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ESTIMATE OF THIRD ORDER HANKEL DETERMINANT FOR
A CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS

ASSOCIATED WITH CARDIOID DOMAIN

Gagandeep Singh a, ∗ and Gurcharanjit Singh b

Abstract. The present paper deals with the upper bound of third order Hankel
determinant for a certain subclass of analytic functions associated with Cardioid
domain in the open unit disc E = {z ∈ C : |z| < 1}. The results proved here
generalize the results of several earlier works.

1. Introduction

Let us denote by A, the class of analytic functions of the form f(z) = z +∑∞
k=2 akz

k, defined in the open unit disc E = {z ∈ C : |z| < 1} and normalized by
the conditions f(0) = f ′(0)−1 = 0. S denotes the subclass of A consists of univalent
functions in E. The most remarkable result in the theory of univalent functions was
Bieberbach’s conjecture, established by Bieberbach [4]. It states that, for f ∈ S,
|an| ≤ n, n = 2, 3, ... and it remained as a challenge for the mathematicians for a
long time. Finally, L. De-Branges [6], proved this conjecture in 1985. During the
course of proving this conjecture, various results related to the coefficients were come
into existence and it gave rise to some new subclasses of S.

Let f and g be two analytic functions in E. We say that f is subordinate to
g (denoted as f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1
for z ∈ E such that f(z) = g(w(z)). Further, if g is univalent in E, then this
subordination leads to f(0) = g(0) and f(E) ⊂ g(E).

We first present an overview of some basic classes, in order to introduce our class:

S∗ =
{

f : f ∈ A, Re

(
zf ′(z)
f(z)

)
> 0, z ∈ E

}
, the class of starlike functions.
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K =
{

f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
, the class of convex functions.

Reade [25] introduced the concept of close-to-star functions. The class of close-
to-star functions generally denoted by CS∗, consists of functions f ∈ A such that

Re

(
f(z)
g(z)

)
> 0, g ∈ S∗.

R = {f : f ∈ A, Re(f ′(z)) > 0, z ∈ E}, the class of bounded turning functions
introduced and studied by MacGregor [15].

R
′

=
{

f : f ∈ A, Re

(
f(z)

z

)
> 0, z ∈ E

}
, the subclass of close-to-star functions

studied by MacGregor [16].
Later on, Murugusundramurthi and Magesh [20] studied the following unified

class:

R(α) =
{

f : f ∈ A, Re

(
(1− α)

f(z)
z

+ αf ′(z)
)

> 0, z ∈ E

}
.

Particularly, R(1) ≡ R and R(0) ≡ R′
.

For f ∈ A, the relation f ≺ 1+ 4
3z + 2

3z2 means that f lies in the region bounded
by the cardioid given by

(9x2 + 9y2 − 18x + 5)2 − 16(9x2 + 9y2 − 6x + 1) = 0.

Various subclasses of analytic functions have been studied by subordinating to
different kind of functions. Malik et al. [17, 18], Sharma et al. [27] and Raza et al. [24]
studied certain classes af analytic functions associated with cardioid domain. Shi et
al. [28] studied the classes S∗car, Kcar and Rcar associated with cardioid domain.

Motivated by these works, we define the following class of analytic functions by
subordinating to 1 + 4

3z + 2
3z2.

Definition 1.1 A function f ∈ A is said to be in the class Rα
car if it satisfies the

condition

(1− α)
f(z)

z
+ αf ′(z) ≺ 1 +

4
3
z +

2
3
z2.

We have the following observations:

(i) R0
car ≡ R′

car.
(ii) R1

car ≡ Rcar.
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In 1976, Noonan and Thomas [21] stated the qth Hankel determinant for q ≥ 1 and
n ≥ 1 as

Hq(n) =

∣∣∣∣∣∣∣∣

an an+1 ... an+q−1

an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣
.

