SUBGROUP ACTIONS AND SOME APPLICATIONS

Juncheol Han and Sangwon Park*

Abstract

Let G be a group and X be a nonempty set and H be a subgroup of G. For a given $\phi_{G}: G \times X \longrightarrow X$, a group action of G on X, we define $\phi_{H}: H \times X \longrightarrow X$, a subgroup action of H on X, by $\phi_{H}(h, x)=\phi_{G}(h, x)$ for all $(h, x) \in H \times X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H, K are two normal subgroups of G such that $H \subseteq K \subseteq G$, then for any $x \in X\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=$ $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)=\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right) ;$ additionally, in case of $K \cap \operatorname{stab}_{\phi_{G}}(x)=\{1\}$, if $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ are both finite, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ is finite; (2) If H is a cyclic subgroup of G and $\operatorname{stab}_{\phi_{H}}(x) \neq\{1\}$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}}(x)$ is finite.

1. Introduction and basic definitions

The group action is a very useful tool for a classical group theory (in particular, Sylow Theorems) ([5]), Galois theory, ring theory ([1, 2, $3])$ and module theory ([6]), etc.

Let G be a group and X be a nonempty set. Let $\phi_{G}: G \times X \longrightarrow X$ be a group action of G on X. Then for any subgroup H of G, we have a subgroup action of H on $X, \phi_{H}: H \times X \longrightarrow X$ given by $\phi_{H}(h, x)=$ $\phi_{G}(h, x)$ for all $(h, x) \in H \times X$. We define the orbit of $x \in X$ under the subgroup action ϕ_{H} of H on X by $\operatorname{orb}_{\phi_{H}}(x)=\left\{\phi_{H}(h, x): \forall h \in H\right\}$. We also define the stabilizer of x under the subgroup action ϕ_{H} of H on X by $\operatorname{stab}_{\phi_{H}}(x)=\left\{h \in H: \phi_{H}(h, x)=x\right\}$.

For a given subgroup H of a group G, consider $F=\{\alpha H: \alpha \in G\}$, the collection of all distinct left cosets of H in G. For the convenience

[^0]of expression, we denote $\phi_{G}\left(\alpha, \operatorname{orb}_{\phi_{H}}(x)\right)$ by $\operatorname{orb}_{\phi_{\alpha H}}(x)$. Then we note that $\operatorname{orb}_{\phi_{G}}(x)$ is the union of all $\operatorname{orb}_{\phi_{\alpha H}}(x)$ and there exists some subcollection F_{1} of F such that $\cup_{\alpha H \in F_{1}} \operatorname{orb}_{\phi_{\alpha H}}(x)$ is a disjoint union of $\operatorname{orb}_{\phi_{G}}(x)$. Denote $\left|F_{1}\right|$ by $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$. Clearly, we note that $|F|=(G: H) \geq\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ where $(G: H)$ is the index of H in G, and if $\left|\operatorname{orb}_{\phi_{G}}(x)\right|$ is finite, $\left|\operatorname{orb}_{\phi_{H}}(x)\right|$ is finite and $\left|\operatorname{orb}_{\phi_{G}}(x)\right|=\left|\operatorname{orb}_{\phi_{H}}(x)\right|\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$.

Example 1. Let n be a positive integer and \mathbb{Z}_{n} be the ring of integers of modulo n. Let X_{n} be the set of all 2×2 nonzero, singular matrices over \mathbb{Z}_{n}, G_{n} be the general linear group of degree 2 over \mathbb{Z}_{n} and H_{n} be the special linear group of degree 2 over \mathbb{Z}_{n} as a subgroup of G_{n}, i.e., $\left\{A \in G_{n} \mid \operatorname{det}(A)=1\right\}$. In [4], it was shown that (G_{n} : $\left.H_{n}\right)=\phi(n)$, where $\phi(n)$ is the Euler- ϕ number of n.

