
J. Korean Math. Soc. 52 (2015), No. 6, pp. 1139–1148
http://dx.doi.org/10.4134/JKMS.2015.52.6.1139

THIRD ORDER HANKEL DETERMINANT FOR CERTAIN

UNIVALENT FUNCTIONS

Deepak Bansal, Sudhananda Maharana, and Jugal Kishore Prajapat

Abstract. The estimate of third Hankel determinant

H3,1(f) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

of the analytic function f(z) = z + a2z2 + a3z3 + · · · , for which ℜ(1 +
zf ′′(z)/f ′(z)) > −1/2 are investigated. The corrected version of a known
results [2, Theorem 3.1 and Theorem 3.3] are also obtained.

1. Introduction

Let H(D) denote the class of analytic functions in the open unit disk D =
{z ∈ C : |z| < 1}. Let A be the subclass of H(D) normalized by the condition
f(0) = 0 = f ′(0)− 1 and having the form

(1) f(z) = z +

∞
∑

n=2

an z
n, z ∈ D.

Let S be the subclass of A consisting of functions which are also univalent in
D. We denote by R a subclass of A consisting of functions f which satisfy
ℜ(f ′(z)) > 0, z ∈ D. Functions in R are known to be close-to-convex (and
hence univalent) in D. Further, a function f ∈ A is called starlike (with respect
to the origin 0), if tw ∈ f(D) whenever w ∈ f(D) and t ∈ [0, 1]. We denote by
S∗ the subclass of A whose members are starlike in D. It is well known that
f ∈ S∗ satisfy the inequality

(2) ℜ
(

zf ′(z)

f(z)

)

> 0, z ∈ D.
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Further, let F be the class of functions f ∈ A that are locally univalent and
satisfying the inequality

(3) ℜ
(

1 +
zf ′′(z)

f ′(z)

)

> −1

2
, z ∈ D.

It is well known that functions in the class F are close-to-convex (and hence
univalent) in the unit disk. The class F plays an important role in the dis-
cussion on certain extremal problems for the classes of complex-valued and
sense-preserving harmonic convex functions and some other related problems
in determining univalence criteria for sense-preserving harmonic mappings (see
[26]).

For f ∈ A of the form (1), the classical Fekete-Szegö functional Φλ(f) =
a3 − λa22 plays an important role in the function theory. A classical problem
settled by Fekete and Szegö [9] is to find for each λ ∈ [0, 1], the maximum value
of the |Φλ(f)| over the function f ∈ S. By applying the Löewner method they
proved that

max
f∈S

|Φλ(f)| =
{

1 + 2 exp{−2λ/(1− λ)}, λ ∈ [0, 1)
1, λ = 1.

The problem of calculating maxf∈F |Φλ(f)| for various compact subfamilies F of
A, as well as λ being an arbitrary real or complex number, was also considered
by many authors (see e.g. [1, 5, 12, 13, 14, 20]).

The Hankel determinants Hq,n(f) of Taylor’s coefficients of functions f ∈ A
of the form (1), is defined by

(4) Hq,n(f) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2(q−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where a1 = 1 and n, q ∈ N = {1, 2, . . .}. The Hankel determinants Hq,n(f)
are useful, for example, in showing that a function of bounded characteristic
in D, i.e., a function which is a ratio of two bounded analytic functions with
its Laurent series around the origin having integral coefficients, is rational [6].
Noonan and Thomas [22] studied the growth rate of the second Hankel deter-
minant of an areally mean p-valent function. Pommerenke [25] proved that the

Hankel determinants of univalent functions satisfy |Hq,n(f)| < Kn−( 1

2
+β)q+ 3

2 ,
where β > 1/4000 and K depends only on q. Later, Hayman [10] proved that
|H2,n(f)| < An1/2 (A is an absolute constant) for areally mean univalent func-
tions. Ehrenborg studied Hankel determinant of the exponential polynomials
[8] and Noor studied Hankel determinant for the close-to-convex functions [23].

Note that, H2,1(f) = Φ1(f) is the Fekete-Szegö functional. Recently many
authors have studied the problem of calculating maxf∈F |H2,2(f)| for various
subfamilies F ⊂ A (see e.g. [4, 11, 15, 16]). The third Hankel determinant
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H3,1(f) is given by

H3,1(f) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

(5)

= a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22).

Recently, Babalola [2] has studied maxf∈F |H3,1(f)| when F are the classes
R, S∗. Also, Raza and Malik [27] have obtained the upper bound on |H3,1(f)|
for a subclass of A associated with right half of the lemniscate of Bernoulli
(x2 + y2)2 − 2(x2 − y2) = 0.

