ($M^{2 n+1}, \phi, \eta, \xi, g$) be an almost cosymplectic (κ, μ)-manifold with $\kappa<0$. For every $p \in M$, there exist an open neighborhood W of p and orthonormal local vector fields $X_{i}, \phi X_{i}$, and ξ for $i=1, \ldots, n$, defined on W, such that

$$
h X_{i}=\lambda X_{i}, \quad h \phi X_{i}=-\lambda \phi X_{i}, \quad h \xi=0
$$

for $i=1, \ldots, n$, where $\lambda=\sqrt{-\kappa}$.
Thus we can also take a local frame $\left\{e_{i}\right\}$ of M as in Section 4. In this section we will adopt the same index as Section 4. In the following we compute the square $|R|^{2}$ of curvature tensor R. In order to do that, we notice the following proposition.
Proposition 5.2 ([7, Theorem 3.7]). Let M be an almost cosymplectic (κ, μ)manifold of dimension greater than or equal to 5 with $\kappa<0$. Then its Riemann curvature tensor can be written as

$$
R=-\kappa R_{3}-R_{5,2}-\mu R_{6}
$$

where

$$
\begin{aligned}
R_{3}(X, Y) Z= & \eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi, \\
R_{6}(X, Y) Z= & \eta(X) \eta(Z) h Y-\eta(Y) \eta(Z) h X+g(h X, Z) \eta(Y) \xi \\
& -g(h Y, Z) \eta(X) \xi \\
R_{5,2}(X, Y) Z= & g(\phi h Y, Z) \phi h X-g(\phi h X, Z) \phi h Y
\end{aligned}
$$

for any vector fields X, Y, Z.
In view of Lemma 5.1, he $e_{a}=\lambda_{a} e_{a}$ with $\lambda_{a}= \pm \sqrt{-\kappa}$, thus by Proposition 5.2, we know

$$
\begin{equation*}
R_{a b c d}=-\left(h_{b \bar{c}} h_{a \bar{d}}-h_{a \bar{c}} h_{b \bar{d}}\right)=-\lambda_{b} \lambda_{a}\left[g_{b \bar{c}} g_{a \bar{d}}-g_{a \bar{c}} g_{b \bar{d}}\right], \tag{18}
\end{equation*}
$$

where $h_{a \bar{d}}=g\left(h e_{a}, \phi e_{d}\right)$ and $g_{b \bar{c}}=g\left(e_{b}, \phi e_{c}\right)$ for all $a, b, c, d \in\{1,2, \ldots, 2 n\}$.
Making use of (18), we have

$$
\begin{aligned}
R_{\alpha \beta \delta \gamma} & =0, \quad R_{\alpha \beta \delta A}=0, \\
R_{\alpha \beta A B} & =-\kappa\left(g_{\beta \bar{A}} g_{\alpha \bar{B}}-g_{\alpha \bar{A}} g_{\beta \bar{B}}\right), \\
R_{\alpha A \beta B} & =\kappa g_{A \overline{\bar{\beta}}} g_{\alpha \bar{B}}, \\
R_{A B \alpha C} & =0, \quad R_{A B C D}=0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
R_{\alpha \beta \delta \gamma}^{2} & =0, \quad R_{\alpha \beta \delta A}^{2}=0 \\
R_{\alpha \beta A B}^{2} & =2 n(n-1) \kappa^{2} \\
R_{\alpha A \beta B}^{2} & =n^{2} \kappa^{2}
\end{aligned}
$$

$$
R_{A B \alpha C}^{2}=0, \quad R_{A B C D}^{2}=0 .
$$

Hence we derive from (17) and Lemma 4.2 that

$$
|R|^{2}=8 n\left(\kappa^{2}-\mu^{2} \kappa\right)+2 \kappa^{2} 2 n(n-1)+4 \kappa^{2} n^{2}=4 n\left[(2 n+1) \kappa^{2}-2 \mu^{2} \kappa\right] .
$$

By (10), we have

$$
\left(\kappa^{2}-\kappa \mu^{2}\right)(2 n+1)=(2 n+1) \kappa^{2}-2 \mu^{2} \kappa .
$$

This shows $\mu=0$ since $\kappa<0$.
We complete the proof Theorem 1.5 by Theorem 2.1
Acknowledgement. The author would like to thank the referee for the valuable comments on this paper.

References

[1] H. Baltazar, A. Da Silva, and F. Oliveira, Weakly Einstein critical metrics of the volume functional on compact manifolds with boundary, arXiv:1804.10706v2.
2] M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. École Norm. Sup. (4) 3 (1970), 285-294.
[3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, second edition, Progress in Mathematics, 203, Birkhäuser Boston, Inc., Boston, MA, 2010. https: //doi.org/10.1007/978-0-8176-4959-3
[4] D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. https://doi.org/10. 1007/BF02761646
[5] E. Boeckx, A full classification of contact metric (k, μ)-spaces, Illinois J. Math. 44 (2000), no. 1, 212-219. http://projecteuclid.org/euclid.ijm/1255984960
[6] B. Cappelletti-Montano, A. De Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), no. 10, 1343002, 55 pp. https://doi.org/10.1142/ S0129055X13430022
[7] A. Carriazo and V. Martín-Molina, Almost cosymplectic and almost Kenmotsu (κ, μ, ν)spaces, Mediterr. J. Math. 10 (2013), no. 3, 1551-1571. https://doi.org/10.1007/ s00009-013-0246-4
[8] P. Dacko, On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60
[9] H. Endo, On Ricci curvatures of almost cosymplectic manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 40 (1994), no. 1, 75-83.
[10] , Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), no. 3, 272-284.
[11] Y. Euh, J. Park, and K. Sekigawa, A curvature identity on a 4-dimensional Riemannian manifold, Results Math. 63 (2013), no. 1-2, 107-114. https://doi.org/10.1007/ s00025-011-0164-3
[12] S. Hwang and G. Yun, Weakly Einstein critical point equation, Bull. Korean Math. Soc. 53 (2016), no. 4, 1087-1094. https://doi.org/10.4134/BKMS.b150521
[13] T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector field on contact metric 3-manifolds, Pacific J. Math. 234 (2008), no. 2, 325-344. https://doi.org/10.2140/pjm.2008.234.325
[14] T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), no. 4, 440-447. https://doi.org/10.4153/ CMB-2000-052-6

Xiaomin Chen
College of Science
China University of Petroleum-Beijing
Beijing 102249, P. R. China
Email address: xmchen@cup.edu. cn

