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WEAKLY EINSTEIN CRITICAL POINT EQUATION

Seungsu Hwang and Gabjin Yun

Abstract. On a compact n-dimensional manifold M , it has been con-
jectured that a critical point of the total scalar curvature, restricted to
the space of metrics with constant scalar curvature of unit volume, is
Einstein. In this paper, after derivng an interesting curvature identity,
we show that the conjecture is true in dimension three and four when g is
weakly Einstein. In higher dimensional case n ≥ 5, we also show that the
conjecture is true under an additional Ricci curvature bound. Moreover,
we prove that the manifold is isometric to a standard n-sphere when it
is n-dimensional weakly Einstein and the kernel of the linearized scalar
curvature operator is nontrivial.

1. Introduction

Let M be a compact n-dimensional orientable manifold and M1 be the set
of all smooth Riemannian metrics of unit volume on M . It is well known that
the critical points of the total scalar curvature S on M1 given by

S(g) =

∫

M

sg dvg

are Einstein metrics [2]. Here, sg is the scalar curvature, and dvg is the volume
form determined by the metric and orientation.

Consider the space C of constant scalar curvature metrics with unit volume.
Due to N. Koiso [4], it turns out that g is a critical point of S restricted to C
if there exists a function f such that

(1) zg = s′∗g (f).

We call (1) the critical point equation, or the CPE. Here, zg is the traceless
Ricci tensor of g, and s′∗g is given by

s′∗g (f) = Dgdf − (∆gf) g − frg,(2)
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where Dgd and ∆g denote the Hessian and (negative) Laplacian, respectively,
and rg is the Ricci curvature of g. For the remainder of this paper, we denote
sg by s, rg by r, zg by z, and the Riemann curvature tensor Rg and the Weyl
curvature tensor Wg by R and W , respectively, when there is no ambiguity.

When g is Einstein, (1) is equivalent to Obata’s equation; hence, such a
solution is isometric to a standard n-sphere [6]. It has been conjectured that
this is the only possible case [2]. We refer to this conjecture as the Besse
conjecture.

There are a few known results on Besse conjecture when the solution function
f to the CPE is nontrivial. Lafontaine showed that the conjecture holds if a
solution metric g is conformally flat and the kernel of s′∗g is nontrivial, or
ker s′∗g 6= 0 [5]. Recently, Yun, Chang, and Hwang showed that the Besse
conjecture is true for Riemannian manifolds with harmonic curvature [8].

On the other hand, we observe that there are non-Einstein metrics that are
critical for the full Riemannian curvature functional on M1 defined by

g 7→

∫

M

|Rg|
2 dvg.(3)

It is well known that an Einstein metric is critical to the functional given in (3)
if and only if the Riemann curvature tensor R satisfies the following equation
[1]:

Ř =
1

n
|R|2g.(4)

Here, Ř is defined by

Ř(X,Y ) =

n∑

i,j,k=1

R(X, ei, ej, ek)R(Y, ei, ej , ek)

for an orthonormal frame {ei}, i = 1, . . . , n. In [3], metrics satisfying (4) in four
dimensional space are referred to as weakly Einstein metrics. For simplicity,
we call (4) the n-dimensional weakly Einstein metrics.

Little is known about the weakly Einstein condition. Clearly not every
manifold is weakly Einstein; for example, R×S3 is not weakly Einstein. When
dimM = 4, an Einstein metric is automatically weakly Einstein. However,
the converse does not hold; a standard product metric on S

2 × H
2 is weakly

Einstein, but not Einstein. Moreover, when dimM > 4, a generic Einstein
metric does not necessarily satisfy the weakly Einstein condition (4).

In light of these facts, it is natural to ask whether an n-dimensional weakly
Einstein metric that is a nontrivial solution to the CPE is Einstein. Our main
result confirms that this is true when n ≤ 4, and with additional Ricci curvature
bound for n ≥ 5.

