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THIRD HANKEL DETERMINANTS FOR STARLIKE AND

CONVEX FUNCTIONS OF ORDER ALPHA

Halit Orhan and Pawe l Zaprawa

Abstract. In this paper we obtain the bounds of the third Hankel de-

terminants for the classes S∗(α) of starlike functions of order α and K(α)
of convex functions of order α. Moreover,we derive the sharp bounds for

functions in these classes which are additionally 2-fold or 3-fold symmet-

ric.

1. Introduction

Let ∆ be the unit disk {z ∈ C : |z| < 1} and A be the family of all functions
f analytic in ∆ normalized by the condition f(0) = f ′(0) − 1 = 0. It means
that f has the expansion f(z) = z +

∑∞
n=2 anz

n. Pommerenke (see, [12, 13])
defined the q-th Hankel determinant for a function f as

(1) Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
· · · · · · · · · · · ·

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣ ,
where n, q ∈ N.

Following Pommerenke, many authors focused on the investigating of the
second Hankel determinant H2(2) = a2a4 − a32 (see, e.g. [6–8,10,11]). Only a
few papers have been devoted to the third Hankel determinant

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ ,
(see, [2, 3, 16, 19, 20]). The results from these papers are far from accurate. In
[21] it was proved that

Theorem 1. 1. If f ∈ S∗, then |H3(1)| ≤ 1,
2. If f ∈ K, then |H3(1)| ≤ 49

540 = 0.090 . . . .

Received November 14, 2016; Revised March 27, 2017; Accepted May 23, 2017.
2010 Mathematics Subject Classification. 30C50.
Key words and phrases. Hankel determinant, starlike functions, convex functions, n-fold

symmetric functions.

c©2018 Korean Mathematical Society

165



166 H. ORHAN AND P. ZAPRAWA

Moreover, in [21] the sharp bounds for 2-fold and 3-fold symmetric starlike
functions or convex functions were obtained. Recall that for a given class
A ⊂ A, a function f ∈ A is said to be n-fold symmetric if f(εz) = εf(z)
holds for all z ∈ ∆, where ε = exp (2πi/n) means the principal n-th root of 1.
The set of all n-fold symmetric functions belonging to A is denoted by A(n).
If f ∈ A(n), then f has the Taylor series expansion f(z) = z + an+1z

n+1 +
a2n+1z

2n+1 + · · · . Certainly, the set A(2) consists of all functions in A which
are odd. The definition of an n-fold symmetric function can be extended on
functions f normalized by f(0) = 1.

The main aim of this paper is to discuss the third Hankel determinants for
the classes S∗(α) of starlike functions of order α and K(α) of convex functions
of order α.

Let us start with recalling the definitions. Let f , g be univalent and α < 1.
Then

f ∈ S∗(α)⇔ Re

(
zf ′(z)

f(z)

)
> α,

g ∈ K(α)⇔ Re

(
1 +

zg′′(z)

g′(z)

)
> α.

Obviously, S∗(0) = S∗ and K(0) = K are the classes of starlike functions and
convex functions, respectively. Two particular choices of α are also interesting.
For α = 1/2 we know that S∗(1/2) contains K (see, [9,17]). The class S∗(1/2)
plays important role in solving some differential equations (see, [5]). On the
other hand, taking α = −1/2 we obtain the class K(−1/2) consisting of func-
tions which are close-to-convex, but not necessarily starlike. Umezawa proved
([18]) that functions in this class are convex in one direction. In [4], Bshouty
and Lyzzaik showed the importance of K(−1/2) in the theory of harmonic
functions. For other results for this class, see for example [1, 15].

From (1) it follows that f ∈ S∗(α) can be written in the form

(2)
zf ′(z)

f(z)
= α+ (1− α)p(z),

where p belongs to the class P consisting of functions analytic in ∆ for which
Re p(z) > 0.

Let f(z) = z + a2z
2 + a3z

3 + · · · and p(z) = 1 + p1z + p2z
2 + · · · be in S∗

and P, respectively. Applying the correspondence (2), we can write

(3) (n− 1)an = (1− α)

n−1∑
j=1

ajpn−j .

From (3) it follows that

a2 = (1− α)p1,

a3 = 1
2 (1− α)

[
p2 + (1− α)p1

2
]
,

a4 = 1
3 (1− α)

[
p3 + 3

2 (1− α)p1p2 + 1
2 (1− α)2p1

3
]
,
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a5 = 1
4 (1− α)

[
p4 + 4

3 (1− α)p1p3 + 1
2 (1− α)p2

2 + (1− α)2p1
2p2

+ 1
6 (1− α)3p1

4
]
.