Consider a group action of G_{n} on $X_{n}, \phi_{G_{n}}: G_{n} \times X_{n} \longrightarrow X_{n}$ defined by $\phi_{G_{n}}(g, x)=g x(\bmod n)$ for all $(g, x) \in G_{n} \times X_{n}$ and a subgroup action of H_{n} on $X_{n}, \phi_{H_{n}}: H_{n} \times X_{n} \longrightarrow X_{n}$ given by $\phi_{H_{n}}(h, x)=\phi_{G_{n}}(h, x)$ for all $(h, x) \in H_{n} \times X_{n}$. We compute the followings by a computer programming (using Mathematica Ver. 7):
(1) For $n=6$;

Note that $G_{6}=H_{6} \dot{\cup} \alpha H_{6}$ with $\left(G_{6}: H_{6}\right)=2$ where $\alpha=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right) \in$ G_{6}. Let $x=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right), y=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) \in X_{6}$. Then
$\operatorname{orb}_{\phi_{H_{6}}}(x) \dot{\cup} \operatorname{orb}_{\alpha \phi_{H_{6}}}(x)=\operatorname{orb}_{\phi_{G_{6}}}(x)$ with $\left|\operatorname{orb}_{\phi_{H_{6}}}(x)\right|=\left|\operatorname{orb}_{\phi_{\alpha H_{6}}}(x)\right|=$ 72 , and then $\left|\operatorname{orb}_{\phi_{G_{6}}}(x)\right|=144$, and so $\left(\operatorname{orb}_{\phi_{G_{6}}}(x): \operatorname{orb}_{\phi_{H_{6}}}(x)\right)=$ $2=\left(G_{6}: H_{6}\right)$. On the other hand, $\operatorname{orb}_{\phi_{H_{6}}}(y)=\operatorname{orb}_{\phi_{G_{6}}}(y)$ with $\left|\operatorname{orb}_{\phi_{G_{6}}}(y)\right|=24$, and so $\left(\operatorname{orb}_{\phi_{G_{6}}}(x): \operatorname{orb}_{\phi_{H_{6}}}(x)\right)=1$.
(2) For $n=10$;

Note that $\left(G_{10}: H_{10}\right)=4$. Let $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right), y=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), z=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 5\end{array}\right) \in X_{10}$. Then we compute $\left|\operatorname{orb}_{\phi_{G_{10}}}(x)\right|=1,440,\left|\operatorname{orb}_{\phi_{H_{10}}}(x)\right|=$ 360 , and so $\left(\operatorname{orb}_{\phi_{G_{10}}}(x): \operatorname{orb}_{\phi_{H_{10}}}(x)\right)=4=\left(G_{10}: H_{10}\right) ;\left(\operatorname{orb}_{\phi_{G_{10}}}(y)\right.$: $\left.\operatorname{orb}_{\phi_{H_{10}}}(y)\right)=1$ with $\left|\operatorname{orb}_{\phi_{G_{10}}}(y)\right|=\left|\operatorname{orb}_{\phi_{H_{10}}}(y)\right|=72 ;\left(\operatorname{orb}_{\phi_{G_{10}}}(z):\right.$ $\left.\operatorname{orb}_{\phi_{H_{10}}}(z)\right)=1$ with $\left|\operatorname{orb}_{\phi_{G_{10}}}(z)\right|=\left|\operatorname{orb}_{\phi_{H_{10}}}(z)\right|=144$.

In Section 2, we have shown that for a given a group action ϕ_{G} of
G on $X,(1)$ if H is a normal subgroup of G such that $(G: H)$ is finite, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ is a divisor of $(G: H)$; (2) if H and K are two normal subgroups of a finite group G such that $H \subseteq K \subseteq G$, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right) ;$ in case of $K \cap s t a b_{\phi_{G}}(x)=\{1\}$ for some $x \in X$, if $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ are both finite, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ is finite; moreover, $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=$ $\left(\operatorname{orb}_{\phi_{G}}(x):\right.$ orb $\left._{\phi_{H}}(x)\right)$.

