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ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

Xiaomin Chen

Abstract. In this article we study almost contact manifolds admitting

weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional

Sasakian manifold admits a weakly Einstein metric, then its scalar cur-

vature s satisfies −6 6 s 6 6 for n = 1 and −2n(2n + 1) 4n2−4n+3
4n2−4n−1

6

s 6 2n(2n + 1) for n > 2. Secondly, for a (2n + 1)-dimensional weakly

Einstein contact metric (κ, µ)-manifold with κ < 1, we prove that it is

flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1, 1) for
n = 1 and that for n > 2 there are no weakly Einstein metrics on contact

metric (κ, µ)-manifolds with 0 < κ < 1. For κ < 0, we get a classification
of weakly Einstein contact metric (κ, µ)-manifolds. Finally, it is proved

that a weakly Einstein almost cosymplectic (κ, µ)-manifold with κ < 0 is

locally isomorphic to a solvable non-nilpotent Lie group.

1. Introduction

An n-dimensional Riemannian manifold (M, g) is said to be weakly Einstein
if its Riemannian tensor R satisfies

(1) R̆ =
|R|2

n
g.

Here R̆ is a (0, 2)-type tensor defined as

R̆(X,Y ) =

n∑
i,j,k=1

R(X, ei, ej , ek)R(Y, ei, ej , ek)

for an orthonormal frame {ei}, i = 1, 2, . . . , n. The concept was introduced
by Euh, Park and Sekigawa in [11]. We also notice that if a weakly Einstein
metric is critical to the functional

g 7→
∫
M

|sg|2dvg,
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where sg is the scalar curvature of M (see [2]), then it becomes an Einstein
metric. Moreover, it is easy to verify that for a 4-dimensional manifold, Einstein
metrics are in fact weakly Einstein metrics. However, when dimM > 4 a
generic Einstein metric is not necessary a weakly Einstein metric. Based on the
fact, Hwang-Yun considered whether an n-dimensional weakly Einstein metric
that is a nontrivial solution to the critical point equation is Einstein (cf. [12]).
More recently, Baltazar-Silva-Oliveira [1] classified a four dimensional weakly
Einstein manifold with Miao-Tam critical metric under some assumptions on
scalar curvature.

In the present paper, we study odd-dimensional manifolds with weakly Ein-
stein metrics. First we consider a Sasakian manifold admitting a weakly Ein-
stein metric and obtain the following result.

Theorem 1.1. Let M2n+1 be a weakly Einstein Sasakian manifold. Then the
scalar curvature s satisfies{ −6 6 s 6 6, for n = 1;

−2n(2n+ 1) 4n2−4n+3
4n2−4n−1 6 s 6 2n(2n+ 1), for n > 2,

and the right equality holds if and only if M is a conformal flat Einstein man-
ifold.

On the other hand, we observe that a remarkable class of contact metric
manifolds is a (κ, µ)-space, originally introduced by D. E. Blair, T. Koufogior-
gos and V. J. Papantoniou in [4], whose curvature tensor satisfies

(2) R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY )

for any vector fields X,Y , where κ and µ are constants and h := 1
2Lξφ is a

self-dual operator. Moreover, Blair et al. proved the following classification
theorem.

Theorem 1.2 ([4, Theorem 3]). Let M be a 3-dimensional (κ, µ)-manifold.
Then κ 6 1. If κ = 1, then h = 0 and M is a Sasakian manifold. If κ <
1, then M is locally isometric to one of the unimodular Lie groups SU(2),
SL(2,R), E(2), E(1, 1) with a left-invariant metric.

Moreover, this structure can occur on SU(2) or SO(3) when 1−λ−µ/2 > 0
and 1 + λ − µ/2 > 0, on SL(2,R) or O(1, 2) when 1 − λ − µ/2 < 0 and
1 + λ − µ/2 > 0 or 1 − λ − µ/2 < 0 and 1 + λ − µ/2 < 0, on E(2) when
1 − λ − µ/2 = 0 and µ < 2, including a flat structure when µ = 0, and on
E(1, 1) when 1 + λ− µ/2 = 0 and µ > 2.

