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ON WEAKLY EINSTEIN ALMOST CONTACT MANIFOLDS

XI1AOMIN CHEN

ABSTRACT. In this article we study almost contact manifolds admitting
weakly Einstein metrics. We first prove that if a (2n + 1)-dimensional
Sasakian manifold admits a weakly Einstein metric, then its scalar cur-
vature s satisfies —6 < s < 6 for n = 1 and —2n(2n + 1);122:% <
s < 2n(2n + 1) for n > 2. Secondly, for a (2n + 1)-dimensional weakly
Einstein contact metric (k, u)-manifold with x < 1, we prove that it is
flat or is locally isomorphic to the Lie group SU(2), SL(2), or E(1,1) for
n = 1 and that for n > 2 there are no weakly Einstein metrics on contact
metric (x, p)-manifolds with 0 < k < 1. For k < 0, we get a classification
of weakly Einstein contact metric (k, p)-manifolds. Finally, it is proved
that a weakly Einstein almost cosymplectic (k, p)-manifold with k < 0 is
locally isomorphic to a solvable non-nilpotent Lie group.

1. Introduction

An n-dimensional Riemannian manifold (M, g) is said to be weakly Einstein
if its Riemannian tensor R satisfies

5 IR
1 R=-—g.
(1) )
Here R is a (0,2)-type tensor defined as
R(X,Y) = Z R(X,ei,ej,ex)R(Y, e;, ej,ex)

i,5,k=1
for an orthonormal frame {e;}, i = 1,2,...,n. The concept was introduced
by Euh, Park and Sekigawa in [11]. We also notice that if a weakly Einstein
metric is critical to the functional
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where s4 is the scalar curvature of M (see [2]), then it becomes an Einstein
metric. Moreover, it is easy to verify that for a 4-dimensional manifold, Einstein
metrics are in fact weakly Einstein metrics. However, when dimM > 4 a
generic Einstein metric is not necessary a weakly Einstein metric. Based on the
fact, Hwang-Yun considered whether an n-dimensional weakly Einstein metric
that is a nontrivial solution to the critical point equation is Einstein (cf. [12]).
More recently, Baltazar-Silva-Oliveira [1] classified a four dimensional weakly
Einstein manifold with Miao-Tam critical metric under some assumptions on
scalar curvature.

In the present paper, we study odd-dimensional manifolds with weakly Ein-
stein metrics. First we consider a Sasakian manifold admitting a weakly Ein-
stein metric and obtain the following result.

Theorem 1.1. Let M?"*! be a weakly Einstein Sasakian manifold. Then the
scalar curvature s satisfies

—6 <s<6, for n=1,;
—2n(2n + I)M <s<2n(2n+1), for n>=2,

4n2—4n—1

and the right equality holds if and only if M is a conformal flat Einstein man-
ifold.

On the other hand, we observe that a remarkable class of contact metric
manifolds is a (k, p)-space, originally introduced by D. E. Blair, T. Koufogior-
gos and V. J. Papantoniou in [4], whose curvature tensor satisfies

(2) R(X,Y)§ = r(n(Y)X —n(X)Y) + p(n(Y)hX —n(X)hY)

for any vector fields X,Y, where x and p are constants and h := %ﬁg(i) is a
self-dual operator. Moreover, Blair et al. proved the following classification
theorem.

Theorem 1.2 ([4, Theorem 3]). Let M be a 3-dimensional (k, p)-manifold.
Then k < 1. If Kk = 1, then h = 0 and M is a Sasakian manifold. If Kk <
1, then M is locally isometric to one of the unimodular Lie groups SU(2),
SL(2,R), E(2),E(1,1) with a left-invariant metric.

Moreover, this structure can occur on SU(2) or SO(3) when 1—A—p/2 >0
and 1+ X —pu/2 > 0, on SL(2,R) or O(1,2) when 1 — X\ — /2 < 0 and
I+XA—p/2>00r1—-XA—p/2<0and 1+ X—pu/2 <0, on E(2) when
1—=XA—=p/2 =0 and p < 2, including a flat structure when p = 0, and on
E(1,1) when 14+ A —u/2=0 and p > 2.

For a non-Sasakian (k, p)-manifold M, Boeckx [5] introduced an invariant

g

1—r

Iy =

and proved the following conclusion:
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Theorem 1.3 ([5, Corollary 5]). Let M be a non-Sasakian (k, u)-space. Then
it 1s locally isometric, up to a D-homothetic transformation, to the unit tangent
sphere bundle of some space of constant curvature (different from 1) if and only
if Ing > —1.