Let R be a ring with identity, X be the of all nonzero, nonunits of R and G be the group of all units of R. In Section 3, by applying the result obtained in section 2 to the subgroup action $\phi_{H}: H \times X \longrightarrow X$ for a given subgroup H of G we have shown that if H is a cyclic subgroup of G and $\operatorname{stab}_{\phi_{H}}(x) \neq\{1\}$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}}(x)$ is finite; if H is infinite, then the converse holds.

2. Subgroup action

We denote the cardinality of a set S by $|S|$. Also write $A \cdot B=$ $\{a b \mid a \in A, b \in B\}$ for any sets A, B.

Lemma 2.1. Let ϕ_{G} be a group action of a group G on a set X. Then $\left|\operatorname{orb}_{\phi_{H}}(x)\right|=\left|\operatorname{orb}_{\phi_{\alpha H}}(x)\right|$ for all cosets αH of H in G.

Proof. Define $f: \operatorname{orb}_{\phi_{H}}(x) \longrightarrow \operatorname{orb}_{\phi_{\alpha H}}(x)$ by $f\left(\phi_{H}(h, x)\right)=\phi_{G}(\alpha h, x)$ for all $(h, x) \in \operatorname{orb}_{\phi_{H}}(x)$. Then clearly f is well-defined and onto. To show that f is one to one, let $f\left(\phi_{G}(h, x)\right)=f\left(\phi_{G}\left(h_{1}, x\right)\right)$ for some $h, h_{1} \in H$, and so $\phi_{G}(\alpha h, x)=\phi_{G}\left(\alpha h_{1}, x\right)$. Then

$$
\begin{aligned}
\phi_{H}(h, x) & =\phi_{G}\left(1, \phi_{H}(h, x)\right)=\phi_{G}\left(\alpha^{-1} \alpha, \phi_{H}(h, x)\right) \\
& =\phi_{G}\left(\alpha^{-1}, \phi_{G}\left(\alpha, \phi_{H}(h, x)\right)\right. \\
& =\phi_{G}\left(\alpha^{-1}, \phi_{G}\left(\alpha, \phi_{H}\left(h_{1}, x\right)\right)\right. \\
& =\phi_{G}\left(\alpha^{-1} \alpha, \phi_{H}\left(h_{1}, x\right)\right) \\
& =\phi_{G}\left(1, \phi_{H}\left(h_{1}, x\right)\right)=\phi_{H}\left(h_{1}, x\right)
\end{aligned}
$$

and thus f is one to one. Therefore, f is bijective and so we have the result.

Corollary 2.2. Let ϕ_{G} be a group action of a group G on a set X and H be a normal subgroup of G. Then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=$ $\left(G: H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$ for all $x \in X$.

Proof. By Lemma 2.1, $\operatorname{orb}_{\phi_{\alpha H}}(x)=\operatorname{orb}_{\phi_{\beta H}}(x)$ for some cosets $\alpha H, \beta H$ of H in G if and only if $\alpha^{-1} \beta \in H \cdot \operatorname{stab}_{\phi_{G}}(x)$. Since H is a normal subgroup of $G, H \cdot \operatorname{stab}_{\phi_{G}}(x)$ is a subgroup of G, and so $\left(\operatorname{orb}_{\phi_{G}}(x)\right.$: $\left.\operatorname{orb}_{\phi_{H}}(x)\right)=\left(G: H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$.

Remark 1. Let ϕ_{G} be a group action of a group G on a set X and H be a normal subgroup of G. By Corollary 2.2, we note that for all $x \in X$, (1) $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=(G: H)$ if and only if $\operatorname{stab}_{\phi_{G}}(x) \subseteq H$; (2) if $(G: H)$ is finite, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ is a divisor of $(G: H)$.

Corollary 2.3. Let ϕ_{G} be a group action of a group G on a set X. Then for all $x \in X,\left|\operatorname{orb}_{\phi_{G}}(x)\right|=\left(G: \operatorname{stab}_{\phi_{G}}(x)\right)$.