2. Preliminaries

To obtain our results we need the following sharp inequalities for functions
p ∈ P.

Lemma 1 ([14]). If p ∈ P, then the sharp estimate |pn| ≤ 2 holds for n =
1, 2, . . ..

Lemma 2 ([6]). If p ∈ P, then the following estimate holds for n, k = 1, 2, . . .,
n > k

|pn − µpkpn−k| ≤

{
2 µ ∈ [0, 1]

2|2µ− 1| µ ≥ 1.

3. Bounds of |H3(1)| for S∗(α) and K(α)

At the beginning, observe that H3(1) can be written in the form

(4) H3(1) = (a3a5 − a42) + a2(a3a4 − a2a5) + a3(a2a4 − a32).

Now, with help of (3), we can express H3(1) for f ∈ S∗ as a polynomial of
four variables: p1, p2, p3, p4 in the form

F (p1, p2, p3, p4) =
(1− α)2

144

[
−(1− α)4p1

6 + 3(1− α)3p1
4p2

+8(1− α)2p1
3p3 − 9(1− α)2p1

2p2
2 − 18(1− α)p1

2p4

+24(1− α)p1p2p3 − 9(1− α)p2
3 + 18p2p4 − 16p3

2
]
.

(5)

According to the Alexander theorem, f ∈ K if and only if zf ′(z) ∈ S∗.
Therefore, if f(z) = z + a2z

2 + a3z
3 + · · · ∈ S∗ and g(z) = zf ′(z) = z +

b2z
2 + b3z

3 + · · · ∈ K, then nbn = an. Putting it into the definition of H3(1)
for a convex function and applying the formulae obtained from (3) lead to
H3(1) = G(p1, p2, p3, p4), where

G(p1, p2, p3, p4) =
(1− α)2

8640

[
−(1− α)4p1

6 + 6(1− α)3p1
4p2

+12(1− α)2p1
3p3 − 21(1− α)2p1

2p2
2 − 36(1− α)p1

2p4(6)

+36(1− α)p1p2p3 − 4(1− α)p2
3 + 72p2p4 − 60p3

2
]
.

Now we can prove:

Theorem 2. 1. If f ∈ S∗(α), then

|H3(1)| ≤

{
(1−α)2(18−α)

18 α ∈ [0, 1)
(1−α)2(1−2α)2

18 (18− 3α+ 2α2) α ≤ 0,
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2. If f ∈ K(α), then

|H3(1)| ≤


(1−α)2(49−16α)

540 α ∈ [0, 1)
(1−α)2
540 (49− 102α+ 40α2 − 8α3) α ∈ [−3, 0]

(1−α)2
540 (46− 88α+ 21α2 − 4α3 + 4α4) α ≤ −3.

Proof. From (5),

F (p1, p2, p3, p4) =
(1− α)2

144

[
10(p2 − (1− α)p1

2)(p4 − (1− α)p2
2)

+8(p2 − (1− α)p1
2)(p4 − (1− α)p1p3)(7)

+(1− α)(p2 − (1− α)p1
2)3 − 16(p3 − (1− α)p1p2)2

]
.

The triangle inequality and Lemma 2 lead to the declared bound for f ∈ S∗.
If f ∈ K, then, from (6),

G(p1, p2, p3, p4) =
(1− α)2

2160

[
4(1− α)p2

3 + 6p4(p2 − (1− α)p1
2)

+9p2(p4 − (1− α)p2
2)

+3(p2 − (1− α)p1
2)(p4 − (1− α)p1p3)(8)

−12p3(p3 − (1− α)p1p2) + 3(1− α)p2
2(p2 − (1− α)p1

2)

−3p3
2 + (1− α)(p2 − (1− α)p1

2)2(p2 − 1
4 (1− α)p1

2)
]
.

As above, it is enough to apply the triangle inequality and Lemma 1 and Lemma
2. �

Consequently,

Corollary 1. 1. |H3(1)| ≤ 35/144 for all f ∈ S∗(1/2),
2. |H3(1)| ≤ 1 for all f ∈ S∗,
3. |H3(1)| ≤ 10 for all f ∈ S∗(−1/2).

