• Title/Summary/Keyword: subgroup action

Search Result 23, Processing Time 0.023 seconds

SUBGROUP ACTIONS AND SOME APPLICATIONS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.181-189
    • /
    • 2011
  • Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.

GALOIS CORRESPONDENCES FOR SUBFACTORS RELATED TO NORMAL SUBGROUPS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.253-260
    • /
    • 2002
  • For an outer action $\alpha$ of a finite group G on a factor M, it was proved that H is a, normal subgroup of G if and only if there exists a finite group F and an outer action $\beta$ of F on the crossed product algebra M $\times$$_{\alpha}$ G = (M $\times$$_{\alpha}$ F. We generalize this to infinite group actions. For an outer action $\alpha$ of a discrete group, we obtain a Galois correspondence for crossed product algebras related to normal subgroups. When $\alpha$ satisfies a certain condition, we also obtain a Galois correspondence for fixed point algebras. Furthermore, for a minimal action $\alpha$ of a compact group G and a closed normal subgroup H, we prove $M^{G}$ = ( $M^{H}$)$^{{beta}(G/H)}$for a minimal action $\beta$ of G/H on $M^{H}$.f G/H on $M^{H}$.TEX> H/.

A NOTE ON LIFTING TRANSFORMATION GROUPS

  • Cho, Sung Ki;Park, Choon Sung
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 1997
  • The purpose of this note is to compare two known results related to the lifting problem of an action of a topological group G on a G-space X to a coverring space of X.

  • PDF

THE TRANSFORMATION GROUPS AND THE ISOMETRY GROUPS

  • Kim, Young-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.47-52
    • /
    • 1989
  • Methods of Riemannian geometry has played an important role in the study of compact transformation groups. Every effective action of a compact Lie group on a differential manifold leaves a Riemannian metric invariant and the study of such actions reduces to the one involving the group of isometries of a Riemannian metric on the manifold which is, a priori, a Lie group under the compact open topology. Once an action of a compact Lie group is given an invariant metric is easily constructed by the averaging method and the Lie group is naturally imbedded in the group of isometries as a Lie subgroup. But usually this invariant metric has more symmetries than those given by the original action. Therefore the first question one may ask is when one can find a Riemannian metric so that the given action coincides with the action of the full group of isometries. This seems to be a difficult question to answer which depends very much on the orbit structure and the group itself. In this paper we give a sufficient condition that a subgroup action of a compact Lie group has an invariant metric which is not invariant under the full action of the group and figure out some aspects of the action and the orbit structure regarding the invariant Riemannian metric. In fact, according to our results, this is possible if there is a larger transformation group, containing the oringnal action and either having larger orbit somewhere or having exactly the same orbit structure but with an orbit on which a Riemannian metric is ivariant under the orginal action of the group and not under that of the larger one. Recently R. Saerens and W. Zame showed that every compact Lie group can be realized as the full group of isometries of Riemannian metric. [SZ] This answers a question closely related to ours but the situation turns out to be quite different in the two problems.

  • PDF

PSEUDO-RIEMANNIAN SASAKI SOLVMANIFOLDS

  • Diego Conti;Federico A. Rossi;Romeo Segnan Dalmasso
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.115-141
    • /
    • 2023
  • We study a class of left-invariant pseudo-Riemannian Sasaki metrics on solvable Lie groups, which can be characterized by the property that the zero level set of the moment map relative to the action of some one-parameter subgroup {exp tX} is a normal nilpotent subgroup commuting with {exp tX}, and X is not lightlike. We characterize this geometry in terms of the Sasaki reduction and its pseudo-Kähler quotient under the action generated by the Reeb vector field. We classify pseudo-Riemannian Sasaki solvmanifolds of this type in dimension 5 and those of dimension 7 whose Kähler reduction in the above sense is abelian.

COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS OF CONSTANT POSITIVE CURVATURE

  • Abedi, Hosein;Kashani, Seyed Mohammad Bagher
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.799-807
    • /
    • 2007
  • In this paper we study non-simply connected Riemannian manifolds of constant positive curvature which have an orbit of codimension one under the action of a connected closed Lie subgroup of isometries. When the action is reducible we characterize the orbits explicitly. We also prove that in some cases the manifold is homogeneous.

Fundamental Groups of a Topological Transformation Group

  • Chu, Chin-Ku;Choi, Sung Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.103-113
    • /
    • 1991
  • Some properties of a path space and the fundamental group ${\sigma}(X,x_0,G)$ of a topological transformation group (X, G, ${\pi}$) are described. It is shown that ${\sigma}(X,x_0,H)$ is a normal subgroup of ${\sigma}(X,x_0,G)$ if H is a normal subgroup of G ; Let (X, G, ${\pi}$) be a transformation group with the open action property. If every identification map $p:{\Sigma}(X,x,G)\;{\longrightarrow}\;{\sigma}(X,x,G)$ is open for each $x{\in}X$, then ${\lambda}$ induces a homeomorphism between the fundamental groups ${\sigma}(X,x_0,G)$ and ${\sigma}(X,y_0,G)$ where ${\lambda}$ is a path from $x_0$ to $y_0$ in X ; The space ${\sigma}(X,x_0,G)$ is an H-space if the identification map $p:{\Sigma}(X,x_0,G)\;{\longrightarrow}\;{\sigma}(X,x_0,G)$ is open in a topological transformation group (X, G, ${\pi}$).

  • PDF

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

Designing a Microworld for Recursive Pasterns and Algebra (재귀적 패턴과 거북 마이크로월드 설계)

  • Kim Hwa-Kyung
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.165-176
    • /
    • 2006
  • In this paper, we consider changes of algebra strands around the world. And we suggest needs of designing new computer environment where we make and manipulate geometric recursive patterns. For this purpose, we first consider relations among symbols, meanings and patterns. And we also consider Logo environment and characterize algebraic features. Then we introduce L-system which is considered as action letters and subgroup of turtle group. There are needs to be improved since there exists some ambiguity between sign and action. Based on needs of improving the previous L-system, we suggest new commands in JavaMAL microworld. So we design a microworld for recursive patterns and consider meanings of letters in new environments. Finally, we consider the method to integrate L-system and other existing microworlds, such as Logo and DGS. Specially, combining Logo and DGS, we consider the movement of such tiles and folding nets by L-system commands. And we discuss possible benefits in this environment.

  • PDF

ON THE FIBERS OF THE TREE PRODUCTS OF GROUPS WITH AMALGAMATION SUBGROUPS

  • ABDALLAH AL-HUSBAN;DOAA AL-SHAROA;RANIA SAADEH;AHMAD QAZZA;R.M.S. MAHMOOD
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1237-1256
    • /
    • 2023
  • The tree products of groups with amalgamation subgroups are generalizations of the free products of groups with amalgamation subgroup. The aim of this paper is to construct a tree called the standard tree where the tree products of groups with amalgamation subgroups act without inversions and then find the quotient of this action. Furthermore, we show that if the amalgamation subgroups are finite and the factor groups act on disjoint trees then there exists a tree called the fiber tree where the tree products of groups with amalgamation subgroups act without inversions and find the quotients of this action. If each factor is a tree products with amalgamation subgroups, we get a new fiber tree and the corresponding factors.