For q = 2, n = 1 and a1 = 1, the Hankel determinant reduces to H2(1) = a3−a2
2,

which is the well known Fekete-Szegö functional. Fekete and Szegö [8] then further
generalised the estimate |a3 − µa2

2| where µ is real and f ∈ S.
Also for q = 2, n = 2, the Hankel determinant takes the form of H2(2) = a2a4−a2

3,
which is Hankel determinant of order 2.

One more very useful functional is Jn,m(f) = anam − am+n−1, n,m ∈ N − {1},
which was investigated by Ma [14] and is known as generalized Zalcman functional.
The functional J2,3(f) = a2a3 − a4 is a specific case of the generalized Zalcman
functional. Various authors computed the upper bound for the functional J2,3(f)
over different subclasses of analytic functions as it is very useful in establishing the
bounds for the third Hankel determinant.

Furthermore, for q = 3, n = 1, the Hankel determinant yields

H3(1) =

∣∣∣∣∣∣

a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣
,

which is the third order Hankel determinant.
For f ∈ S and a1 = 1, we have

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2),

and after applying the triangle inequality, it yields

(1) |H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|.
Extensive work has been done on the estimation of second Hankel determinant by

various authors including Noor [22], Ehrenborg [7], Layman [11], Singh [29], Mehrok
and Singh [19] and Janteng et al. [9]. It is little bit complicated to establish the up-
per bound for the third order Hankel determinant. It was Babalola [3], who firstly
obtained the upper bound of third Hankel determinant for the classes of starlike
functions, convex functions and the class of functions with bounded boundary rota-
tion. Later on, a few researchers including Shanmugam et al. [26], Bucur et al. [5],
Altinkaya and Yalcin [1], Singh and Singh [30] have worked in the direction of third
Hankel determinant for various subclasses of analytic functions
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In the present paper, we establish the upper bounds for the initial coefficients,
Fekete-Szegö inequality, Zalcman functional, second Hankel determinant and third
hankel determinant, for the class Rα

car. Also various known results follow as partic-
ular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1 +
∞∑

k=1

pkz
k,

whose real parts are positive in E.
In order to prove our main results, the following lemmas have been used:

Lemma 1 ([23, 10]). If p ∈ P, then

|pk| ≤ 2, k ∈ N,

∣∣∣∣p2 − p2
1

2

∣∣∣∣ ≤ 2− |p1|2
2

,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

|pn+2k − λpnp2
k| ≤ 2(1 + 2λ), (λ ∈ R),

|pmpn − pkpl| ≤ 4, (m + n = k + l; m,n ∈ N),

and for complex number ρ, we have

|p2 − ρp2
1| ≤ 2max{1, |2ρ− 1|}.

Lemma 2 ([2]). Let p ∈ P, then

|Jp3
1 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [23] that

|p3
1 − 2p1p2 + p3| ≤ 2.

Lemma 3 ([12, 13]). If p ∈ P, then

2p2 = p2
1 + (4− p2

1)x,

4p3 = p3
1 + 2p1(4− p2

1)x− p1(4− p2
1)x

2 + 2(4− p2
1)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.
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2. Bounds of |H3(1)| for the Class Rα
car

Theorem 2.1 If f ∈ Rα
car, then

(2) |a2| ≤ 4
3(1 + α)

,

(3) |a3| ≤ 4
3(1 + 2α)

,

(4) |a4| ≤ 4
3(1 + 3α)

,

and

(5) |a5| ≤ 3
1 + 4α

.

The estimates are sharp.

Proof. Since f ∈ Rα
car, by the principle of subordination, we have

(6) (1− α)
f(z)

z
+ αf ′(z) = 1 +

4
3
w(z) +

2
3
(w(z))2.

Define p(z) =
1 + w(z)
1− w(z)

= 1+p1z +p2z
2 +p3z

3 + ..., which implies w(z) =
p(z)− 1
p(z) + 1

.

On expanding, we have
(7)

(1−α)
f(z)

z
+αf ′(z) = 1+(1+α)a2z+(1+2α)a3z

2+(1+3α)a4z
3+(1+4α)a5z

4+ ...