Corollary 2. 1. |H3(1)| ≤ 41/2160 for all f ∈ K(1/2),
2. |H3(1)| ≤ 49/540 for all f ∈ K,
3. |H3(1)| ≤ 37/80 for all f ∈ K(−1/2).

The authors of [3] proved that |H3(1)| ≤ 3.608 . . . for f ∈ K(−1/2). The
estimate in Corollary 2, point 3, substantially improves this result.

4. Bounds of |H3(1)| for 2-fold and 3-fold symmetric functions

The results in Theorem 2 are not sharp. It is possible to derive sharp bounds
considering functions satisfying an additional condition of n-fold symmetry.
Observe that if f ∈ A(3), then f(z) = z + a4z

4 + a7z
7 + · · · , and consequently

H3(1) = −a42. Similarly, if f ∈ A(2), then f(z) = z + a3z
3 + a5z

5 + · · · , so
H3(1) = a3(a5 − a32).

Theorem 3. 1. If f ∈ S∗(α)(3), then |H3(1)| ≤ 4
9 (1− α)2,
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2. If f ∈ K(α)(3), then |H3(1)| ≤ 1
36 (1− α)2.

The bounds are sharp.

Proof. 1. Let f̃(z) = 3
√
f(z3). Since

zf̃ ′(z)

f̃(z)
=
z3f ′(z3)

f(z3)
,

it follows that

f ∈ S∗(α)⇔ f̃ ∈ S∗(α)(3).

Assuming that f(z) = z + a2z
2 + · · · and f̃(z) = z + b4z

4 + · · · we have

b4 = a2/3. Hence, for f̃ ∈ S∗(α)(3),

|H3(1)| = |b4|2 =
1

9
|a2|2 =

1

9
(1− α)2|p1|2 ≤

4

9
(1− α)2.

Equality holds for rotations of

f̃0(z) =
z

(1− z3)2(1−α)/3
= z + 2

3 (1− α)z4 + · · · .

For this function,

zf̃0
′(z)

f̃0(z)
= p̃0(z), p̃0(z) =

1 + (1− 2α)z3

1− z3
.

2. Taking into account the relation zg̃′(z) = f̃(z) valid for f̃ ∈ S∗(α)(3)

and g̃ ∈ K(α)(3), we obtain the expansion g̃(z) = z + b4
4 z

4 + · · · . Then for

g̃ ∈ K(α)(3),

|H3(1)| = 1

16
|b4|2 =

1

144
|a2|2 ≤

1

36
(1− α)2,

with equality for

g̃0(z) =

∫ z

0

(1− ζ3)−2(1−α)/3 dζ = z + 1
6 (1− α)z4 + · · · .

Obviously,

1 +
zg̃0
′(z)

g̃0(z)
= p̃0(z).

�

In particular,

Corollary 3. 1. |H3(1)| ≤ 1/9 for all f ∈ S∗(1/2)(3),

2. |H3(1)| ≤ 4/9 for all f ∈ S∗(3),
3. |H3(1)| ≤ 1 for all f ∈ S∗(−1/2)(3).

Corollary 4. 1. |H3(1)| ≤ 1/144 for all f ∈ K(1/2)(3),
2. |H3(1)| ≤ 1/36 for all f ∈ K(3),
3. |H3(1)| ≤ 1/16 for all f ∈ K(−1/2)(3).
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Now, we turn to the case n = 2. For f(z) = z + α3z
3 + α5z

5 + · · · ∈ A(2)

and real µ, let us define

(9) Φf (µ) ≡
∣∣α3

(
α5 − µα3

2
)∣∣ .

It is clear that
|H3(1)| = Φf (1).

For a given f and real δ let us define fδ(z) = e−iδf(eiδz). Then fδ(z) =
z + α3e

2iδz3 + α5e
4iδz5 + · · · and

Φfδ(µ) =
∣∣e2iδα3

(
e4iδα5 − µe4iδα3

2
)∣∣ = Φf (µ).

It means that Φf is invariant under rotation.

In [21] the bounds of Φf (µ) for S∗(2) were found.

Theorem 4. If f ∈ S∗(2), then

(10) Φf (µ) ≤



1− µ µ ≤ 2/3
1

3
√

3(2µ−1)
µ ∈ [2/3, 1]

1

3
√

3(3−2µ)
µ ∈ [1, 4/3]

µ− 1 µ ≥ 4/3.

The estimate is sharp.