Theorem 1.1. Let (g, f) be a nontrivial solution to the CPE on a compact

n-dimensional manifold M , n ≥ 3. Suppose that g is n-dimensional weakly

Einstein. For n ≥ 5, we assume in addition that the Ricci curvature in ∇f
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direction is bounded below by rg(∇f,∇f) > −
sg

n−4 | ∇f |2. Then the Besse con-

jecture holds.

To prove Theorem 1.1, we need the following interesting curvature identity.

Theorem 1.2. Let (Mn, g) be a Riemannian manifold. Then

Ř−
1

n
|R|2g = W̌ −

1

n
|W|2g +

2n

(n− 2)2

(

z ◦ z −
1

n
|z|2g

)

+
4

n− 2

(

R̊r −
1

n
|r|2g

)

.

Moreover, we consider the condition ker s′∗g 6= 0 on a compact Riemannian
manifold (M, g). Then we have the following result.

Theorem 1.3. Assume that ϕ ∈ ker s′∗g \ {0} on a compact Riemannian man-

ifold (M, g). Suppose that g is n-dimensional weakly Einstein. For n ≥ 5, we
assume in addition that the Ricci curvature in ∇ϕ direction is bounded below by

rg(∇ϕ,∇ϕ) > −
sg

n−4 |∇ϕ|2. Then (M, g) is isometric to a standard n-sphere.

We remark that if a function ϕ on M satisfies ϕ ∈ ker s′∗g \ {0}, by (2)

Dgdϕ− (∆gϕ) g − ϕrg = 0.

For the detail about this equation, refer to [9].
The remainder of this paper is organized as follows. In Section 2, we in-

vestigate the relationship between the CPE and weakly Einstein metrics. In
Section 3, we prove our main result. Finally in Section 4, we discuss compact
Riemannian manifolds when the kernel of s′∗g is nontrivial.

2. Weakly Einstein metrics

In this section, we study the CPE and weakly Einstein metrics. To begin,
we fix our convention. The Riemann curvature tensor R is defined by

R(X,Y )Z = DY DXZ −DXDY Z +D[X,Y ]Z

and the Ricci curvature r is defined by

r(X,Y ) =

n∑

i=1

〈R(X, ei)Y, ei〉

for a local orthonormal frame {ei}, i = 1, . . . , n, as in [2]. Moreover, the
Laplacian of the function f is defined by ∆f = −δdf ; note that there is a sign
difference between our Laplacian and the one found in [2].

From the definition of Ř and the well know algebraic decomposition of the
Riemann tensor R, we deduce that

Ř =
2

(n− 2)2
(
(n− 4)z ◦ z + |z|2g

)
(5)
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+
2s2

n2(n− 1)
g + W̌ +

4s

n(n− 1)
z +

4

n− 2
W̊z,

and

|R|2 =
2s2

n(n− 1)
+

4

n− 2
|z|2 + |W|2.(6)

Here, the composition h ◦ k of two symmetric 2-tensors h and k is defined by

h ◦ k(X,Y ) =

n∑

i=1

h(X, ei)k(Y, ei)

for any vectors X and Y and orthonormal frame {ei}, i = 1, . . . , n, and W̊z is
defined by

(W̊z)(X,Y ) =

n∑

i=1

z(W(X, ei)Y, ei).

Similar to Ř, W̌ is defined by

W̌(X,Y ) =
∑

i,j,k

W(X, ei, ej, ek)W(Y, ei, ej , ek).

Therefore, Theorem 1.2 follows from (5) and (6). Note that Theorem 1.2 holds
even when M is not compact.

Next, we investigate some properties of the CPE required to prove our main
result. Assume that (M, g, f) is a nontrivial solution to the CPE. The equation
(2) can be rewritten as

(1 + f)z = Ddf +
sf

n(n− 1)
g.(7)

The differential operator dD of C∞(S2M) into Λ2M ⊗ T ∗M is defined by

dDη(X,Y, Z) = (DXη)(Y, Z)− (DY η)(X,Z)

for sections of symmetric 2-tensors η ∈ C∞(S2M). Note that the product of a
1-form β and symmetric 2-tensor η is defined by β ∧ η(x, y, z) = β(x)η(y, z)−
β(y)η(x, z). Applying dD to (7) enables us to obtain the following.