For a non-Sasakian (κ, µ)-manifold M , Boeckx [5] introduced an invariant

IM =
1− µ

2√
1− κ

and proved the following conclusion:
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Theorem 1.3 ([5, Corollary 5]). Let M be a non-Sasakian (κ, µ)-space. Then
it is locally isometric, up to a D-homothetic transformation, to the unit tangent
sphere bundle of some space of constant curvature (different from 1) if and only
if IM > −1.

In view of Theorem 1.2 and Theorem 1.3, we obtain:

Theorem 1.4. A 3-dimensional weakly Einstein contact metric (κ, µ)-manifold
for κ < 1 is flat, or is locally isomorphic to the Lie group SU(2), SL(2,R),
E(1, 1) endowed with a left-invariant metric.

For the dimensions > 5 there are no weakly Einstein metrics on contact
metric (κ, µ)-manifolds with 0 < κ < 1. If M2n+1(n > 1) is a weakly Ein-

stein contact metric (κ, µ)-manifold with κ < 0, then µ > n−2+
√
9n2−16n+8
2n−1 or

µ < n−2−
√
9n2−16n+8
2n−1 . In particular, when µ < n−2−

√
9n2−16n+8
2n−1 , M is locally

isometric, up to a D-homothetic transformation, to the unit tangent sphere
bundle of some space of constant curvature.

Finally, we notice that Endo considered another class of odd-dimensional
manifolds, which are said to be almost cosymplectic (κ, µ)-manifolds, and it
is proved that κ 6 0 and the equality holds if and only if the almost cosym-
plectic (κ, µ)-manifolds are cosymplectic (cf. [10]). Since Blair [5] proved that
a cosymplectic manifold is locally the product of a Kähler manifold and an
interval or unit circle S1, we are only require to consider the case where κ < 0.
For an almost cosymplectic (κ, µ)-manifold with κ < 0, if it is equipped with a
weakly Einstein metric, we obtain the following conclusion.

Theorem 1.5. A weakly Einstein almost cosymplectic (κ, µ)-manifold for κ <
0 is locally isomorphic to a solvable non-nilpotent Lie group Gλ endowed with
an almost cosymplectic structure, where λ =

√
−κ.

In order to prove these conclusions, in Section 2 we recall some basic concepts
and formulas. The proofs of theorems will be given in Section 3, Section 4 and
Section 5, respectively.

2. Preliminaries

2.1. Weakly Einstein metrics

In a local coordinate system the components of the (0, 4)-Riemannian cur-
vature tensor are given by Rijkl = g(R(ei, ej)ek, el). Throughout the paper
the Einstein convention of summing over the repeated indices will be adopted.
The Ricci tensor Ric is obtained by the contraction (Ric)jk = Rjk = gilRijkl.

s = gikRik will denote the scalar curvature and (R̊ic)ik = Rik − s
ngik the

traceless Ricci tensor.
We say that a Riemannian manifold (Mn, g) is weakly Einstein if the Rie-

mannian tensor R satisfies (1), i.e.,

R̆ij =
|R|2

n
gij
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for an orthonormal frame {ei}, i = 1, 2, . . . , n, where the 2-tensor R̆ij is defined

as R̆ij = RipqrRjpqr and |R|2 = RijklRijkl.
On an n-dimensional Riemannian manifold (Mn, g) for n > 3, the Weyl

tensor is defined by

(3)
Wijkl = Rijkl +

1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

− s

(n− 1)(n− 2)
(gjlgik − gilgjk).

Here, we remark that the curvature tensor of Blair [3] is different from ours by
a sign. It is well-known that the Weyl tensor W identically vanishes for n = 3.
From (3), we conclude (see [12, Eq. (6)])

(4) |R|2 =
2s2

n(n− 1)
+

4

n− 2
|R̊ic|2 + |W |2,

where s denotes the scalar curvature of M and R̊ic = Ric− s
ng is the traceless

Ricci tensor.