Proof. Let $H=\{1\}$. Then it follows from Corollary 2.2.

Theorem 2.4. Let ϕ_{G} be a group action of a group G on a set X and H, K be two subgroups of G. Then (1) $\operatorname{orb}_{\phi_{H}}(x)=\operatorname{orb}_{\phi_{K}}(x)$ for some $x \in X$ if and only if $H \subseteq K \cdot \operatorname{stab}_{\phi_{G}}(x)$ and $K \subseteq H \cdot \operatorname{stab}_{\phi_{G}}(x)$; (2) in particular, if $\operatorname{stab}_{\phi_{G}}(x)=\{1\}$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}}(x)=$ orb $_{\phi_{K}}(x)$ if and only if $H=K$.

Proof. (1). Suppose that $\operatorname{orb}_{\phi_{H}}(x)=\operatorname{orb}_{\phi_{K}}(x)$. Let $h \in H$ be arbitrary. Since $\phi_{H}(h, x) \in \operatorname{orb}_{\phi_{H}}(x)=\operatorname{orb}_{\phi_{K}}(x), \phi_{H}(h, x)=\phi_{K}(k, x)$ for some $k \in K$. Thus $k^{-1} h \in \operatorname{stab}_{\phi_{G}}(x)$, and so $h \in K \cdot \operatorname{stab}_{\phi_{G}}(x)$. Hence $H \subseteq K \cdot \operatorname{stab}_{\phi_{G}}(x)$. Similarly, we have $K \subseteq H \cdot s t a b_{\phi_{G}}(x)$.

Conversely, suppose that $H \subseteq K \cdot \operatorname{stab}_{\phi_{G}}(x)$ and $K \subseteq H \cdot \operatorname{stab}_{\phi_{G}}(x)$. Let $\phi_{H}(h, x) \in \operatorname{orb}_{\phi_{H}}(x)$ be arbitrary. Then $h=k g$ for some $k \in K$ and some $g \in \operatorname{stab}_{\phi_{G}}(x)$. Thus $\phi_{H}(h, x)=\phi_{G}(h, x)=\phi_{G}(k g, x)=$ $\phi_{G}\left(k, \phi_{G}(g, x)\right)=\phi_{G}(k, x)=\phi_{K}(k, x) \in \operatorname{orb}_{\phi_{K}}(x)$, and so $\operatorname{orb}_{\phi_{H}}(x) \subseteq$ $\operatorname{orb}_{\phi_{K}}(x)$. Similarly, we have $\operatorname{orb}_{\phi_{K}}(x) \subseteq \operatorname{orb}_{\phi_{H}}(x)$.
(2). In particular, if $\operatorname{stab}_{\phi_{G}}(x)=\{1\}$, then $\operatorname{orb}_{\phi_{H}}(x)=\operatorname{orb}_{\phi_{K}}(x)$ if and only if $H=K$ by (1).