Lemma 2.1 ([8]). Let (g, f) be a solution to the CPE. Then

(1 + f) dDr = ĩ∇fW −
n− 1

n− 2
df ∧ z −

1

n− 2
i∇fz ∧ g.(8)

Here, we define the interior product ĩ of a 4-tensor S by

ĩξS(X,Y, Z) = S(X,Y, Z, ξ)

for a vector ξ; iX is the usual interior product with respect to X.
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Refer to [8, Lemma 3.1] for the proof of (8). Consequently,

(n− 2)2

(n− 1)2

∑

i,j

|W(ei, N, ej,∇f)− (1 + f) dDr(ei, N, ej)|
2

= |∇f |2
(

|z|2 −
n

(n− 1)2
α2 −

n(n− 2)

(n− 1)2
z ◦ z(N,N)

)

,(9)

where N = ∇f/|∇f | and α = z(N,N). In particular, we :

Lemma 2.2. At non-critical points of f in the set B = f−1(−1),

|z|2 =
n

n− 1
α2 +

(
n− 2

n− 1

)2 ∑

i,j

|W(ei, N, ej , N)|2.

Proof. Substituting the triple (X,∇f,∇f) with X ⊥ ∇f into (8), on the set
B = f−1(−1), we obtain

0 = W(X,∇f,∇f,∇f) = df(X)z(∇f,∇f)− z(∇f,X)|∇f |2,

implying that we have z(X,∇f) = 0 on B. Thus, at non-critical points of f in
B

z ◦ z(N,N) = α2.

The proof follows immediately by combining this equation with (9). �

It should be remarked that critical points of f in B are isolated (c.f. see
Proposition 2.1 in [8]).

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For the proof, we need the following
lemma.

Lemma 3.1. Let (g, f) be a non-trivial solution to the CPE. Suppose that

g is n-dimensional weakly Einstein. When n = 3 or 4, α ≥ 0 on B. If

r(∇f,∇f) > − s
n−4 |∇f |2 for n ≥ 5, then α is again non-negative on B.

Proof. When n = 3, Theorem 1.2 reduces to

Ř−
1

3
|R|2g =

2

3
|z|2g − 2 z ◦ z +

2

3
z.

If the metric is weakly Einstein, then

|z|2g = 3 z ◦ z − z.(10)

By Lemma 2.2, at non-critical points of f in B,

|z|2 =
3

2
α2,(11)

since W ≡ 0 in a three-dimensional manifold. Therefore, by (10) and (11),

3

2
α2 = α,
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implying that α ≥ 0.
When n = 4, Theorem 1.2 reduces to

Ř −
1

4
|R|2g =

s

3
z + 2W̊z,(12)

which recovers identity (4.72) in [2]. Note that W̌ = 1
n |W|2g for n = 4;

this follows from the fact that the Hodge star operator induces a self-adjoint
involution of Λ2M . Since g is weakly Einstein,

W̊z = −
s

6
z.(13)

By introducing normal coordinates {ei}, for any vector ξ tangent to M ,

−
s

6
z(ξ,∇f) = W̊z(ξ,∇f)

= W(ei, ξ, ej ,∇f) z(ei, ej)

= (1 + f) dDr(ei, ξ, ej)z(ei, ej) + 2 z ◦ z(ξ,∇f)−
3

2
df(ξ)|z|2.