2.2. Almost contact manifolds

In the following we suppose that M is a (2n+ 1)-dimensional smooth man-
ifold. An almost contact structure on M is a triple (φ, ξ, η), where φ is a
(1, 1)-tensor field, ξ a unit vector field, called Reeb vector field, η a one-form
dual to ξ satisfying φ2 = −I + η ⊗ ξ, η ◦ φ = 0, φ ◦ ξ = 0. A smooth manifold
with such a structure is called an almost contact manifold.

A Riemannian metric g on M is called compatible with the almost contact
structure if

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X)

for any X,Y ∈ X(M). An almost contact structure together with a compatible
metric is called an almost contact metric structure and (M,φ, ξ, η, g) is called
an almost contact metric manifold. Such an almost contact metric manifold is
called a contact metric manifold if dη = ω, where ω denotes the fundamental
2-form on M defined by ω(X,Y ) := g(φX, Y ) for all X,Y ∈ X(M). An almost
contact structure (φ, ξ, η) is said to be normal if the corresponding complex
structure J on M×R is integrable. If a contact metric manifold M is normal, it
is said be a Sasakian manifold. For a Sasakian manifold, the following equations
hold ([3]):

R(X,Y )ξ =η(Y )X − η(X)Y,(5)

Qξ =2nξ.(6)

Here Q is the Ricci operator defined by Ric(X,Y ) = g(QX,Y ) for any vectors
X,Y .
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Now we recall that there is an operator h = 1
2Lξφ which is a self-dual

operator. For a contact metric manifold, it is proved the following relations [4]:

trace(h) = 0, hξ = 0, φh = −hφ, g(hX, Y ) = g(X,hY ), ∀X,Y ∈ X(M).

We notice that the above formulas also hold in almost cosymplectic manifolds
(see [9]).

As the generalization of the condition R(X,Y )ξ = 0, Blair et al. defined a
so-called (κ, µ)-nullity distribution on a contact metric manifold:

Nx(κ, µ) := {Z ∈ TxM |R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y )

+ µ(g(Y, Z)hX − g(X,Z)hY )}

for two real numbers κ, µ ∈ R (see [4]). A contact metric manifold is called a
contact metric (κ, µ)-manifold if the Reeb vector field ξ belongs to the (κ, µ)-
nullity distribution, namely the condition (2) is satisfied.

Let (M,φ, ξ, η) be an almost contact metric manifold. If the fundamental
2-form ω and 1-form η are closed, then M is called an almost cosymplectic
manifold. Moreover, if M is normal, it is said to be cosymplectic. An almost
cosymplectic (κ, µ)-manifold is an almost cosymplectic manifold satisfying (2).
This class of almost contact manifold was firstly considered in [10]. In particu-
lar, any cosymplectic manifold is an almost cosymplectic (κ, µ)-manifold with
κ = 0 and any µ. Endo proved that if κ 6= 0 any almost cosymplectic (κ, µ)-
manifolds are not cosymplectic ([10]). When κ < 0 and µ = 0, Dacko in [8]
proved that M is necessarily an almost cosymplectic manifold with Kählerian
leaves, moreover gave a full description of the local structure of this class.

We briefly recall the structure, referring to [8] for more details. Let λ be
a real positive number and gλ be the solvable non-nilpotent Lie algebra with
basis {ξ,X1, . . . , Xn, Y1, . . . , Yn} and non-zero Lie brackets

[ξ,Xi] = −λXi, [ξ, Yi] = λYi

for each i ∈ {1, . . . , n}. Let Gλ be a Lie group whose Lie algebra is gλ and let
(φ, ξ, η, g) be the left-invariant almost cosymplectic structure defined by

g(Xi, Xj) = g(Yi, Yj) = δij , g(Xi, Yj) = 0, g(ξ,Xi) = g(ξ, Yi) = 0,

φξ = 0, φXi = Yi, φYi = −Xi, η = g(·, ξ).

Theorem 2.1 ([8, Theorem 4]). An almost cosymplectic (κ, 0)-manifold for
some κ < 0 is locally isomorphic to the above Lie group Gλ endowed with the
above almost cosymplectic structure, where λ =

√
−κ.

