HOMOTOPY FIXED POINT SET FOR p-COMPACT TORAL GROUP

HYANG-SOOK LEE

ABSTRACT. First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let G_{∞} be a p-discrete toral group and X be a finite complex with an action of G_{∞} such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Assume X is \mathbb{F}_p -complete. Then $X^{hG_{\infty}}$ is \mathbb{F}_p -finite. Using this result, we give the condition so that X^{hG} is \mathbb{F}_p -finite for p-compact toral group G.

1. Introduction

Let G be a group acting on a space X. Then the fixed point set X^G is the G-equivariant mapping space from a point into X, denoted by $X^G = map^G(*, X)$. The homotopy fixed point set X^{hG} is defined to be the G-equivariant mapping space $map^G(EG, X)$ where EG is a universal contractible G-space. A G-map $f: X \to Y$ induces a map $f^{hG}: X^{hG} \to Y^{hG}$; if f is an ordinary (non-equivariant) homotopy equivalence, then f^{hG} is a homotopy equivalence. If G acts trivially on X, then X^{hG} is map(BG, X). A proxy action of G on X is a space Y homotopy equivalent to X together with an action of G on Y. Standard homotopy theoretic constructions often give proxy actions of this type. If there is a proxy action of G on X under consideration we usually write X^{hG} for the associated homotopy fixed point set instead of introducing a symbol for the proxy space Y and writing Y^{hG} . Let $X_{hG} = EG \times_G X$ be a Borel construction, which is also called the homotopy orbit space of the action of G on X. Then the homotopy fixed point set is equivalent to the space of sections $\Gamma_s(X_{hG} \to BG)$ of the fibration $X_{hG} \to BG$.

Received March 14, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 55M20, 57S20, 55P91.

Key words and phrases: homotopy fixed point set, p-compact toral group.

The author was supported by KOSEF 97-0701-02-01-5 and partially by the MOST through National R & D Program 99-N6-01-01-A for Women's Universities.

A p-discrete torus T_{∞} of rank r is a discrete group which is isomorphic to $(\mathbf{Z}/p^{\infty})^r$. A p-discrete toral group G_{∞} is a discrete group which is an extension of a p-discrete torus by a finite p-group.

A loop space is a triple $\mathcal{X}=(\mathcal{X},B\mathcal{X},e)$, where \mathcal{X} is a topological space, $B\mathcal{X}$ is a connected pointed classifying space of \mathcal{X} and $e:\mathcal{X}\to\Omega B\mathcal{X}$ is a homotopy equivalence from \mathcal{X} to the space $\Omega B\mathcal{X}$ of based loops in BX. Such a loop space is called p-compact group if \mathcal{X} is \mathbb{F}_p -finite and $B\mathcal{X}$ is \mathbb{F}_p -complete. Here the second condition is equivalent to that \mathcal{X} is \mathbb{F}_p -complete and $\pi_0(\mathcal{X})$ is a finite p-group. Main examples of p-compact groups are the p-completion of compact Lie groups G, $(C_{\mathbb{F}_p}(G), C_{\mathbb{F}_p}(BG), e)$, where $\pi_0(G)$ is a finite p-group and $e:\Omega C_{\mathbb{F}_p}(BG)\simeq C_{\mathbb{F}_p}(G)$. A p-compact torus T of rank r is a p-compact group such that BT is an Eilenberg-Mac Lane space of type $K((\mathbf{Z}_p)^r,2)$. A p-compact toral group is a p-compact group which is an extension of a p-compact torus by a finite p-group.

For a loop space G, the G-space X is defined to be the fibration $EG \times_G X \to BG$ with X as the fibre. With such an action of G on X, the homotopy fixed point set X^{hG} is defined to be the space of sections of $X_{hG} \to BG$.

Dwyer and Wilkerson defined p-compact groups and proved a lot of their properties in ([4]), which are based on homotopy theoretic generalizations of compact Lie groups.

In this paper we are interested in the homotopy fixed point set X^{hG} for p-compact toral group G. We find the condition of X so that X^{hG} is \mathbb{F}_p -finite. By Dwyer and Wilkerson ([4]) it is known that any p-compact toral group G has a discrete approximation $f:G_\infty\to G$ and if X is a \mathbb{F}_p -complete space with an action of G, then f induces a homotopy equivalence $X^{hG_\infty}\to X^{hG}$. Using this theory and the fact that X^{hG_∞} is \mathbb{F}_p -finite under some condition, we show that X^{hG} is \mathbb{F}_p -finite. The following is the finiteness property of the homotopy fixed point set of p-discrete toral group G_∞ which we will show first.