Also
1 + 4

3w(z) + 2
3(w(z))2 = 1 + 2

3p1z

(8) +
(

2
3
p2 − p2

1

6

)
z2 +

(
2
3
p3 − 1

3
p1p2

)
z3 +

(
2
3
p4 +

1
24

p4
1 −

1
6
p2
2 −

1
3
p1p3

)
z4 + ...

Using (7) and (8), (6) yields
1 + (1 + α)a2z + (1 + 2α)a3z

2 + (1 + 3α)a4z
3 + (1 + 4α)a5z

4 + ...

(9)

= 1+
2
3
p1z+

(
2
3
p2 − p2

1

6

)
z2+

(
2
3
p3 − 1

3
p1p2

)
z3+

(
2
3
p4 +

1
24

p4
1 −

1
6
p2
2 −

1
3
p1p3

)
z4+...

Equating the coefficients of z, z2, z3 and z4 in (9) and on simplification, we obtain

(10) a2 =
2

3(1 + α)
p1,



312 Gagandeep Singh & Gurcharanjit Singh

(11) a3 =
1

1 + 2α

[
2
3
p2 − p2

1

6

]
,

(12) a4 =
1

3(1 + 3α)
[2p3 − p1p2] ,

and

(13) a5 =
1

24(1 + 4α)
[
16p4 + p4

1 − 4p2
2 − 8p1p3

]
.

Using first inequality of Lemma 1 in (10), the result (2) is obvious.
From (11), we have

(14) |a3| = 2
3(1 + 2α)

∣∣∣∣p2 − 1
4
p2
1

∣∣∣∣ .

Using sixth inequality of Lemma 1 in (14), the result (3) can be easily obtained.
(12) can be expressed as

(15) a4 =
2

3(1 + 3α)

[
p3 − 1

2
p1p2

]
.

On applying inequality 3 of Lemma 1 in (15), the result (4) is obvious.
Further, (13) can be re-written as

(16) a5 =
1

24(1 + 4α)

[
16

(
p4 − 1

4
p2
2

)
− 8p1

(
p3 − 1

8
p3
1

)]
.

On applying triangle inequality and using third inequality of Lemma 1, the result
(5) is obvious from (16).
The results (2), (3), (4) and (5) are sharp for the function f given by

(1− α)
f(z)

z
+ αf ′(z) = 1 +

4
3
z +

2
3
z2.

¤
On putting α = 0, Theorem 2.1 yields the following result:

Corollary 2.1 If f ∈ R′
car, then

|a2| ≤ 4
3
, |a3| ≤ 4

3
, |a4| ≤ 4

3
, |a5| ≤ 3.

For α = 1, Theorem 2.1 gives the following result due to Shi et al. [28]:

Corollary 2.2 If f ∈ Rcar, then

|a2| ≤ 2
3
, |a3| ≤ 4

9
, |a4| ≤ 1

3
, |a5| ≤ 3

5
.
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Theorem 2.2 If f ∈ Rα
car, then

(17) |a3 − a2
2| ≤

4
3(1 + 2α)

.

Proof. From (10) and (11), we have

(18) |a3 − a2
2| =

2
3(1 + 2α)

∣∣∣∣p2 − 3α2 + 22α + 11
12(1 + α)2

p2
1

∣∣∣∣ .

Using sixth inequality of Lemma 1, (18) takes the form

(19) |a3 − a2
2| ≤

4
3(1 + 2α)

max
{

1,
5 + 10α− 3α2

6(1 + α)2

}
.

But
5 + 10α− 3α2

6(1 + α)2
≤ 1 for 0 ≤ α ≤ 1.

Hence, the result (17) is obvious from (19). ¤

Substituting for α = 0, Theorem 2.2 yields the following result:

Corollary 2.3 If f ∈ R′
car, then

|a3 − a2
2| ≤

4
3
.

Putting α = 1, Theorem 2.2 yields the following result:

Corollary 2.4 If f ∈ Rcar, then

|a3 − a2
2| ≤

4
9
.