Remark 2. Let ϕ_{G} be a group action of a group G on a set X and H, K be two subgroups of G. By Theorem 2.4, we note that for some $x \in X$, (1) orb $_{\phi_{H}}(x)=\operatorname{orb}_{\phi_{G}}(x)$ if and only if $G=H \cdot \operatorname{stab}_{\phi_{G}}(x)$; (2) if $\operatorname{stab}_{\phi_{G}}(x) \subseteq H \cap K$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}}(x) \cap \operatorname{orb}_{\phi_{K}}(x)=$ $\operatorname{orb}_{\phi_{H \cap K}}(x)$. Indeed, clearly, $\operatorname{orb}_{\phi_{H \cap K}}(x) \subseteq \operatorname{orb}_{\phi_{H}}(x) \cap \operatorname{orb}_{\phi_{K}}(x)$. Let $y \in \operatorname{orb}_{\phi_{H}}(x) \cap \operatorname{orb}_{\phi_{K}}(x)$ be arbitrary. Then $y=\phi_{G}(h, x)=\phi_{H}(h, x)=$ $\phi_{K}(k, x)=\phi_{G}(k, x)$ for some $h \in H, k \in K$. Thus $\phi_{G}\left(k^{-1} h, x\right)=$ x, and so $\left.k^{-1} h \in \operatorname{stab}_{\phi_{G}}(x)\right) \subseteq H \cap K$. Hence $h=k\left(k^{-1} h\right) \in$ $K(H \cap K) \subseteq K K=K$, and so $y=\phi_{G}(h, x) \in \operatorname{orb}_{\phi_{H \cap K}}(x)$, and then $\operatorname{orb}_{\phi_{H}}(x) \cap \operatorname{orb}_{\phi_{K}}(x) \subseteq \operatorname{orb}_{\phi_{H} \cap K}(x)$. Therefore, $\operatorname{orb}_{\phi_{H}}(x) \cap \operatorname{orb}_{\phi_{K}}(x)=$ $\operatorname{orb}_{\phi_{H \cap K}}(x)$.

Theorem 2.5. Let ϕ_{G} be a group action of a finite group G on a set X and H, K be two normal subgroups of G such that $H \subseteq K \subseteq$ G. Then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x):\right.$ $\left.\operatorname{orb}_{\phi_{H}}(x)\right)$.

Proof. Since G is finite, both $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{K}}(x)\right.$: $\left.\operatorname{orb}_{\phi_{H}}(x)\right)$ are finite. By Corollary 2.2, we have $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=$ $\left(G: H \cdot \operatorname{stab}_{\phi_{G}}(x)\right),\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)=\left(G: K \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$. We will show that $\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)=\left(K \cdot \operatorname{stab}_{\phi_{G}}(x): K \cdot \operatorname{stab}_{\phi_{G}}(x): H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$. Indeed,

$$
\begin{aligned}
\left(K \cdot \operatorname{stab}_{\phi_{G}}(x): H \cdot \operatorname{stab}_{\phi_{G}}(x)\right) & =\frac{\left|K \cdot \operatorname{stab}_{\phi_{G}}(x)\right|}{\left|H \cdot \operatorname{stab}_{\phi_{G}}(x)\right|} \\
& =\left(\frac{|K|}{|H|}\right)\left(\frac{\left|H \cap \operatorname{stab_{\phi _{G}}}(x)\right|}{\left.\mid K \cap \operatorname{stab_{\phi _{G}}(x)|}\right)}\right. \\
& =\left(\frac{|K|}{|H|}\right)\left(\frac{\left|s_{t a b_{\phi_{H}}}(x)\right|}{\left|\operatorname{stab}_{\phi_{K}}(x)\right|}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right) & =\frac{|K|}{\left|H \cdot \operatorname{stab}_{\phi_{K}}(x)\right|} \\
& =\left(\frac{|K|}{|H|}\right)\left(\frac{\mid H \cap \operatorname{stab_{\phi _{K}}(x)|}}{\left|\operatorname{stab}_{\phi_{K}}(x)\right|}\right) \\
& =\left(\frac{|K|}{|H|}\right)\left(\frac{\left|\operatorname{stab}_{\phi_{H}}(x)\right|}{\left|\operatorname{stab}_{\phi_{K}}(x)\right|}\right)
\end{aligned}
$$

Hence we have $\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)=\left(K \cdot \operatorname{stab}_{\phi_{G}}(x): H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$. Therefore, $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(G: H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)=(G: K$. $\left.\operatorname{stab}_{\phi_{G}}(x)\right)\left(K \cdot \operatorname{stab}_{\phi_{G}}(x): H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)=\left(G: K \cdot \operatorname{stab}_{\phi_{G}}(x)\right)(K:$ $\left.H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)=\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$.

Lemma 2.6. Let H, K be normal subgroups of a group G such that $H \subseteq K$. If $(K: H)$ is finite and $K \cap L=\{1\}$ for some subgroup L of G, then $(K: H)=(K L: H L)$.