The class of Carathéodory functions P , is the class of functions p ∈ H(D) of
the form

(6) p(z) = 1 +

∞
∑

n=1

cnz
n, z ∈ D,

having a positive real part in D. Following are the well known results for the
functions belonging to the class P :

Lemma 1.1 ([7]). If p ∈ P is of the form (6), then

(7) |cn| ≤ 2, n ∈ N.

The inequality (7) is sharp and the equality holds for the function

ϕ(z) =
1 + z

1− z
= 1 + 2

∞
∑

n=1

zn.

Lemma 1.2 ([18, 19]). If p ∈ P is of the form (6), then

(8) 2c2 = c21 + x(4 − c21),

and

(9) 4c3 = c31 + 2c1x(4 − c21)− c1x
2(4− c21) + 2(4− c21)(1 − |x|2)z

for some x, z with |x| ≤ 1 and |z| ≤ 1.

2. Main results

We first provide the corrected form of the results in [2, Theorem 3.1 and
Theorem 3.2], given in Theorem 2.1 and Theorem 2.2 below.

Theorem 2.1. Let the function f ∈ R of the form (1). Then

(10) |a2a3 − a4| ≤
1

2
.

The inequality (10) is sharp and the equality is attended by the function

(11) f(z) =

∫ z

0

1 + ζ3

1− ζ3
dζ.
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Proof. If f ∈ R of the form (1), then f ′(z) = p(z), where p ∈ P of the form
(6). Equating the coefficients of the series expansion of f ′ and p, we get

(12) a2 =
1

2
c1, a3 =

1

3
c2 and a4 =

1

4
c3.

Hence

(13) |a2a3 − a4| =
∣

∣

∣

∣

1

6
c1c2 −

1

4
c3

∣

∣

∣

∣

.

Using Lemma 1.2 in (13) for some x and z such that |x| ≤ 1 and |z| ≤ 1, we
get

|a2a3 − a4| =
1

48

∣

∣4c1{c21 + x(4 − c21)} − 3{c31 + 2c1x(4− c21)− c1x
2(4− c21)

+2(1− |x|2)(4 − c21)z}
∣

∣

=
1

48

∣

∣c31 + (4− c21)(−2c1x+ 3c1x
2 − 6(1− |x|2)z

∣

∣ .

By Lemma 1.1, we have |c1| ≤ 2. Therefore, letting c1 = c, we may assume
without restriction that c ∈ [0, 2]. Thus applying the triangle inequality with
µ = |x|, we obtain

|a2a3 − a4| ≤
1

48

[

c3 + (4− c2)(6 + 2cµ+ 3µ2(c− 2))
]

(14)

= F (c, µ).

Let Ω = {(c, µ) : 0 ≤ c ≤ 2, 0 ≤ µ ≤ 1}. To find the maximum value of F over
the region Ω we use the Hessian matrix method. For this, differentiate F with
respect to µ and c and set them equal to zero;

∂F

∂µ
=

1

24

[

(4− c2)(c+ 3µ(c− 2))
]

= 0,(15)

∂F

∂c
=

1

48

[

8µ+ 12µ2 + 12(µ2 − 1)c+ 3(1− 2µ− 3µ2)c2
]

= 0.(16)

Solving (15) and (16) with the help of the mathematica software, we get the
critical points

(−2,−(1+2
√
7)/6), (−2, (−1+2

√
7)/6), (0, 0), (2,−3/4) and (8/3,−4/3).

Observe that, the only critical point lying in Ω is (0, 0). At this critical point
(0, 0), we find that

∂2F

∂µ2
= −1 < 0, and

∂2F

∂µ2

∂2F

∂c2
−
(

∂2F

∂µ ∂c

)2

=
2

9
> 0.

Therefore F (c, µ) has a local maximum at (0, 0).
We now look the critical points on the boundary of Ω. At L1 = {(2, µ) :

0 ≤ µ ≤ 1}, we have F (2, µ) = 1/6, which is a constant. At L2 = {(0, µ) :
0 ≤ µ ≤ 1}, we have F (0, µ) = (1 − µ2)/2, which gives the same critical point
(0, 0). At L3 = {(c, 1) : 0 ≤ c ≤ 2}, we have F (c, 1) = (5c − c3)/12, which
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gives another critical point (
√

5/3, 1). At L4 = {(c, 0) : 0 ≤ c ≤ 2}, we have
F (c, 0) = (c3 − 6c2+24)/48, giving the same critical point (0, 0). Observe that

F (2, µ) < F (
√

5/3, 1) < F (0, 0).

Thus the local maximum at (0, 0) is also the global maximum on Ω. Hence

max
Ω

F (c, µ) = F (0, 0) = 1/2.