In view of Theorem 1.2 and Theorem 1.3, we obtain:

Theorem 1.4. A 3-dimensional weakly Einstein contact metric (k, u)-manifold
for K < 1 is flat, or is locally isomorphic to the Lie group SU(2), SL(2,R),
E(1,1) endowed with a left-invariant metric.

For the dimensions > 5 there are no weakly FEinstein metrics on contact
metric (k, p)-manifolds with 0 < k < 1. If M*"*1(n > 1) is a weakly Ein-

n—24v/9n2—-16n+8

stein contact metric (K, pv)-manifold with k < 0, then p > or

2n—1
—2—1/9n2—16n+8 : —2—1/9n2—16n+8 :
p < B=2NIntlOntS Iy particular, when p < B=2P0AO0ES CAT s Jocally

isometric, up to a D-homothetic transformation, to the unit tangent sphere
bundle of some space of constant curvature.

Finally, we notice that Endo considered another class of odd-dimensional
manifolds, which are said to be almost cosymplectic (k, u)-manifolds, and it
is proved that x < 0 and the equality holds if and only if the almost cosym-
plectic (k, p)-manifolds are cosymplectic (cf. [10]). Since Blair [5] proved that
a cosymplectic manifold is locally the product of a Kéahler manifold and an
interval or unit circle S', we are only require to consider the case where x < 0.
For an almost cosymplectic (k, u)-manifold with x < 0, if it is equipped with a
weakly Einstein metric, we obtain the following conclusion.

Theorem 1.5. A weakly Finstein almost cosymplectic (k, u)-manifold for k <
0 is locally isomorphic to a solvable non-nilpotent Lie group G endowed with
an almost cosymplectic structure, where A\ = \/—k.

In order to prove these conclusions, in Section 2 we recall some basic concepts
and formulas. The proofs of theorems will be given in Section 3, Section 4 and
Section 5, respectively.

2. Preliminaries
2.1. Weakly Einstein metrics

In a local coordinate system the components of the (0,4)-Riemannian cur-
vature tensor are given by R, = g(R(e;, ej)er,e;). Throughout the paper
the Einstein convention of summing over the repeated indices will be adopted.
The Ricci tensor Ric is obtained by the contraction (Ric)j;C = Rj, = g”Rijkl.
s = ¢"*R;, will denote the scalar curvature and (Roic)ik = Rix — 2gir the
traceless Ricci tensor.

We say that a Riemannian manifold (M™,g) is weakly Einstein if the Rie-
mannian tensor R satisfies (1), i.e.,

5 _ |RP
Rij = Y
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for an orthonormal frame {e;},i = 1,2,...,n, where the 2-tensor Rij is defined
as Rij = Ripq'r‘ijqT and |R‘2 = RijklRijkl~

On an n-dimensional Riemannian manifold (M™,g) for n > 3, the Weyl
tensor is defined by

1
Wikt = Rijr + m(gikle — guRjk — gjuRi + gjiRir)
(3) s
- m(gﬂgik = Gigjk)-

Here, we remark that the curvature tensor of Blair [3] is different from ours by
a sign. It is well-known that the Weyl tensor W identically vanishes for n = 3.
From (3), we conclude (see [12, Eq. (6)])

252
n(n—1)

4 :.
(4) R = + | Ricl? + W/,
n—2
where s denotes the scalar curvature of M and Ric = Ric — 2g is the traceless
Ricci tensor.

2.2. Almost contact manifolds

In the following we suppose that M is a (2n 4 1)-dimensional smooth man-
ifold. An almost contact structure on M is a triple (¢,&,n), where ¢ is a
(1,1)-tensor field, £ a unit vector field, called Reeb vector field, n a one-form
dual to £ satisfying ¢? = —I +n® & nod =0, o & = 0. A smooth manifold
with such a structure is called an almost contact manifold.