Theorem 2.3 If f ∈ Rα
car, then

(20) |a2a3 − a4| ≤ 4
3(1 + 3α)

.

Proof. Using (10), (11), (12) and after simplification, we have

|a2a3 − a4| = 1
9(1 + α)(1 + 2α)(1 + 3α)

∣∣(1 + 3α)p3
1 − (7 + 21α + 6α2)p1p2(21)

+ 6(1 + α)(1 + 2α)p3

∣∣.
On applying Lemma 2 in (21), it yields (20). ¤

For α = 0, the following result is a consequence of Theorem 2.3:

Corollary 2.5 If f ∈ R′
car, then

|a2a3 − a4| ≤ 4
3
.
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For α = 1, we can obtain the following result from Theorem 2.3:

Corollary 2.6 If f ∈ Rcar, then

|a2a3 − a4| ≤ 1
3
.

Theorem 2.4 If f ∈ Rα
car, then

(22) |a2a4 − a2
3| ≤

16
9(1 + 2α)2

.

The bound is sharp.

Proof. Using (10), (11) and (12), we have

|a2a4 − a2
3| =

∣∣∣∣
4p1p3

9(1 + α)(1 + 3α)
− 2α2p2

1p2

9(1 + α)(1 + 2α)2(1 + 3α)
− p4

1

36(1 + 2α)2

− 4
9(1 + 2α)2

p2
2

∣∣∣∣.

Substituting for p2 and p3 from Lemma 3 and letting p1 = p, we get

|a2a4 − a2
3| =

1
36(1 + α)(1 + 2α)2(1 + 3α)

∣∣− (3α2 + 4α + 1)p4 + 4α2p2(4− p2)x

− 4(1 + 2α)2p2(4− p2)x2− 4(1 + α)(1 + 3α)(4− p2)2x2

+ 8(1 + 2α)2p(4− p2)(1− |x|2)z∣∣.
Since |p| = |p1| ≤ 2, we may assume that p ∈ [0, 2]. Then by using triangle inequality
and |z| ≤ 1 with |x| = t ∈ [0, 1], we obtain

|a2a4 − a2
3| ≤

1
36(1 + α)(1 + 2α)2(1 + 3α)

[
(3α2 + 4α + 1)p4 + 4α2p2(4− p2)t

+ 4(1 + 2α)2p2(4− p2)t2 + 4(1 + α)(1 + 3α)(4− p2)2t2

+ 8(1 + 2α)2p(4− p2)− 8(1 + 2α)2p(4− p2)t2
]

= F (p, t).

∂F

∂t
=

1
36(1 + α)(1 + 2α)2(1 + 3α)

[
4α2p2(4− p2) + 8(4− p2)(2− p)t[α2(6− p)

+ 8α + 2]
] ≥ 0.

Therefore F (p, t) is an increasing function of t and so

max{F (p, t)} = F (p, 1) =
1

36(1 + α)(1 + 2α)2(1 + 3α)
[
(3α2 + 4α + 1)p4

+4α2p2(4− p2) + 4(1 + 2α)2p2(4− p2) + 4(1 + α)(1 + 3α)(4− p2)2
]

= H(p).
H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0.
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This implies max{H(p)} = H(0) =
16

9(1 + 2α)2
, which proves (22).

The result is sharp for p1 = 0, p2 = ±2 and p3 = 0. ¤

Putting α = 0, Theorem 2.4 gives the following result:

Corollary 2.7 If f ∈ R′
car, then

|a2a4 − a2
3| ≤

16
9

.

Substituting for α = 1, the following result is obvious from Theorem 2.4:

Corollary 2.8 If f ∈ Rcar, then

|a2a4 − a2
3| ≤

16
81

.

Theorem 2.5 If f ∈ Rα
car, then

(23) |H3(1)| ≤ 4(55 + 550α + 1959α2 + 2868α3 + 1356α4)
27(1 + 2α)3(1 + 3α)2(1 + 4α)

.