To show the sharpness, set c1 = x = 0, z = 1 in (8) and (9), to get c2 = 0
and c3 = 2. Using these values in (13), we find that the inequality (10) is sharp
and it can be seen easily that the equality in (10) is attended by the function
f given in (11). This completes the proof. �

It is well known that, if f ∈ R is of the form (1), then |an| ≤ 2/n, n =
2, 3, . . . , [21], |a3 − a22| ≤ 2/3 [3], and |a2a4 − a23| ≤ 4/9 [11]. Using these
coefficient bounds and Theorem 2.1, we get

|H3,1(f)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|

≤ 2

3
.
4

9
+

2

4
.
1

2
+

2

5
.
2

3
=

439

540
.

Thus, we state that:

Theorem 2.2. Let the function f ∈ R of the form (1). Then

|H3,1(f)| ≤
439

540
.

Remark 2.3. Babalola in [2, Theorem 3.3] proved that, if f ∈ S∗ is of the form

(1), then |a2a3 − a4| ≤ 2. This inequality is sharp and the equality is attended

for the Koebe function k(z) = z/(1− z)2 and its rotation. While observing its
proof, we see, that the author’s claim about F ′(ρ) > 0 is not correct. From the
method used in Theorem 2.1, we can easily see that the result in [2, Theorem
3.3] is correct and its proof is similar to that of Theorem 2.1 above. This can
easily be worked out, and therefore, we skip giving details in this regard.

Theorem 2.4. Let the function f ∈ F of the form (1). Then

(17) |a3 − a22| ≤
1

2
.

The inequality (17) is sharp.

Proof. If f ∈ F of the form (1), then we may write

1 +
zf ′′(z)

f ′(z)
=

3

2
p(z)− 1

2
.

Substituting the series expansion of f ′′(z), f ′(z) and p(z) and equating the
coefficients, we get

a2 =
3

4
c1, a3 =

1

8
(3c21 + 2c2), a4 =

1

64
(9c31 + 18c1c2 + 8c3).(18)
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Using these values of coefficients and Lemma 1.2 for some x and z such that
|x| ≤ 1 and |z| ≤ 1, we get

(19) |a3 − a22| =
1

16

∣

∣−c21 + 2x(4− c21)
∣

∣ .

By Lemma 1.1, we may assume c1 = c ∈ [0, 2]. Applying the triangle inequality
in (19) with µ = |x|, we obtain

|a3 − a22| ≤
1

16

[

c2 + 2µ(4− c2)
]

= H1(c, µ).

Differentiating H1 with respect to µ, we get

∂H1

∂µ
=

1

8
(4− c2) ≥ 0 for 0 ≤ µ ≤ 1.

Hence, H1 is an increasing function of µ on [0, 1]. Therefore

max
0≤µ≤1

H1(c, µ) = H1(c, 1) =
1

16
(8− c2) = H(c).

It is clear that H(c) is a decreasing function of c (0 ≤ c ≤ 2), hence the
maximum value of H1(c, µ) is attended at the point (0, 1), that is,

max
Ω

H1(c, µ) = H1(0, 1) =
1

2
.

To show the sharpness of (17), choose c1 = 0 and x = 1 in (8) and (9), we
get c2 = 2 and c3 = 0. Using these values in (19) we find that inequality (17)
is sharp. This completes the proof. �

Theorem 2.5. Let the function f ∈ F of the form (1). Then

|a2a3 − a4| ≤
9

4
√
15

.

Proof. Using the values of a2, a3 and a4 from (18) and using (8) and (9) for
some x and z such that |x| ≤ 1 and |z| ≤ 1, we get

(20) |a2a3 − a4| =
1

64

∣

∣4c31 + (4 − c21){−7c1x+ 2c1x
2 − 4(1− |x|2)z}

∣

∣ .

By Lemma 1.1, we have |c1| ≤ 2. Letting c1 = c, we may assume without
restriction that c ∈ [0, 2]. Thus applying the triangle inequality in (20) with
µ = |x|, we obtain

|a2a3 − a4| ≤
1

64

[

4c3 + (4 − c2)(7cµ+ 2cµ2 + 4− 4µ2)
]

= H2(c, µ).

Differentiating H2 with respect to µ and c, we get

∂H2

∂µ
=

1

64

[

(4 − c2)(7c+ 4cµ− 8µ)
]

,

∂H2

∂c
=

1

64

[

12c2 + 28µ+ 8µ2 − 21c2µ− 6c2µ2 − 8c+ 8cµ2
]

.



THIRD ORDER HANKEL DETERMINANT 1145

Solving ∂H2

∂µ = 0 and ∂H2

∂c = 0, we find that the critical points of H2 are

(−2,−(7 +
√
177)/8), (−2, (−7 +

√
177)/8),

(−44/81,−77/206), (0, 0) and (2, 4/7).

Observe that (0, 0) and (2, 4/7) are the only critical points laying inside Ω, but
at both points

∂2H2

∂µ2

∂2H2

∂c2
−
(

∂2H2

∂µ∂c

)2

< 0.