A Riemannian metric g on M is called compatible with the almost contact
structure if

9(¢X,0Y) = g(X,Y) —n(X)n(Y), g(X,€&) =n(X)

for any X,Y € X(M). An almost contact structure together with a compatible
metric is called an almost contact metric structure and (M, ¢,£,n, g) is called
an almost contact metric manifold. Such an almost contact metric manifold is
called a contact metric manifold if dn = w, where w denotes the fundamental
2-form on M defined by w(X,Y) := g(¢X,Y) for all X,Y € X(M). An almost
contact structure (¢,&,n) is said to be normal if the corresponding complex
structure J on M xR is integrable. If a contact metric manifold M is normal, it
is said be a Sasakian manifold. For a Sasakian manifold, the following equations
hold ([3]):

(5) R(X, V)¢ =n(Y)X —n(X)Y,
(6) Q& =2n¢.

Here @ is the Ricci operator defined by Ric(X,Y) = g(QX,Y) for any vectors
X,Y.
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Now we recall that there is an operator h = %Lg(b which is a self-dual
operator. For a contact metric manifold, it is proved the following relations [4]:

trace(h) =0, h& =0, oh=—he¢, g(hX,Y)=g(X,hY), VXY € X(M).

We notice that the above formulas also hold in almost cosymplectic manifolds
(see [9]).

As the generalization of the condition R(X,Y)¢ = 0, Blair et al. defined a
so-called (k, p)-nullity distribution on a contact metric manifold:

Nk, p) :={Z € T,M|R(X,Y)Z = r(g(Y, 2)X — g(X,2)Y)
+u(g(Y, 2)hX — g(X, Z)hY)}

for two real numbers k, i € R (see [4]). A contact metric manifold is called a
contact metric (k, p)-manifold if the Reeb vector field £ belongs to the (k, u)-
nullity distribution, namely the condition (2) is satisfied.

Let (M, ¢,&,m) be an almost contact metric manifold. If the fundamental
2-form w and 1-form 7 are closed, then M is called an almost cosymplectic
manifold. Moreover, if M is normal, it is said to be cosymplectic. An almost
cosymplectic (k, p)-manifold is an almost cosymplectic manifold satisfying (2).
This class of almost contact manifold was firstly considered in [10]. In particu-
lar, any cosymplectic manifold is an almost cosymplectic (x, p)-manifold with
k =0 and any p. Endo proved that if K # 0 any almost cosymplectic (k, u)-
manifolds are not cosymplectic ([10]). When x < 0 and p = 0, Dacko in [§]
proved that M is necessarily an almost cosymplectic manifold with Kéahlerian
leaves, moreover gave a full description of the local structure of this class.

We briefly recall the structure, referring to [8] for more details. Let A be
a real positive number and g, be the solvable non-nilpotent Lie algebra with
basis {£, X1,...,Xn, Y1,...,Y,} and non-zero Lie brackets

for each i € {1,...,n}. Let G be a Lie group whose Lie algebra is g and let
(¢,€,7,9) be the left-invariant almost cosymplectic structure defined by

g(lexj):g(Y;a}/]):(szjv g(XZa}/]):()) g(f,Xz):g(§7}/¢):0,
Theorem 2.1 ([8, Theorem 4]). An almost cosymplectic (k,0)-manifold for

some k < 0 is locally isomorphic to the above Lie group G endowed with the
above almost cosymplectic structure, where A = v/—k.

Throughout this paper we write the indices 4, j, k,1€{0,1,2,...,2n}, a,b,¢,d
e{1,2,....2n},a,B,v,6 € {1,2,...,n}and A, B,C,D € {n+1,n+2,...,2n}.
Write

hij = g(hei,e;), Rijor = g(R(ei, e5)€,ex), Ric(§,€) = Roo = Rioos-
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3. Proof of Theorem 1.1

In this section we assume that M is a 2n + 1-dimensional Sasakian manifold
and {e; 2220 is a local orthonormal frame of M such that eg = &, e,4; = ¢e; for
1=1,2,...,n.