Proof. Let $\left\{k_{i} H: i=1, \cdots, r\right\}$ be the collection of distinct cosets of H in K. Let $k \ell \in K L(k \in K, \ell \in L)$ be arbitrary. Then $k \in k_{i} H$ for some $k_{i} \in K$, and so $k \ell \in k_{i} H L$. Thus $K L=k_{1} H L \cup \cdots \cup k_{r} H L$. We will show that $\left\{k_{i} H L: i=1, \cdots, r\right\}$ is the collection of distinct cosets of $H L$ in $K L$. Assume that $k_{i} H L \cap k_{j} H L \neq \emptyset$ for some $k_{i}, k_{j} \in$ $K\left(k_{i} \neq k_{j}\right)$. Let $a \in k_{i} H L \cap k_{j} H L$. Then $a=k_{i} h_{1} \ell_{1}=k_{i} h_{2} \ell_{2}$ for some $h_{1}, h_{2} \in H, \ell_{1}, \ell_{2} \in L$, and so $\left(k_{i} h_{1}\right)^{-1}\left(k_{j} h_{2}\right)=\ell_{1} \ell_{2}^{-1} \in(K H) \cap L=$ $K \cap L$. Since $K \cap L=\{1\}, k_{i} h_{1}=k_{j} h_{2} \in k_{i} H \cap k_{j} H$, a contradiction. Hence $\left\{k_{i} H L: i=1, \cdots, r\right\}$ is also the collection of distinct cosets of $H L$ in $K L$, and so $(K: H)=(K L: H L)$.

Theorem 2.7. Let ϕ_{G} be a group action of a group G on a set X and H, K be two normal subgroups of G such that $H \subseteq K \subseteq G$ and $K \cap \operatorname{stab}_{\phi_{G}}(x)=\{1\}$ for some $x \in X$. If both $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ are finite, then $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$ is finite. Moreover, $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(\operatorname{orb}_{\phi_{G}}(x):\right.$ $\left.\operatorname{orb}_{\phi_{H}}(x)\right)$.

Proof. By Corollary 2.2, we have $\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=(G:$ $\left.H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$, $\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)$ and $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)=$ $\left(G: K \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$. Since H, K are normal subgroups of G such that $H \subseteq K \subseteq G$ and $K \cap \operatorname{stab}_{\phi_{G}}(x)=\{1\},\left(K: H \cdot \operatorname{stab}_{\phi_{K}}(x)\right)=$ $\left(K \cdot \operatorname{stab}_{\phi_{G}}(x): H \cdot \operatorname{stab}_{\phi_{G}}(x)\right)$ by Lemma 2.6. Therefore, as in the proof of Theorem 2.5 we have $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{K}}(x)\right)\left(\operatorname{orb}_{\phi_{K}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)=$ $\left(\operatorname{orb}_{\phi_{G}}(x): \operatorname{orb}_{\phi_{H}}(x)\right)$.

3. Cyclic subgroup action and some applications

Theorem 3.1. Let H be a cyclic subgroup of a group G and ϕ_{H} be a subgroup action of H on X. If $\operatorname{stab}_{\phi_{H}}(x) \neq\{1\}$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}}(x)$ is finite.