Hence, H2(c, µ) does not attain extremum at (0, 0) and (2, 4/7).
Next, we examine the critical points at the boundary of Ω. We find that,

along L1 = {(2, µ) : 0 ≤ µ ≤ 1}, we have H2(2, µ) = 1/2, which is a constant

and another critical points at the boundary are only (2/3, 0) and (6/
√
15, 1).

Since H2(2/3, 0) < H2(2, µ) < H2(6/
√
15, 1), we get

max
Ω

H2(c, µ) = H2(6/
√
15, 1) =

9

4
√
15

.

This completes the proof. �

Theorem 2.6. Let the function f ∈ F of the form (1). Then

|a2a4 − a23| ≤
21

64
.

Proof. Using the values of a2, a3 and a4 from (18) and using (8) and (9) for
some x and z such that |x| ≤ 1 and |z| ≤ 1, we get

|a2a4 − a23|

=
1

256

∣

∣−4c41 + (4− c21){7c21x− 6c21x
2 + 12c1(1− |x|2)z − 4x2(4− c21)}

∣

∣ .

By Lemma 1.1, we assume c1 = c ∈ [0, 2]. Applying the triangle inequality in
above equation with µ = |x|, we obtain

|a2a4 − a23| ≤
1

256

[

4c4 + (4− c2)(7c2µ+ 2c2µ2 + 12c− 12cµ2 + 16µ2)
]

= H3(c, µ).

Differentiating H3 with respect to µ and c, we get

∂H3

∂µ
=

1

256

[

(4 − c2)(7c2 + 4c2µ− 24cµ+ 32µ)
]

,

∂H3

∂c
=

1

256

[

16c3+56cµ−16cµ2+ 48−48µ2−28c3µ−8c3µ2−36c2+36c2µ2
]

.

Solving ∂H3

∂µ = 0 and ∂H3

∂c = 0, we get the critical points are

(−2,−(7 +
√
721)/24), (−2, (−7 +

√
721)/24), and (2, 2/7).



1146 DEEPAK BANSAL, S. MAHARANA, AND J. K. PRAJAPAT

We observe that, (2, 2/7) is the only critical point laying inside Ω, but at this
point

∂2H3

∂µ2

∂2H3

∂c2
−
(

∂2H3

∂µ∂c

)2

< 0.

Hence H3 does not attain extremum at (2,2/7).
Next, we examine the critical points at the boundary of Ω. We find that,

along L1 = {(2, µ) : 0 ≤ µ ≤ 1}, H3(2, µ) = 1/4, which is a constant and other

critical points at the boundary are only (0, 1) and (
√
2, 1). Hence H3(0, 0) <

H3(2, µ) = H3(0, 1) < H3(
√
2, 1). Therefore

max
Ω

H3(c, µ) = H3(
√
2, 1) =

21

64
.

This completes the proof. �

It is known that, if f ∈ F of the form (1), then |an| ≤ n+1
2 for n ≥ 2 [26].

Using this bound and Theorem 2.4, Theorem 2.5 and Theorem 2.6, we get:

Theorem 2.7. Let the function f ∈ F of the form (1). Then

|H3,1(f)| ≤
180 + 69

√
15

32
√
15

.

Remark 2.8. For f ∈ S, Thomas [24, p. 166] conjectured that

|H2,n(f)| = |anan+2 − a2n+1| ≤ 1, n = 2, 3, . . . .

Subsequently, Li and Srivastava [17, p. 1040] showed that this conjecture is not
valid for n ≥ 4, i.e., conjecture is valid only for n = 2, 3. From the known result
|a2a4 − a23| ≤ 4/9 (see [11]) and Theorem 2.6, we found that, if the function f
is a member of the class R and F , respectively and each having form (1), then

|H2,2(f)| ≤
4

9
and |H2,2(f)| ≤

21

64
.

Since all functions inR and F are close-to-convex and hence also univalent in D.
Therefore, the result in [11] and Theorem 2.6 validate the Thomas conjecture
when n = 2 for the function belonging to the classes R and F .
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to-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345–349.
[2] K. O. Babalola, On third order Hankel determinant for some classes of univalent func-

tions, Inequal. Theory Appl. 6 (2010), 1–7.



THIRD ORDER HANKEL DETERMINANT 1147

[3] K. O. Babalola and T. O. Opoola, On the coefficients of certain analytic and univalent

functions, Advances in Inequalities for Series, (Edited by S. S. Dragomir and A. Sofo)
Nova Science Publishers (2008), 5–17.

[4] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic func-

tions, Appl. Math. Lett. 26 (2013), no. 1, 103–107.
[5] B. Bhowmik, S. Ponnusamy, and K. J. Wirths, On the Fekete-Szegö problem for concave
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