Browse > Article
http://dx.doi.org/10.11568/kjm.2011.19.2.181

SUBGROUP ACTIONS AND SOME APPLICATIONS  

Han, Juncheol (Department of Mathematics Educations Pusan National University)
Park, Sangwon (Department of Mathematics Dong-A University)
Publication Information
Korean Journal of Mathematics / v.19, no.2, 2011 , pp. 181-189 More about this Journal
Abstract
Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.
Keywords
subgroup action; orbit; stabilizer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. Cohen and K. Koh, Half-transitive group actions in a compact ring, J. Pure Appl. Algebra 60 (1989), 139-153.   DOI   ScienceOn
2 J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25(7) (1997), 2227-2236.   DOI   ScienceOn
3 J. Han, Group actions in a unit-regular ring, Comm. Algebra 27(7) (1999), 3353-3361.   DOI   ScienceOn
4 J. Han, General linear group over a ring integers of modulo k,, Kyungpook Math. J. 46(3) (2006), 255-260.
5 T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc., 1974.
6 D. S. Passman, The algebraic structure of group rings, John Wiley and Sons, Inc., 1977.