Proof. Let $H=<a>$ be a cyclic group generated by $a \in G$. If $\operatorname{orb}_{\phi_{H}}(x)=\{x\}$ or $H=\{1\}$, then $\left|\operatorname{orb}_{\phi_{H}}(x)\right|=1$, and so $\operatorname{orb}_{\phi_{H}}(x)$ is finite. Thus suppose that $\operatorname{orb}_{\phi_{H}}(x) \neq\{x\}$ and $H \neq\{1\}$. Then $\left|\operatorname{orb}_{\phi_{H}}(x)\right| \geq 2$. Let $H_{0}=\operatorname{stab}_{\phi_{H}}(x)$. Then $H>H_{0} \neq\{1\}$, and so $H_{0}=\left\langle a^{t}\right\rangle$ is a proper subgroup of H generated by a^{t} for some positive integer $t \geq 2$. Let $\phi_{H}(h, x) \in \operatorname{orb}_{\phi_{H}}(x)$ be arbitrary. Then $h=a^{s}$ for some integer s. By the division algorithm on \mathbb{Z}, the ring of integers, $s=q t+r$ for some $q, r \in \mathbb{Z}$ where $0 \leq r \leq t-1$. Since $a^{t} \in H_{0}=$ $\operatorname{stab}_{\phi_{H}}(x), x=\phi_{H}\left(a^{t}, x\right)$, and so $\phi_{H}\left(a^{2 t}, x\right)=\phi_{H}\left(a^{t}, \phi_{H}\left(a^{t}, x\right)\right)=$ $\phi_{H}\left(a^{t}, x\right)=x$. Thus by continuing in this process inductively, we have $x=\phi_{H}\left(a^{t}, x\right)=\cdots=\phi_{H}\left(a^{q t}, x\right)$. Hence $\phi_{H}(h, x)=\phi_{H}\left(a^{s}, x\right)=$ $\phi_{H}\left(a^{q t+r}, x\right)=\phi_{H}\left(a^{r}, \phi_{H}\left(a^{q t}, x\right)\right)=\phi_{H}\left(a^{r}, x\right)$, and so $\operatorname{orb}_{\phi_{H}}(x)=$ $\left\{x, \phi_{H}(a, x), \cdots, \phi_{H}\left(a^{t-1}, x\right)\right\}$ is finite.

Corollary 3.2. Let H be an infinite cyclic subgroup of a group G and ϕ_{H} be a subgroup action of H on X. Then $\operatorname{stab}_{\phi_{H}}(x) \neq\{1\}$ for some $x \in X$ if and only if $\operatorname{orb}_{\phi_{H}}(x)$ is finite.

Proof. If follows from Corollary 2.3 and Theorem 3.1.
In this section, let R be a ring with identity, $X(R)$ (simply denoted by X) be the set of all nonzero, nonunits of R and $G(R)$ (simply denoted by G) be the group of all units of R. Let H be a subgroup
of G. Then the map $\phi_{H}^{r}: H \times X \longrightarrow X$ (resp. $\phi_{H}^{c}: H \times X \longrightarrow X$) defined by $\phi_{H}^{r}\left((h, x)=h x\right.$ (resp. $\phi_{H}^{c}\left((h, x)=h x h^{-1}\right)$ is a subgroup action of H on X, which is called the regular action (resp. conjugate action)(refer [1], [2] and [3]). By Theorem 3.1, if H is a cyclic subgroup of G and $\operatorname{stab}_{\phi_{H}^{r}}(x) \neq\{1\}$ (resp. $\left.\operatorname{stab}_{\phi_{H}^{c}}(x) \neq\{1\}\right)$ for some $x \in X$, then $\operatorname{orb}_{\phi_{H}^{r}}(x)$ (resp. $\operatorname{orb}_{\phi_{H}^{c}}(x)$) is finite.

Recall that the index of a nilpotent $x \in R$ is the least positive integer n such that $x^{n}=0 \neq x^{n-1}$ and is denoted by $\operatorname{ind}(x)$.

Corollary 3.3. Let R be a ring and $x \in X$ be a nilpotent with $\operatorname{ind}(x)=n$. Then $\operatorname{orb}_{\phi_{H}^{r}}(x)\left(\right.$ resp. $\left.\operatorname{orb}_{\phi_{H}^{c}}(x)\right)$ is finite where H is a cyclic subgroup of G generated by $1+x^{n-1}$. In particular, if G is cyclic, then $\operatorname{orb}_{\phi_{G}^{r}}(x)\left(\right.$ resp. $\left.\operatorname{orb}_{\phi_{G}^{c}}(x)\right)$ is finite.