Using (5) and (6), it follows from (3) that

2n—1

(97190 — 9ag50)
2n(2n — 1) g;519i0 — 9ilg;0

1 S
s )]
{ 51\ 2"~ 5 )| (g509u = giogs)
1
+ m(giOle — gjoRi).
Since W is totally trace-free, we have

Wijor = Rijor + (gioRji — gauRjo — gjoRi + gjiRio)

WijaoWijao = {1 - 2n17 1 (271 - %)] (9j09ia — 9i09ja)Wijoa
+ %17_1(9i03ja — gj0Ria)Wijoa
(8) = {1 BT <2n - %)] (Wro0agba — Woboagba)
Qn%l(WOjOaRja — Wiooa Ria)
=2 {1 T oamn—1 (2” - %)] Waooa + g7 Wotoa Rsa
- 2n27 1 {1 B 2n17 1 <2n B %)}RM * ﬁ&i

=R ey

2 o ]
2 (—4n? +|Ric]? )
+(2n71)2( | Riel” 4 5
2 oo 52
== _ - 25— 2n(2 1]
(2n — 1) [|ch\ a1 T2 L)

Here we have used R,, = s — 2n and Ric = Ric — ﬁ
On the other hand, using (5) we directly compute
R(&,€) = RoijrRoiji = (90;9ik — goigik) Rijor
= Rio0; — Rojo; = 2Roo = 4n.
Therefore for a 2n + 1-dimensional contact metric manifold, (4) should become

1 252

4n =
©) T ot (2n(2n+ nta

4 > 12 2
—|Ricl> + W] )
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It is well know that when n =1, W = 0, then

° 32
4|Ric]* =12 — 3

Thus we have
—6<s5<6.
Next we assume n > 2 and the following lemma is clear.

Lemma 3.1.
(WI? = 2Wija0Wijao + WacabWacab-

713

Proof. For the indices i,7,k,l € {0,1,2,...,2n} and a,b,c,d € {1,2,...,2n},

we directly compute
W12 = WijuWijk = WijaWijor + WijaWijal
= Wij0tWijor + WijaoWijao + WijasWijab
= 2Wija0Wija0 + Wijap Wijab
= 2Wija0Wijao + Waoas Waoas + Wocas Wocab + Wacas Wacan
= 2Wija0Wijao + 2Waoas Waoas + Wacas Wacan
= 2Wija0Wija0 + WacasWacab
since Wagap = 0 for any a,b,d € {1,2,...,2n} by (7).

By Lemma 3.1, substituting (8) into (9) gives

An(2n +1) 257 4 |Ric|® + 1 {|R°‘ 2
n(2n = ic —— || Ric
n(2n+1) 2n-1 (2n —1)?
2
95— 2m(2 1} Wocas Wicab-
2?1(27’L+1)+ S TL( n+ ) + WacabWdcab
Since Wyeas Wacap = 0, we conclude
An? —4n —1 .
0> %32 + 8n|Ric|? + 85 — 4n(2n + 1)(4n? — 4n + 3),
that is,
o An? —4n —1
4n|Ric|® < —%52 — 45+ 2n(2n + 1)(4n? — 4n + 3).
Hence )
dn® —4n -1 , 9
-5 —4 2n(2 1)(4n* — 4 3) = 0.
2n(2n+1)8 s+2n(2n+ 1)(4n n+ 3)
Because n > 2, we obtain
4n? —4n +3
—2n(2 1)————— < s < 2n(2 1).
n(2n + )4n274n71 s<2n(2n+1)

Moreover, when the right equality holds, from (9) we find W = 0, i.e., M is

conformal flat. We complete the proof of Theorem 1.1.
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4. Proof of Theorem 1.4

In this section we suppose that (M?2"*1 ¢ n, £, g) is a contact metric (k, u)-
manifold. It is proved that k < 1 and if Kk = 1, then h = 0, i.e., M is a Sasakian
manifold by Theorem 1.2. Thus we only need to consider the case where k < 1.
For the contact metric (x, u)-manifold the following lemma was given.

Lemma 4.1 ([13]). Let (M1 ¢, n, €, g) be a contact metric (k, u)-manifold
with k < 1. For every p € M, there exist an open neighborhood W of p and
orthonormal local vector fields X;, ¢ X;, and § fori =1,...,n, defined on W,
such that
hX; = 2X;, hoX;=-XpX;, h&E=0
fori=1,...,n, where A =+/1— k.
By Lemma 4.1, we can take a local orthonormal frame {ey = £, e1,...,e2,} of
M such that e, ; = ¢e; and he; = Ae; and he,; = —Aepy; fori=1,2,... n.
If M admits a weakly Einstein metric, by (1) we have
Y 1
10 R = 2,
(10) (€8 = o7
We first compute R(€,€). Since h? = (k — 1)¢? (see [14, Eq. (3.3)]), by (2) we
obtain
R(&,€) = Rijok Rijor = [k(g0j9ik — 9oigjx) + 11(gojhix — goihjr )| Rijok
= 26Ri00i + 21(Rioorhik)
= 2K Roo + 2p[r(gir. — goigok) + p(hir) P
=dn(k? — p*(k — 1)).