Throughout this paper we write the indices i, j, k, l∈{0, 1, 2, . . . , 2n}, a, b, c, d
∈ {1, 2, . . . , 2n}, α, β, γ, δ ∈ {1, 2, . . . , n} and A,B,C,D ∈ {n+1, n+2, . . . , 2n}.
Write

hij = g(hei, ej), Rij0k = g(R(ei, ej)ξ, ek), Ric(ξ, ξ) = R00 = Ri00i.
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3. Proof of Theorem 1.1

In this section we assume that M is a 2n+ 1-dimensional Sasakian manifold
and {ei}2ni=0 is a local orthonormal frame of M such that e0 = ξ, en+i = φei for
i = 1, 2, . . . , n.

Using (5) and (6), it follows from (3) that

(7)

Wij0l = Rij0l +
1

2n− 1
(gi0Rjl − gilRj0 − gj0Ril + gjlRi0)

− s

2n(2n− 1)
(gjlgi0 − gilgj0)

=
[
1− 1

2n− 1

(
2n− s

2n

)]
(gj0gil − gi0gjl)

+
1

2n− 1
(gi0Rjl − gj0Ril).

Since W is totally trace-free, we have

Wija0Wija0 =
[
1− 1

2n− 1

(
2n− s

2n

)]
(gj0gia − gi0gja)Wij0a

+
1

2n− 1
(gi0Rja − gj0Ria)Wij0a

=
[
1− 1

2n− 1

(
2n− s

2n

)]
(Wb00agba −W0b0agba)(8)

+
1

2n− 1
(W0j0aRja −Wi00aRia)

= 2
[
1− 1

2n− 1

(
2n− s

2n

)]
Wa00a +

2

2n− 1
W0b0aRba

= − 2

2n− 1

[
1− 1

2n− 1

(
2n− s

2n

)]
Raa +

2

(2n− 1)2
R2
ba

= −
[
1− 1

2n− 1

(
2n− s

2n

)]2(s− 2n)

2n− 1

+
2

(2n− 1)2

(
− 4n2 + |R̊ic|2 +

s2

2n+ 1

)
=

2

(2n− 1)2

[
|R̊ic|2 − s2

2n(2n+ 1)
+ 2s− 2n(2n+ 1)

]
.

Here we have used Raa = s− 2n and R̊ic = Ric− s
2n+1 .

On the other hand, using (5) we directly compute

R̆(ξ, ξ) = R0ijkR0ijk = (g0jgik − g0igjk)Rij0k

= Ri00i −R0j0j = 2R00 = 4n.

Therefore for a 2n+ 1-dimensional contact metric manifold, (4) should become

(9) 4n =
1

2n+ 1

( 2s2

2n(2n+ 1)
+

4

2n− 1
|R̊ic|2 + |W |2

)
.
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It is well know that when n = 1, W = 0, then

4|R̊ic|2 = 12− s2

3
.

Thus we have

−6 6 s 6 6.

Next we assume n > 2 and the following lemma is clear.

Lemma 3.1.

|W |2 = 2Wija0Wija0 +WdcabWdcab.

Proof. For the indices i, j, k, l ∈ {0, 1, 2, . . . , 2n} and a, b, c, d ∈ {1, 2, . . . , 2n},
we directly compute

|W |2 = WijklWijkl = Wij0lWij0l +WijalWijal

= Wij0lWij0l +Wija0Wija0 +WijabWijab

= 2Wija0Wija0 +WijabWijab

= 2Wija0Wija0 +Wd0abWd0ab +W0cabW0cab +WdcabWdcab

= 2Wija0Wija0 + 2Wd0abWd0ab +WdcabWdcab

= 2Wija0Wija0 +WdcabWdcab

since Wd0ab = 0 for any a, b, d ∈ {1, 2, . . . , 2n} by (7). �

By Lemma 3.1, substituting (8) into (9) gives

4n(2n+ 1) =
2s2

2n(2n+ 1)
+

4

2n− 1
|R̊ic|2 +

4

(2n− 1)2

[
|R̊ic|2

− s2

2n(2n+ 1)
+ 2s− 2n(2n+ 1)

]
+WdcabWdcab.