Proof. Since $x \in X$ is nilpotent with $\operatorname{ind}(x)=n, 1 \neq 1+x^{n-1} \in H$ and so $\left(1+x^{n-1}\right) x=x$ (resp. $\left(1+x^{n-1}\right) x=x\left(1+x^{n-1}\right)$), which implies that $1+x^{n-1} \in \operatorname{stab}_{\phi_{H}^{r}}(x) \neq\{1\}\left(\right.$ resp. $\left.1+x^{n-1} \in \operatorname{stab}_{\phi_{H}^{c}}(x) \neq\{1\}\right)$. Thus $\operatorname{orb}_{\phi_{G}^{r}}(x)$ (resp. orb $_{\phi_{G}^{c}}(x)$) is finite by Theorem 3.1. In particular, if G is cyclic, then $\operatorname{orb}_{\phi_{G}^{r}}(x)$ (resp. $\operatorname{orb}_{\phi_{G}^{c}}(x)$) is finite by the similar argument.

Corollary 3.4. Let R be a ring such that $2 \in G$ and $e \in X$ be an idempotent. Then $\operatorname{orb}_{\phi_{H}^{r}}(e)$ (resp. $\left.\operatorname{orb}_{\phi_{H}^{c}}(e)\right)$ is finite where H is a cyclic subgroup of G generated by $2 e-1$. In particular, if G is cyclic, then $\operatorname{orb}_{\phi_{G}^{r}}(e)$ (resp. orb $\left.b_{\phi_{G}^{c}}(e)\right)$ is finite.

Proof. Since $2 \in G, 2 e-1 \in G$ and $(2 e-1) e=e($ resp. $(2 e-1) e=$ $e(2 e-1)$), and so $\operatorname{stab}_{\phi_{H}^{r}}(e) \neq\{1\}$ (resp. $\left.\operatorname{stab}_{\phi_{H}^{c}}(e) \neq\{1\}\right)$. Thus $\operatorname{orb}_{\phi_{H}^{r}}(e)$ (resp. $\operatorname{orb}_{\phi_{H}^{c}}(e)$) is finite by Theorem 3.1. In particular, if G is cyclic, then $\operatorname{orb}_{\phi_{G}^{r}}(e)$ (resp. $\operatorname{orb}_{\phi_{G}^{c}}(e)$) is finite by the similar argument.

Corollary 3.5. Let R be a ring and H be a cyclic normal subgroup of G. If $(G: H)$ is finite and $\operatorname{stab}_{\phi_{H}^{r}}(x) \neq\{1\}$ for some $x \in X$, then $\operatorname{orb}_{\phi_{G}^{r}}(x)$ is finite.

Proof. If follows from Corollary 2.3 and Theorem 3.1.
Acknowledgements. The authors would like to thank the referee for his/her careful checking of the details and helpful comments for making the paper more readable.

References

[1] J. A. Cohen and K. Koh, Half-transitive group actions in a compact ring, J. Pure Appl. Algebra 60 (1989), 139-153.
[2] J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25(7) (1997), 2227 - 2236.
[3] J. Han, Group actions in a unit-regular ring, Comm. Algebra 27(7) (1999), 3353-3361.
[4] J. Han, General linear group over a ring integers of modulo k,, Kyungpook Math. J. 46(3) (2006), 255 - 260.
[5] T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc., 1974.
[6] D. S. Passman, The algebraic structure of group rings, John Wiley and Sons, Inc., 1977.

Department of Mathematics Educations
Pusan National University
Pusan, 609-735 Korea
E-mail: jchan@puan.ac.kr
Department of Mathematics
Dong-A University
Pusan, 604-714 Korea
E-mail: swpark@donga.ac.kr

[^0]: Received March 15, 2011. Revised May 31, 2011. Accepted June 3, 2011. 2000 Mathematics Subject Classification: 16W22.
 Key words and phrases: subgroup action, orbit, stabilizer.
 This work was supported by a 2-Year Research Grant of Pusan National University.

 * Corresponding author.