We can prove the following lemma.

(11)

Lemma 4.2.
|R|* = 2R(&,€) + RogsyRapsy + 4RapsalRapsa + 2RapapRapan
+4RoagBRasss + 4RABacRaBac + RapcpRaBCD.
Proof. First, similar to the proof of Lemma 3.1 we derive
(12) |R)? = RijuiRijri = 2RijaoRijao + RaveaRavea = 2R(€,€) + Raped Ravea-
Moreover, we compute
RegavReday = RadabRadab + RadabRadab
= RogavRopab + RasavRasar + RacaRaaay + RaBasRaBab
= RopsvRapsb + RapavRapas + 2(RaapsRaapss + RaaByRaaBy)
+ RapabRaBab + RapcvRascn
= RapoyRapsy + Rapsallapsa + RapasRapas + RapapRapan
+ 2(RaapsRasps + RaappRasps + RaapsRaaBs
+ RoapcRaaBc) + RapasRaBas + RapacRaBac
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+ RapcallaBca + RapcpRapep
= RopsyRapsy +4RagsaRapsa + 2RapaBRasAB
+4RyapBRossB +4RaBacRaBac + RapcpRAaBCD.
We complete the proof the lemma by substituting the above formula into (12).
(I

Proposition 4.3 ([4, Theorem 1]). Let M?"*1(¢,n,&,g) be a contact metric
manifold with belonging to the (k,u)-nullity distribution. If k < 1, M+l
admits three mutually orthogonal and integrable distributions D(0), D(A) and
D(—X) determined by the eigenspaces of h, where A\ = /1 — k. Moreover,

R(Xx, YA)Zox = (k= p)[g(#Yx, Z-x) 9 X\ — g(¢Xx, Z_2) Y],
R(X_5,Y_\)Zx = (5 — p)[g(@Y_x, Zx)p X\ — g(¢X_x, Z))pY_)],
R(X\, Y_))Z_x = kg(dXx, Z_2)pY_\ + pg(p X, Y_\)9Z 1,

R(Xx,Y_X)Zx = —kg(9Y_x, Zx)d X\ — pg(@Y_x, X2)$Zx,

R(X\,YA)Zx = [2(1 4+ A) — pl[g(Yx, Zx) Xx — g(X, Z3)Y)],
R(X_5,Y_)Zx =21 = A) = pJ[g(Yox, Z-x) Xx — (X5, Z-2) Y-,
where X, Yx,Zx € D(A\) and X_5,Y_x,Z_ € D(=)).

By Proposition 4.3, we can get
Rapsy = [2(1L+ A) — p)(9869ar — 9as98+),
Ropsa =0,
Ropap = (K — p)(9ga9aB — 9aA95p):
Raagp = —kgz39aB — M97,955
RaBac =0,
Rapcep = [2(1 = A) — pul(98cgap — 9acysp)-
Hence
RZ 45, =2n(n— 1)[2(1+ \) — p)?,
Ri&m =0,
RiBAB =2n(n—1)(k — /}’)2a
R% 455 = (K> 4+ p*)n® + 2nkp,
Rpac =0,
R,%xBCD =2n(n—1)2(1-A) - M]Q-
Therefore by Lemma 4.2 and (11) we conclude
[R|> = 8n(k* — (k — 1)) + 2n(n — 1)[2(1 + A) — uJ® + 4n(n — 1)(k — p)?
(13) +4[(K* + p?)n® + 2nkp] + 2n(n — 1)[2(1 = X) — p)?.
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Substituting (13) into (10) and using (11), we have
(14) —(2n — )Pk = (n— D41+ A?) + p? — 4p] — 2(n — 2)kp.

Now we divide into two cases to discuss.

Case I: n = 1. Then (14) implies (u + 2)ux = 0. If Kk = p =0, M is flat
(see [3, Theorem 7.5]).

By Theorem 1.2, when k = 0, # 0, then 1+ A -5 =2-8 1 - -5 = —L,
and M is locally isometric to the Lie group SU(2), SL(2,R) or E(1,1).