THEOREM 1.1. Let G_{∞} be a p-discrete toral group and X be an \mathbb{F}_p -complete, finite complex with an action of G_{∞} such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Then $X^{hG_{\infty}}$ is \mathbb{F}_p -finite.

Hence we conclude the following.

COROLLARY 1.2. Let $f: G_{\infty} \to G$ be a discrete approximation of the p-compact toral group G, and let X be an \mathbb{F}_p -complete space with an action of G such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Then X^{hG} is \mathbb{F}_p -finite.

This paper is organized as follows. In section 2, we give some definitions and properties as a background for understanding our main result. Section 3 gives the proof of our main result with some auxiliary properties.

Notations and terminology: Let p be a fixed prime number, \mathbb{F}_p the field with p-elements, \mathbb{Z}_p the ring of p-adic integers. All unspecified homology and cohomology are assumed with coefficients in \mathbb{F}_p . A graded vector space H^* over a field \mathbb{F}_p is of finite type if each H^i is finite dimensional over \mathbb{F}_p and is finite dimensional if in addition $H^i = 0$ for all but a finite number of i. A space X is \mathbb{F}_p -finite if H^*X is finite dimensional over a field \mathbb{F}_p . A map is an \mathbb{F}_p -equivalence if it induces an isomorphism on $H^*(\underline{\ },\mathbb{F}_p)$.

2. Preliminaries

In this section we summarize some basic definitions and properties as a background for the section 3.

Bousfield and Kan ([1]) constructed a functor $C_{\mathbb{F}_p}(_)$ on the category of spaces, called \mathbb{F}_p -completion functor, together with a natural map $\epsilon_X: X \to C_{\mathbb{F}_p}(X)$ for any X. If $f: X \to Y$ induces an isomorphism $H_*(X) \cong H_*(Y)$ then $C_{\mathbb{F}_p}(f)$ is a homotopy equivalence. A space X is \mathbb{F}_p -good if $H_*\epsilon_X$ is an isomorphism and \mathbb{F}_p -complete if ϵ_X is a homotopy equivalence. A space X is \mathbb{F}_p -local if any \mathbb{F}_p -equivalence $A \to B$ induces a homotopy equivalence $Map(B,X) \to Map(A,X)$. If $f: E \to B$ is a fibration with \mathbb{F}_p -local fibres, then the space of sections of f is \mathbb{F}_p -local; if G is a discrete group acting on a \mathbb{F}_p -local space X, then X^{hG} is \mathbb{F}_p -local. If X is any space, then $C_{\mathbb{F}_p}(X)$ is \mathbb{F}_p -local since $C_{\mathbb{F}_p}(X)$ is constructed as a homotopy inverse limit. A space X is \mathbb{F}_p -complete if and only if X is both \mathbb{F}_p -local and \mathbb{F}_p -good.

REMARK 2.1. A space X is \mathbb{F}_p -good if and only if $C_{\mathbb{F}_p}(X)$ is \mathbb{F}_p -complete, or if and only if $C_{\mathbb{F}_p}(X)$ is \mathbb{F}_p -good [1].

A space X is called *nilpotent* if the action of $\pi_1 X$ on each $\pi_i X$ is nilpotent. Any nilpotent space is \mathbb{F}_p -good ([1]).

PROPOSITION 2.2.([1]) (Fibre Lemma) Let $F \to E \to B$ be a fibration over the connected pointed space B. Assume that the monodromy action of $\pi_1 B$ on $H_i F$ is nilpotent for each $i \geq 0$. Then the induced sequence $C_{\mathbb{F}_p}(F) \to C_{\mathbb{F}_p}(E) \to C_{\mathbb{F}_p}(B)$ is also a fibration sequence.

A homomorphism $f: H \to G$ of p-compact groups or loop spaces is a pointed map $Bf: BH \to BG$. A homomorphism f is an equivalence if Bf

is a homotopy equivalence and trivial if Bf is null homotopic. A homomorphism f is said to be a monomorphism if homotopy fiber G/H is \mathbb{F}_p -finite, and an epimorphism if $\Omega G/H$ is a p-compact group. A homomorphism of p-compact groups which is both a monomorphism and an epimorphism is an equivalence.

