• Title/Summary/Keyword: third Hankel determinant

Search Result 11, Processing Time 0.019 seconds

UPPER BOUND ON THE THIRD HANKEL DETERMINANT FOR FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE OPERATOR

  • Yavuz, Tugba
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.437-444
    • /
    • 2018
  • Let S denote the class of analytic and univalent functions in the open unit disk $D=\{z:{\mid}z{\mid}<1\}$ with the normalization conditions f(0) = 0 and f'(0) = 1. In the present article, an upper bound for third order Hankel determinant $H_3(1)$ is obtained for a certain subclass of univalent functions generated by Ruscheweyh derivative operator.

ESTIMATE OF THIRD ORDER HANKEL DETERMINANT FOR A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH CARDIOID DOMAIN

  • Singh, Gagandeep;Singh, Gurcharanjit
    • The Pure and Applied Mathematics
    • /
    • v.29 no.4
    • /
    • pp.307-319
    • /
    • 2022
  • The present paper deals with the upper bound of third order Hankel determinant for a certain subclass of analytic functions associated with Cardioid domain in the open unit disc E = {z ∈ ℂ : |z| < 1}. The results proved here generalize the results of several earlier works.

THE THIRD HERMITIAN-TOEPLITZ AND HANKEL DETERMINANTS FOR PARABOLIC STARLIKE FUNCTIONS

  • Rosihan M. Ali;Sushil Kumar;Vaithiyanathan Ravichandran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.281-291
    • /
    • 2023
  • A normalized analytic function f is parabolic starlike if w(z) := zf' (z)/f(z) maps the unit disk into the parabolic region {w : Re w > |w - 1|}. Sharp estimates on the third Hermitian-Toeplitz determinant are obtained for parabolic starlike functions. In addition, upper bounds on the third Hankel determinants are also determined.

HANKEL DETERMINANT PROBLEMS FOR CERTAIN SUBCLASSES OF SAKAGUCHI TYPE FUNCTIONS DEFINED WITH SUBORDINATION

  • Singh, Gagandeep;Singh, Gurcharanjit
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • The present investigation is concerned with the estimation of initial coefficients, Fekete-Szegö inequality, second Hankel determinants, Zalcman functionals and third Hankel determinants for certain subclasses of Sakaguchi type functions defined with subordination in the open unit disc E = {z ∈ ℂ : |z| < 1}. The results derived in this paper will pave the way for the further study in this direction.

Some Coefficient Inequalities Related to the Hankel Determinant for a Certain Class of Close-to-convex Functions

  • Sun, Yong;Wang, Zhi-Gang
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.481-491
    • /
    • 2019
  • In the present paper, we investigate the upper bounds on third order Hankel determinants for certain class of close-to-convex functions in the unit disk. Furthermore, we obtain estimates of the Zalcman coefficient functional for this class.

THIRD ORDER HANKEL DETERMINANT FOR CERTAIN UNIVALENT FUNCTIONS

  • BANSAL, DEEPAK;MAHARANA, SUDHANANDA;PRAJAPAT, JUGAL KISHORE
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1139-1148
    • /
    • 2015
  • The estimate of third Hankel determinant $$H_{3,1}(f)=\left|a_1\;a_2\;a_3\\a_2\;a_3\;a_4\\a_3\;a_4\;a_5\right|$$ of the analytic function $f(z)=z+a2z^2+a3z^3+{\cdots}$, for which ${\Re}(1+zf^{{\prime}{\prime}}(z)/f^{\prime}(z))>-1/2$ are investigated. The corrected version of a known results [2, Theorem 3.1 and Theorem 3.3] are also obtained.

THIRD HANKEL DETERMINANTS FOR STARLIKE AND CONVEX FUNCTIONS OF ORDER ALPHA

  • Orhan, Halit;Zaprawa, Pawel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.165-173
    • /
    • 2018
  • In this paper we obtain the bounds of the third Hankel determinants for the classes $\mathcal{S}^*({\alpha})$ of starlike functions of order ${\alpha}$ and $\mathcal{K}({\alpha}$) of convex functions of order ${\alpha}$. Moreover,we derive the sharp bounds for functions in these classes which are additionally 2-fold or 3-fold symmetric.

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

COEFFICIENT BOUNDS FOR INVERSE OF FUNCTIONS CONVEX IN ONE DIRECTION

  • Maharana, Sudhananda;Prajapat, Jugal Kishore;Bansal, Deepak
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.781-794
    • /
    • 2020
  • In this article, we investigate the upper bounds on the coefficients for inverse of functions belongs to certain classes of univalent functions and in particular for the functions convex in one direction. Bounds on the Fekete-Szegö functional and third order Hankel determinant for these classes have also investigated.

THE SHARP BOUND OF THE THIRD HANKEL DETERMINANT FOR SOME CLASSES OF ANALYTIC FUNCTIONS

  • Kowalczyk, Bogumila;Lecko, Adam;Lecko, Millenia;Sim, Young Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1859-1868
    • /
    • 2018
  • In the present paper, we have proved the sharp inequality ${\mid}H_{3,1}(f){\mid}{\leq}4$ and ${\mid}H_{3,1}(f){\mid}{\leq}1$ for analytic functions f with $a_n:=f^{(n)}(0)/n!$, $n{\in}{\mathbb{N}},$, such that $$Re\frac{f(z)}{z}>{\alpha},\;z{\in}{\mathbb{D}}:=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$$ for ${\alpha}=0$ and ${\alpha}=1/2$, respectively, where $$H_{3,1}(f):=\left|{\array{{\alpha}_1&{\alpha}_2&{\alpha}_3\\{\alpha}_2&{\alpha}_3&{\alpha}_4\\{\alpha}_3&{\alpha}_4&{\alpha}_5}}\right|$$ is the third Hankel determinant.