When 0 # s < 1and =0, we know 1 +A—45 =1+X > 0. When 0 # x < 1
and = —2, then 1+ XA — /2 = 2+ XA > 0. Both cases imply that M is locally
isometric to the Lie group SU(2) or SL(2,R) by Theorem 1.2.

Case II: n > 1. Since \> = 1 — k, it follows from (14) that

(15) [—p2(2n — 1) +2u(n — 2) +4(n — D]k = (n — D[4+ (u — 2)?].
Moreover, when 0 < k < 1, we find
[—p2(2n — 1) +2u(n — 2) +4(n — 1)] >(n — D)4+ (u — 2)%.
That is,
(3n —2)u* —2(3n —4)u+4(n—1) <0.

Because n > 1, it is easy to prove that the above inequality has no solution.
When & < 0, Equation (15) implies

—12(2n — 1) 4+ 2u(n — 2) +4(n — 1) <0,

that is,
- n—2+v9n% —16n+8 or < anfm.
2n—1 2n—1
In particular, when y < 2=2=vIn"—16n+8 W, we know p < 0 since n > 1. Hence

the invariant Ip; (see introduction) must be greater than —1. Therefore, we
complete the proof by Theorem 1.3.

5. Proof of Theorem 1.5

In this section let us assume that (M2 ¢ n, £, g) is an almost cosymplectic
(k, p)-manifold, namely an almost cosymplectic manifold satisfies (2). First the
following relations are provided (see [6, Eq. (3.22), (3.23)]):

(16) W = k¢?,Q = jih + 20 ® €.

In particular, Q¢ = 2nk€ because of hé = 0. From (16), trace(h?) = —2nk.
Furthermore, since k¢?> = h?, k < 0 and the equality holds if and only if
the almost cosymplectic (k, u)-manifolds are cosymplectic. Therefore, we will
concentrate on the case k < 0.

Since trace(h?) = —2nk, as the calculation of (11), making use of (2) we
obtain

(17) R(&,€) = 4n(x® — p°k).
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For an almost cosymplectic (&, p)-manifold with £ < 0, we also have a similar
lemma to Lemma 4.1.

Lemma 5.1. Let (M?"*1 ¢, 1, g) be an almost cosymplectic (k, j1)-manifold
with k < 0. For every p € M, there exist an open neighborhood W of p and
orthonormal local vector fields X;, ¢ X;, and € for i =1,...,n, defined on W,
such that

hX; = 2X;, hoX;, =—-X\oX;, hE=0
fori=1,...,n, where A = \/—k.
Thus we can also take a local frame {e;} of M as in Section 4. In this section
we will adopt the same index as Section 4. In the following we compute the

square |R|? of curvature tensor R. In order to do that, we notice the following
proposition.

Proposition 5.2 ([7, Theorem 3.7]). Let M be an almost cosymplectic (k, pt)-
manifold of dimension greater than or equal to 5 with k < 0. Then its Riemann
curvature tensor can be written as

R=—KkR3 — R52 — R,
where
Ry(X,Y)Z = n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)E,
Re(X,Y)Z = n(X)n(Z)hY —n(Y)n(Z2)hX + g(hX, Z)n(Y )¢
— g(hY, Z)n(X)E,
R52(X,Y)Z = g(¢hY, Z)phX — g(ohX, Z)phY
for any vector fields X,Y, Z.

In view of Lemma 5.1, he, = Aje, with A\, = ++/—k, thus by Proposition
5.2, we know

(18) Rapeqd = _(hbéhaﬁ - haEth) = _AbAa[nggaE - gangg],

where h,7 = g(heq, peq) and gyz = g(ew, pe.) for all a,b,c,d € {1,2,...,2n}.
Making use of (18), we have

Ropgsy =0, Ragsa =0,
Ropap = —k(952905F — 94795E)-
RoagB = K9 45945
Rapac =0, Rapcp =0.
Hence
Riﬁ&’y =0, RiBzSA =0,
R?xﬁAB = 2n(n — 1)x?,

2 2,2
RaAﬁB—nff,
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R,2413ac =0, R,anBCD =0.

Hence we derive from (17) and Lemma 4.2 that

By

|R|? = 8n(k? — k) + 2622n(n — 1) + 4k>n? = 4n[(2n + 1)x* — 2u°k].
(10), we have
(k% — kp?)(2n + 1) = (2n + 1)r? — 243k,

This shows p = 0 since k < 0.
We complete the proof Theorem 1.5 by Theorem 2.1.
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