• Title/Summary/Keyword: the mathematically gifted students

Search Result 184, Processing Time 0.022 seconds

Renzulli 수학 영재 교수-학습 모형 적용에 관한 연구

  • Nam, Young-Man;Park, Dong-Am
    • East Asian mathematical journal
    • /
    • v.25 no.3
    • /
    • pp.379-397
    • /
    • 2009
  • In this paper we apply to Renzulli's Teaching and Learning models for mathematically gifted students based on the gifted science education center in university. Gifted students were very positive reaction in solving problems creatively using this program, and they were challenging and very confident performing new tasks. They reacted variously in debates with their classmates, in self-initiative studying. So more positive changes are needed for the activities using the gifted learning-teaching program to let each student have full use of his or her possibility and potential.

Characteristics of Algebraic Thinking and its Errors by Mathematically Gifted Students (수학영재의 대수적 사고의 특징과 오류 유형)

  • Kim, Kyung Eun;Seo, Hae Ae;Kim, Dong Hwa
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.211-230
    • /
    • 2016
  • The study aimed to investigate the characteristics of algebraic thinking of the mathematically gifted students and search for how to teach algebraic thinking. Research subjects in this study included 93 students who applied for a science gifted education center affiliated with a university in 2015 and previously experienced gifted education. Students' responses on an algebraic item of a creative thinking test in mathematics, which was given as screening process for admission were collected as data. A framework of algebraic thinking factors were extracted from literature review and utilized for data analysis. It was found that students showed difficulty in quantitative reasoning between two quantities and tendency to find solutions regarding equations as problem solving tools. In this process, students tended to concentrate variables on unknown place holders and to had difficulty understanding various meanings of variables. Some of students generated errors about algebraic concepts. In conclusions, it is recommended that functional thinking including such as generalizing and reasoning the relation among changing quantities is extended, procedural as well as structural aspects of algebraic expressions are emphasized, various situations to learn variables are given, and activities constructing variables on their own are strengthened for improving gifted students' learning and teaching algebra.

A Study of mathematically gifted elementary students' creativity on dimension based geometry exploring program (차원을 주제로 한 기하탐구프로그램을 통한 초등수학영재학생들의 창의성)

  • Choi, Sung Taek;Lee, Kwang-Ho
    • Education of Primary School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • The purpose of this study is to identify how developed program influence students' creativity by analyzing creative thinking and creative attitude which is appeared when mathematically gifted students get the program expected to improve their creativity. For the study, the 'dimension based geometry exploring program' was developed that consist of twelve lessons. The main idea of it, is implication of the novel . Through a pre and post-test, students's creativity were measured and compared. The results show significant changes on the scores of creative thinking skills and creative attitudes. As the result, mathematically gifted students' creative thinking skills and creative attitudes were improved by applying the of dimension based geometry exploring program.

Development and application of program for mathematically gifted students based on mathematical modeling : focused on Voronoi diagram and Delaunay triangulation (영재교육을 위한 수학적 모델링 프로그램의 개발 및 적용 :보로노이 다이어그램과 들로네 삼각분할을 중심으로)

  • Yu, Hong-Gyu;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.257-277
    • /
    • 2017
  • The purpose of this research is divide into two kinds. First, develop the mathematical modeling program for mathematically gifted students focused on Voronoi diagram and Delaunay triangulation, and then gifted teachers can use it in the class. Voronoi diagram and Delaunay triangulation are Spatial partition theory use in engineering and geography field and improve gifted student's mathematical connections, problem solving competency and reasoning ability. Second, after applying the developed program to the class, I analyze gifted student's core competency. Applying the mathematical modeling program, the following findings were given. First, Voronoi diagram and Delaunay triangulation are received attention recently and suitable subject for mathematics gifted education. Second,, in third enrichment course(Student's Centered Mathematical Modeling Activity), gifted students conduct the problem presentation, division of roles, select and collect the information, draw conclusions by discussion. In process of achievement, high level mathematical competency and intellectual capacity are needed so synthetic thinking ability, problem solving, creativity and self-directed learning ability are appeared to gifted students. Third, in third enrichment course(Student's Centered Mathematical Modeling Activity), problem solving, mathematical connections, information processing competency are appeared.

An Analysis of Mathematics Instruction for Professional Development of Elementary School Teachers for Gifted (초등 영재 교사의 수업 전문성 신장을 위한 수학 수업 사례 분석)

  • Kim, MinJeong;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.143-160
    • /
    • 2016
  • Despite the recent increasing interest in classroom expertise of teachers for gifted there has been lack of research on exploring or analyzing the components of classes for gifted tailored to the characteristics of each subject matter Given this, this study looked for the components of performance domain of classes for gifted in mathematics and then analyzed one teacher's 12 lessons in terms of the components. The features of the lessons included the establishment of classroom atmosphere by considering the characteristics of mathematically gifted students, the introduction of or expansion to mathematically enriched tasks, promotion to mathematically higher thinking, and emphasis of mathematical pattern, connections, and utility. This study is expected for researchers to provide a practical case on how to analyze elementary classes for gifted in mathematics. It also helps teachers who teach gifted students to develop professional vision of mathematics instruction and to increase their classroom expertise.