Proof. By using (3), (4), (5), (17), (20) and (22) in (1), the result (23) can be easily
obtained. ¤

For α = 0, Theorem 2.5 yields the following result:

Corollary 2.9 If f ∈ R′
car, then

|H3(1)| ≤ 220
27

.

For α = 1, Theorem 2.3 yields the following result:

Corollary 2.10 If f ∈ Rcar, then

|H3(1)| ≤ 1697
3645

.

3. Bounds of |H3(1)| for Two-fold and Three-fold Symmetric
Functions

A function f is said to be n-fold symmetric if is satisfy the following condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n and z ∈ E.
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By S(n), we denote the set of all n-fold symmetric functions which belong to the
class S.
The n-fold univalent function have the following Taylor-Maclaurin series:

(24) f(z) = z +
∞∑

k=1

ank+1z
nk+1.

An analytic function f of the form (24) belongs to the family Rα(n)
car if and only if

(1− α)
f(z)

z
+ αf ′(z) = 1 +

4
3

(
p(z)− 1
p(z) + 1

)
+

2
3

(
p(z)− 1
p(z) + 1

)2

, p ∈ P(n),

where

(25) Pn =

{
p ∈ P : p(z) = 1 +

∞∑

k=1

pnkz
nk, z ∈ E

}
.

Theorem 3.1 If f ∈ Rα(2)
car , then

(26) |H3(1)| ≤ 16
9(1 + 2α)(1 + 4α)

.

Proof. If f ∈ Rα(2)
car , so there exists a function p ∈ P(2) such that

(27) (1− α)
f(z)

z
+ αf ′(z) = 1 +

4
3

(
p(z)− 1
p(z) + 1

)
+

2
3

(
p(z)− 1
p(z) + 1

)2

.

Using (24) and (25) for n = 2, (27) yields

(28) a3 =
2

3(1 + 2α)
p2,

(29) a5 =
1

1 + 4α

(
2
3
p4 − 1

6
p2
2

)
.

Also

(30) H3(1) = a3a5 − a3
3.

Using (28) and (29) in (30), it yields

(31) H3(1) =
4

9(1 + 2α)(1 + 4α)
p2

[
p4 − 3(1 + 2α)2 + 8(1 + 4α)

12(1 + 2α)2
p2
2

]
.

On applying triangle inequality and using third inequality of Lemma 1, we can easily
get the result (26). ¤

Putting α = 0, the following result can be easily obtained from Theorem 3.1:



ESTIMATE OF THIRD ORDER HANKEL DETERMINANT 317

Corollary 3.1 If f ∈ R′(2)
car , then

|H3(1)| ≤ 16
9

.

For α = 1, Theorem 3.1 agrees with the following result:

Corollary 3.2 If f ∈ R(2)
car, then

|a3 − a2
2| ≤

16
135

.

Theorem 3.2 If f ∈ Rα(3)
car , then

(32) |H3(1)| ≤ 16
9(1 + 3α)2

.

Proof. If f ∈ Rα(3)
car , so there exists a function p ∈ P(3) such that

(33) (1− α)
f(z)

z
+ αf ′(z) = 1 +

4
3

(
p(z)− 1
p(z) + 1

)
+

2
3

(
p(z)− 1
p(z) + 1

)2

.

Using (24) and (25) for n = 3, (33) gives

(34) a4 =
2

3(1 + 3α)
p3.

Also

(35) H3(1) = −a2
4.

Using (34) in (35), it yields

(36) H3(1) = − 4
9(1 + 3α)2

p2
3.

On applying triangle inequality and using first inequality of Lemma 1, (32) can be
easily obtained. ¤

For α = 0, Theorem 3.2 yields the following result:

Corollary 3.3 If f ∈ R′(3)
car , then

|H3(1)| ≤ 16
9

.

For α = 1, Theorem 3.2 yields the following result:

Corollary 3.4 If f ∈ R(3)
car, then

|H3(1)| ≤ 1
9
.
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