In order to find the analog of Theorem 4 for S∗(α)(2) we need to establish the

correspondence between the coefficients of a function f ∈ S∗(2) and a function
f̃ ∈ S∗(α)(2). Let

(11) f̃(z) = z

(
f(z)

z

)1−α

, α < 1.

From

(12)
zf̃ ′(z)

f̃(z)
= α+ (1− α)

zf ′(z)

f(z)
,

we conclude that
f ∈ S∗ ⇔ f̃ ∈ S∗(α).

This equivalence is valid also for the corresponding subclasses consisting of odd
functions.

If f(z) = z + a3z
3 + · · · and f̃(z) = z + b3z

3 + · · · , then, comparing the
coefficients of both sides of(

z + 3b3z
3 + 5b5z

5 + · · ·
) (
z + a3z

3 + a5z
5 + · · ·

)
(13)

=
(
z + b3z

3 + b5z
5 + · · ·

) (
z + (3− 2α)a3z

3 + (5− 4α)a5z
5 + · · ·

)
,

leads to

b3 = (1− α)a3,

b5 = (1− α)a5 − 1
2α(1− α)a3

2.
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Hence, for f̃ ∈ S∗(α)(2),

|H3(1)| =
∣∣b3 (b5 − b32)∣∣ = (1− α)2

∣∣a3 (a5 − 1
2 (2− α)a3

2
)∣∣ .

Now, it is enough to apply Theorem 4 with µ = (2− α)/2. In this way we get
the following theorem.

Theorem 5. If f ∈ S∗(α)(2), then

|H3(1)| ≤



1
2α(1− α)2 α ∈ [2/3, 1)

1

3
√

3(1−α)
(1− α)2 α ∈ [0, 2/3]

1

3
√

3(1+α)
(1− α)2 α ∈ [−2/3, 0]

− 1
2α(1− α)2 α ≤ −2/3.

The estimate is sharp.

According to Theorem 4 and the correspondence (11), the extremal functions
in Theorem 5 are: f(z) = z

(1−z2)1−α for α ∈ [2/3, 1) and α ≤ −2/3, f(z) =
z

[(1−z2)t(1+z2)1−t]1−α , t = (1 + 1/
√

3(1− α))/2 for α ∈ [0, 2/3] and f(z) =
z

(1−2tz2+z4)(1−α)/2 , t = 1/
√

3(1 + α) for α ∈ [−2/3, 0].

The similar theorem, but for K(α)(2), holds.

Theorem 6. If f ∈ K(α)(2), then

|H3(1)| ≤



8+α
270 (1− α)2 α ∈ [−2, 1)

1

15
√

3(1−α)
(1− α)2 α ∈ [−8,−2]

1

15
√

3(17+α)
(1− α)2 α ∈ [−14,−8]

− 8+α
270 (1− α)2 α ≤ −14.

The estimate is sharp.

Proof. From equivalence

(14) g̃ ∈ K(α)(2) ⇔ f̃(z) = zg̃′(z) ∈ S∗(α)(2),

where f̃(z) = z + b3z
3 + · · · , g̃(z) = z + c3z

3 + · · · it follows that

c3 = 1
3b3, c5 = 1

5b5,

so, for g̃ ∈ K(α)(2), there is

H3(1) =
∣∣c3 (c5 − c32)∣∣ =

1

15

∣∣b3 (b5 − 5
9b3

2
)∣∣

=
1

15
(1− α)2

∣∣a3 (a5 − 1
18 (10− α)a3

2
)∣∣ ,

where ak are coefficients of f ∈ S∗(2) described above.
Applying Theorem 4 the claimed bound follows. The extremal functions can

be derived from Theorem 5 and (14). �
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From Theorem 5 and Theorem 6 we obtain what follows.

Corollary 5. 1. |H3(1)| ≤
√

6/36 for all f ∈ S∗(1/2)(2),

2. |H3(1)| ≤
√

3/9 for all f ∈ S∗(2),
3. |H3(1)| ≤

√
6/4 for all f ∈ S∗(−1/2)(2).

Corollary 6. 1. |H3(1)| ≤ 17/2160 for all f ∈ K(1/2)(2),
2. |H3(1)| ≤ 4/135 for all f ∈ K(2),
3. |H3(1)| ≤ 1/16 for all f ∈ K(−1/2)(2).

The estimates given in Corollaries 1-6 for S∗(n) and K(n), n = 1, 2, 3 coincide
with those results proved in [21] (Theorem 3.1 and Theorem 3.3).
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