How the Mathematically Gifted Cope with Ambiguity (영재아들은 모호성에 어떻게 대처하는가?)

  • Lee, Dong-Hwan;Lee, Kyeong-Hwa
    • School Mathematics
    • /
    • v.12 no.1
    • /
    • pp.79-95
    • /
    • 2010
  • The purpose of this study is to examine into how the mathematically gifted cope with ambiguity when they are encountered to learn via resolving ambiguity. In this study 6 gifted students are asked to resolve the ambiguity. Participant in this study appeared to experience the need of mathematical justification and the flexible change of perspective. The gifted have constructed unified mathematical knowledge by making a relation between two incompatible perspective in the process of resolving the ambiguity. We suggest that dealing with ambiguity in mathematics class can be a good opportunity for enhancing the gifted student mathematics education.

  • PDF

Identification and Selection the Mathematically Gifted Child on the Elementary School Level (초등 수학 영재의 판별과 선발)

  • 송상헌
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.2
    • /
    • pp.87-106
    • /
    • 2001
  • Identification and selection the mathematically gifted child must be based on it's definition. So, we have to consider not only IQ or high ability in mathematical problem solving, but also mathematical creativity and mathematical task commitment. Furthermore, we must relate our ideas with the programs to develop each student's hidden potential. This study is focused on the discrimination of the candidates who would like to enter the elementary school level mathematics gifted education program. To fulfill this purpose, I considered the criteria, principles, methods, and tools. Identification is not exactly separate from selection and education. So, it is important to have long-term vision and plan to identify the mathematically gifted students.

  • PDF

Analysis of the Algebraic Generalization on the Mathematically Gifted Elementary School Students' Process of Solving a Line Peg Puzzle (초등수학영재들이 페그퍼즐 과제에서 보여주는 대수적 일반화 과정 분석)

  • Song, Sang-Hun;Yim, Jae-Hoon;Chong, Yeong-Ok;Kwon, Seok-Il;Kim, Ji-Won
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.163-177
    • /
    • 2007
  • Studies on mathematically gifted students have been conducted following Krutetskii. There still exists a necessity for a more detailed research on how these students' mathematical competence is actually displayed during the problem solving process. In this study, it was attempted to analyse the algebraic thinking process in the problem solving a peg puzzle in which 4 mathematically gifted students, who belong to the upper 0.01% group in their grade of elementary school in Korea. They solved and generalized the straight line peg puzzle. Mathematically gifted elementary school students had the tendency to find a general structure using generic examples rather than find inductive rules. They did not have difficulty in expressing their thoughts in letter expressions and in expressing their answers in written language; and though they could estimate general patterns while performing generalization of two factors, it was revealed that not all of them can solve the general formula of two factors. In addition, in the process of discovering a general pattern, it was confirmed that they prefer using diagrams to manipulating concrete objects or using tables. But as to whether or not they verify their generalization results using generalized concrete cases, individual difference was found. From this fact it was confirmed that repeated experiments, on the relationship between a child's generalization ability and his/her behavioral pattern that verifies his/her generalization result through application to a concrete case, are necessary.

  • PDF

Exploring the Predictive Validity of Behavioral Characteristics Checklists for Identifying Mathematically Gifted Students in Korea (예측타당도를 중심으로 한 관찰·추천 영재판별용 행동특성 평정척도의 유용성 탐색)

  • Jung, Hyun Min;Jin, Sukun
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.835-855
    • /
    • 2013
  • The purpose of this study was to investigate the predictive validity of behaviroal characteristics checklists that are widely used in Korea for identifying mathematically gifted students. Three most widely used checklists were selected and implemented to classroom teachers who could teach and observe gifted students in regular classes. The predictive validity of the tree checklists were explored by generating the correlations between their ratings using those three checklists and the performance levels of gifted students, which were measured by teachers in gifted classes. Findings of this study are the followings: First, all three checklists could statistically significantly predict the performance of gifted students in gifted programs, and the checklist B showed the highest predictability. Secondly, without the assistance by those checklists, teachers could not predict the performance level of gifted students. Lastly, teachers that were trained for educating gifted students could very effectively predict the performance of gifted students with the aid of those checklists while teachers without appropriate training could not at all even with the aid of those checklists.

Analysing the Processes of Discovery and Proof of the Mathematically Gifted Students (수학 영재 학생들의 발견과 증명에 대한 연구)

  • Na, Gwi-Soo
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.2
    • /
    • pp.105-120
    • /
    • 2011
  • This research intends to analyse how mathematically gifted 8th graders (age 14) discover and proof the properties on the sum of face angles of polyhedron. In this research, the problems on the sum of face angles of polyhedrons were given to 36 gifted students, and their discovery and proof processes were analysed on the basis of their the activity sheets and the researcher's observation. The discovery and proof processes the gifted students made were categorized, and levels revealed in their processes were analysed.

  • PDF