Since WdcabWdcab > 0, we conclude

0 >
4n2 − 4n− 1

n(2n+ 1)
s2 + 8n|R̊ic|2 + 8s− 4n(2n+ 1)(4n2 − 4n+ 3),

that is,

4n|R̊ic|2 6 −4n2 − 4n− 1

2n(2n+ 1)
s2 − 4s+ 2n(2n+ 1)(4n2 − 4n+ 3).

Hence

−4n2 − 4n− 1

2n(2n+ 1)
s2 − 4s+ 2n(2n+ 1)(4n2 − 4n+ 3) > 0.

Because n > 2, we obtain

−2n(2n+ 1)
4n2 − 4n+ 3

4n2 − 4n− 1
6 s 6 2n(2n+ 1).

Moreover, when the right equality holds, from (9) we find W = 0, i.e., M is
conformal flat. We complete the proof of Theorem 1.1.
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4. Proof of Theorem 1.4

In this section we suppose that (M2n+1, φ, η, ξ, g) is a contact metric (κ, µ)-
manifold. It is proved that κ 6 1 and if κ = 1, then h = 0, i.e., M is a Sasakian
manifold by Theorem 1.2. Thus we only need to consider the case where κ < 1.
For the contact metric (κ, µ)-manifold the following lemma was given.

Lemma 4.1 ([13]). Let (M2n+1, φ, η, ξ, g) be a contact metric (κ, µ)-manifold
with κ < 1. For every p ∈ M , there exist an open neighborhood W of p and
orthonormal local vector fields Xi, φXi, and ξ for i = 1, . . . , n, defined on W ,
such that

hXi = λXi, hφXi = −λφXi, hξ = 0

for i = 1, . . . , n, where λ =
√

1− κ.

By Lemma 4.1, we can take a local orthonormal frame {e0 = ξ, e1, . . . , e2n} of
M such that en+i = φei and hei = λei and hen+i = −λen+i for i = 1, 2, . . . , n.

If M admits a weakly Einstein metric, by (1) we have

(10) R̆(ξ, ξ) =
1

2n+ 1
|R|2.

We first compute R̆(ξ, ξ). Since h2 = (κ− 1)φ2 (see [14, Eq. (3.3)]), by (2) we
obtain

(11)

R̆(ξ, ξ) = Rij0kRij0k = [κ(g0jgik − g0igjk) + µ(g0jhik − g0ihjk)]Rij0k

= 2κRi00i + 2µ(Ri00khik)

= 2κR00 + 2µ[κ(gik − g0ig0k) + µ(hik)]hik

= 4n(κ2 − µ2(κ− 1)).

We can prove the following lemma.

Lemma 4.2.

|R|2 = 2R̆(ξ, ξ) +RαβδγRαβδγ + 4RαβδARαβδA + 2RαβABRαβAB

+ 4RαAβBRαAβB + 4RABαCRABαC +RABCDRABCD.

Proof. First, similar to the proof of Lemma 3.1 we derive

(12) |R|2 = RijklRijkl = 2Rija0Rija0 +RabcdRabcd = 2R̆(ξ, ξ) +RabcdRabcd.

Moreover, we compute

RcdabRcdab = RαdabRαdab +RAdabRAdab

= RαβabRαβab +RαAabRαAab +RAαabRAαab +RABabRABab

= RαβδbRαβδb +RαβAbRαβAb + 2(RαAβbRαAβb +RαABbRαABb)

+RABαbRABαb +RABCbRABCb

= RαβδγRαβδγ +RαβδARαβδA +RαβAδRαβAδ +RαβABRαβAB

+ 2(RαAβδRαAβδ +RαAβBRαAβB +RαABβRαABβ

+RαABCRαABC) +RABαβRABαβ +RABαCRABαC
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+RABCαRABCα +RABCDRABCD

= RαβδγRαβδγ + 4RαβδARαβδA + 2RαβABRαβAB

+ 4RαAβBRαAβB + 4RABαCRABαC +RABCDRABCD.