In particular, on B we have

−
s

6
z(ξ,∇f) = 2 z ◦ z(ξ,∇f)−

3

2
df(ξ)|z|2.(14)

Recall that z(X,∇f) = 0 for X orthogonal to ∇f on B. Therefore, by (14),
for ξ = N

−
s

6
α|∇f | = 2α2|∇f | −

3

2
|∇f ||z|2,

which implies that

|z|2 =
4

3
α2 +

s

9
α.(15)

On the other hand, by Lemma 2.2,

|z|2 =
4

3
α2 +

4

9

∑

i,j

|W(ei, N, ej, N)|2

on B. Comparing this to (15) gives
s

4
α =

∑

i,j

|W(ei, N, ej , N)|2 ≥ 0.(16)

For n ≥ 5, on B, we have

W̊z(N,N) = −
n− 2

n− 1
|WN |2,

with W̌(N,N) = 2|WN |2. Hence, on B,

n− 1

2n
|W|2 =

n− 4

n− 2
α2 +

2s

n
α+

(n− 2)(n2 − 2n− 2)

n(n− 1)
|WN |2,

which implies that
n− 4

n− 2
α2 +

2s

n
α ≥ 0.
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Therefore, either α ≥ 0 or α ≤ − 2s
n

n−2
n−4 on B. From the assumption on the

lower Ricci curvature bound, we may conclude that α ≥ 0 on B. �

It should be remarked that, as a consequence of (12), if the metric g is

Einstein, then it is easy to see that g is weakly Einstein since z = W̊z =
0. Moreover, when the dimension is four, a result in [3] can be recovered;
specifically,

Ř −
1

4
|R|2g = 2 r ◦ r + 2R̊r − sr − |z|2g.

Now, we are ready to prove our main result. Because of Obata’s result [6],
it suffices to prove that the metric g is Einstein, or equivalently z = 0 on M .
Let M0 be the subset of M defined by M0 = {x ∈ M | f(x) < −1}. From the
identity (cf. see (12) of [8])

div(i∇fz) = (1 + f)|z|2,

and the fact that α ≥ 0 on B by Lemma 3.1, we have

0 ≥

∫

M0

(1 + f)|z|2 =

∫

∂M0

z(∇f,N) =

∫

∂M0

α|∇f | ≥ 0,

implying that
∫

M0

(1 + f)|z|2 = 0.

Therefore,

0 =

∫

M

(1 + f)|z|2 =

∫

M\M0

(1 + f)|z|2,

and thus, we conclude that

z ≡ 0,

or g is Einstein on all of M . This completes the proof of Theorem 1.1.

4. Manifolds with nontrivial kernels

In this section we prove Theorem 1.3. As mentioned in Introduction, if
ϕ ∈ ker s′∗g \ {0} for a compact Riemannian manifold (M, g), then we obtain

ϕz = Dgdϕ+
s ϕ

n(n− 1)
g.(17)

Applying dD to both sides of (17) and using the Ricci identity yield

ϕdDr = ĩ∇ϕW −
n− 1

n− 2
dϕ ∧ z −

1

n− 2
i∇ϕz ∧ g(18)

which appears similar to (8). An argument very similar to that used in the
proof of Theorem 1.1 enables us to prove Theorem 1.3. For a proof of (18),
and more details on the properties of ϕ ∈ ker s′∗g \ {0}, refer to [9].

Finally, we remark that (17) looks like an h-almost gradient Ricci soliton [7].
An h-almost gradient Ricci soliton is a complete Riemannian manifold (M, g)
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with a potential function u : M → R, a solition function λ : M → R, and a
function h : M → R

+, or h : M → R
−, satisfying the equation

rg + hDgdu = λ g.

In particular, even though a non-trivial solution of CPE is not related to an
h-almost gradient Ricci solition, ϕ ∈ ker s′∗g looks like an h-almost gradient
Ricci soliton; it satisfies

rg −
1

ϕ
Ddϕ =

s

n− 1
g(19)

with h = − 1
ϕ and λ = s

n−1 . However, (g, ϕ) of (19) cannot be a non-trivial

h-almost gradient Ricci soliton; the condition h ≥ 0, or h ≤ 0, implies that ϕ
is identically zero due to the fact that ϕ is an eigenfunction of the Laplacian.
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