We complete the proof the lemma by substituting the above formula into (12).
�

Proposition 4.3 ([4, Theorem 1]). Let M2n+1(φ, η, ξ, g) be a contact metric
manifold with belonging to the (κ, µ)-nullity distribution. If κ < 1, M2n+1

admits three mutually orthogonal and integrable distributions D(0),D(λ) and
D(−λ) determined by the eigenspaces of h, where λ =

√
1− κ. Moreover,

R(Xλ, Yλ)Z−λ = (κ− µ)[g(φYλ, Z−λ)φXλ − g(φXλ, Z−λ)φYλ],

R(X−λ, Y−λ)Zλ = (κ− µ)[g(φY−λ, Zλ)φX−λ − g(φX−λ, Zλ)φY−λ],

R(Xλ, Y−λ)Z−λ = κg(φXλ, Z−λ)φY−λ + µg(φXλ, Y−λ)φZ−λ,

R(Xλ, Y−λ)Zλ = −κg(φY−λ, Zλ)φXλ − µg(φY−λ, Xλ)φZλ,

R(Xλ, Yλ)Zλ = [2(1 + λ)− µ][g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = [2(1− λ)− µ][g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ],

where Xλ, Yλ, Zλ ∈ D(λ) and X−λ, Y−λ, Z−λ ∈ D(−λ).

By Proposition 4.3, we can get

Rαβδγ = [2(1 + λ)− µ](gβδgαγ − gαδgβγ),

RαβδA = 0,

RαβAB = (κ− µ)(gβAgαB − gαAgβB),

RαAβB = −κgAβgαB − µgAαgβB ,
RABαC = 0,

RABCD = [2(1− λ)− µ](gBCgAD − gACgBD).

Hence

R2
αβδγ = 2n(n− 1)[2(1 + λ)− µ]2,

R2
αβδA = 0,

R2
αβAB = 2n(n− 1)(κ− µ)2,

R2
αAβB = (κ2 + µ2)n2 + 2nκµ,

R2
ABαC = 0,

R2
ABCD = 2n(n− 1)[2(1− λ)− µ]2.

Therefore by Lemma 4.2 and (11) we conclude

|R|2 = 8n(κ2 − (k − 1)µ2) + 2n(n− 1)[2(1 + λ)− µ]2 + 4n(n− 1)(κ− µ)2

+ 4[(κ2 + µ2)n2 + 2nκµ] + 2n(n− 1)[2(1− λ)− µ]2.(13)
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Substituting (13) into (10) and using (11), we have

(14) − (2n− 1)µ2κ = (n− 1)[4(1 + λ2) + µ2 − 4µ]− 2(n− 2)κµ.

Now we divide into two cases to discuss.
Case I: n = 1. Then (14) implies (µ + 2)µκ = 0. If κ = µ = 0, M is flat

(see [3, Theorem 7.5]).
By Theorem 1.2, when κ = 0, µ 6= 0, then 1+λ− µ

2 = 2− µ
2 , 1−λ−

µ
2 = −µ2 ,

and M is locally isometric to the Lie group SU(2), SL(2,R) or E(1, 1).
When 0 6= κ < 1 and µ = 0, we know 1+λ− µ

2 = 1+λ > 0. When 0 6= κ < 1
and µ = −2, then 1 + λ−µ/2 = 2 + λ > 0. Both cases imply that M is locally
isometric to the Lie group SU(2) or SL(2,R) by Theorem 1.2.

Case II: n > 1. Since λ2 = 1− k, it follows from (14) that

(15) [−µ2(2n− 1) + 2µ(n− 2) + 4(n− 1)]κ = (n− 1)[4 + (µ− 2)2].

Moreover, when 0 < κ < 1, we find

[−µ2(2n− 1) + 2µ(n− 2) + 4(n− 1)] >(n− 1)[4 + (µ− 2)2].

That is,

(3n− 2)µ2 − 2(3n− 4)µ+ 4(n− 1) < 0.

Because n > 1, it is easy to prove that the above inequality has no solution.
When κ < 0, Equation (15) implies

−µ2(2n− 1) + 2µ(n− 2) + 4(n− 1) < 0,

that is,

µ >
n− 2 +

√
9n2 − 16n+ 8

2n− 1
or µ <

n− 2−
√

9n2 − 16n+ 8

2n− 1
.

In particular, when µ < n−2−
√
9n2−16n+8
2n−1 , we know µ < 0 since n > 1. Hence

the invariant IM (see introduction) must be greater than −1. Therefore, we
complete the proof by Theorem 1.3.

5. Proof of Theorem 1.5

In this section let us assume that (M2n+1, φ, η, ξ, g) is an almost cosymplectic
(κ, µ)-manifold, namely an almost cosymplectic manifold satisfies (2). First the
following relations are provided (see [6, Eq. (3.22), (3.23)]):

(16) h2 = κφ2, Q = µh+ 2nκη ⊗ ξ.
In particular, Qξ = 2nκξ because of hξ = 0. From (16), trace(h2) = −2nκ.
Furthermore, since κφ2 = h2, κ ≤ 0 and the equality holds if and only if
the almost cosymplectic (κ, µ)-manifolds are cosymplectic. Therefore, we will
concentrate on the case κ < 0.

Since trace(h2) = −2nκ, as the calculation of (11), making use of (2) we
obtain

(17) R̆(ξ, ξ) = 4n(κ2 − µ2κ).
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For an almost cosymplectic (κ, µ)-manifold with κ < 0, we also have a similar
lemma to Lemma 4.1.

Lemma 5.1. Let (M2n+1, φ, η, ξ, g) be an almost cosymplectic (κ, µ)-manifold
with κ < 0. For every p ∈ M , there exist an open neighborhood W of p and
orthonormal local vector fields Xi, φXi, and ξ for i = 1, . . . , n, defined on W ,
such that

hXi = λXi, hφXi = −λφXi, hξ = 0

for i = 1, . . . , n, where λ =
√
−κ.

Thus we can also take a local frame {ei} of M as in Section 4. In this section
we will adopt the same index as Section 4. In the following we compute the
square |R|2 of curvature tensor R. In order to do that, we notice the following
proposition.

Proposition 5.2 ([7, Theorem 3.7]). Let M be an almost cosymplectic (κ, µ)-
manifold of dimension greater than or equal to 5 with κ < 0. Then its Riemann
curvature tensor can be written as

R = −κR3 −R5,2 − µR6,

where

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ

− g(hY, Z)η(X)ξ,

R5,2(X,Y )Z = g(φhY, Z)φhX − g(φhX,Z)φhY

for any vector fields X,Y, Z.

In view of Lemma 5.1, hea = λaea with λa = ±
√
−κ, thus by Proposition

5.2, we know

(18) Rabcd = −(hbchad − hachbd) = −λbλa[gbcgad − gacgbd],

where had = g(hea, φed) and gbc = g(eb, φec) for all a, b, c, d ∈ {1, 2, . . . , 2n}.
Making use of (18), we have

Rαβδγ = 0, RαβδA = 0,

RαβAB = −κ(gβAgαB − gαAgβB),

RαAβB = κgAβgαB ,

RABαC = 0, RABCD = 0.

Hence

R2
αβδγ = 0, R2

αβδA = 0,

R2
αβAB = 2n(n− 1)κ2,

R2
αAβB = n2κ2,
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R2
ABαC = 0, R2

ABCD = 0.

Hence we derive from (17) and Lemma 4.2 that

|R|2 = 8n(κ2 − µ2κ) + 2κ22n(n− 1) + 4κ2n2 = 4n[(2n+ 1)κ2 − 2µ2κ].

By (10), we have

(κ2 − κµ2)(2n+ 1) = (2n+ 1)κ2 − 2µ2κ.

This shows µ = 0 since κ < 0.
We complete the proof Theorem 1.5 by Theorem 2.1.

Acknowledgement. The author would like to thank the referee for the valu-
able comments on this paper.
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