Suppose that $f:G_{\infty}\to G$ is a (loop space) homomorphism, where G_{∞} is a p-discrete toral group and G is a p-compact toral group. If Bf is an \mathbb{F}_p -equivalence, then G_{∞} is said to be a discrete approximation to G and G is said to be a closure of G_{∞} .

PROPOSITION 2.3.([4, 6.7]) Let $f: G_{\infty} \to G$ be a discrete approximation of the p-compact toral group G, and let X be an \mathbb{F}_p -complete space with an action of G. Then f induces a homotopy equivalence $X^{hG} \to X^{hG_{\infty}}$.

3. Homotopy fixed point set of the p-discrete toral group

In this section, first we will give properties of homotopy fixed point sets associated to actions of p-discrete toral groups on finite CW complexes. In this situation, the properties are contingent upon the spaces involved being \mathbb{F}_p -complete and nilpotent. Finally we show that X^{hG} is \mathbb{F}_p -finite for p-compact toral group G under some condition.

PROPOSITION 3.1.([4, 6.19]) If G_{∞} is a p-discrete toral group, then there exists an increasing chain $G_n \subset G_{n+1} \subset \cdots$ of finite subgroups of G_{∞} such that $G_{\infty} = \bigcup_{m \geq n} G_m$.

The following is the generalized Sullivan's conjecture proved independently by G. Carlsson, J. Lannes and H. Miller.

THEOREM 3.2.([2, 5, 6]) Let A be a finite p-group, X be a finite A-complex. Then $C_{\mathbb{F}_p}(X^A) \to (C_{\mathbb{F}_p}(X))^{hA}$ is a homotopy equivalence.

LEMMA 3.3. Let G_{∞} be a p-discrete toral group and G_{∞} act on a finite complex X. Assume X is \mathbb{F}_p -complete. Then there exists N such that X^{hG_N} is homotopy equivalent to X^{hG_i} for $i \geq N$ where $\{G_m \mid m \geq 1\}$ is an increasing chain of finite subgroups of G_{∞} .

Proof. Since X is a finite G_m -complex for each m, there is a decreasing chain $X = X^{\{1\}} \supset X^{G_1} \supset X^{G_2} \supset \cdots \supset X^{G_m} \supset \cdots$ for the increasing chain of finite subgroups of G_{∞} as in 3.1. The fixed point set X^{G_m} consists of a finite number of equivariant cells since X^{G_m} is a finite complex. Thus the

sequence must stabilize, and hence $X^{G_N} = X^{G_i}$ for each $i \geq N$. Taking \mathbb{F}_p -completion, $C_{\mathbb{F}_p}(X^{G_N}) = C_{\mathbb{F}_p}(X^{G_i})$ for $i \geq N$. For each m, $C_{\mathbb{F}_p}(X^{G_m}) \to (C_{\mathbb{F}_p}(X))^{hG_m}$ is a homotopy equivalence by 3.2. This implies $(C_{\mathbb{F}_p}(X))^{hG_N}$ is homotopy equivalent to $(C_{\mathbb{F}_p}(X))^{hG_i}$ for $i \geq N$. Therefore X^{hG_N} is homotopy equivalent to X^{hG_i} for $i \geq N$ since X is \mathbb{F}_p -complete. \square

PROPOSITION 3.4. Let G_{∞} be a p-discrete toral group and G_{∞} act on a finite complex X. Assume X is \mathbb{F}_p -complete. Then there is a finite subgroup A of G_{∞} such that $X^{hG_{\infty}}$ is homotopy equivalent to X^{hA} .

Proof. Now $G_{\infty} = \bigcup_{m \geq n} G_m$ as in 3.1. Then the space $X^{hG_{\infty}}$ is equivalent to the homotopy inverse limit of the tower $\{X^{hG_m} \mid m \geq n\}$. Therefore by the elementary property of homotopy inverse limit and 3.3, $X^{hG_{\infty}}$ is homotopy equivalent to X^{hA} for some finite subgroup A of G_{∞} .

PROPOSITION 3.5. [1] The class of \mathbb{F}_p -complete space is closed under the process of taking homotopy inverse limits.

PROPOSITION 3.6. Let G_{∞} be a p-discrete toral group and X be an \mathbb{F}_p -complete, finite complex with an action of G_{∞} such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Then X^{hK} is also \mathbb{F}_p -complete for each K.

Proof. By using 2.1. and 3.2,

$$C_{\mathbb{F}_p}(X^{hK}) \simeq C_{\mathbb{F}_p}((C_{\mathbb{F}_p}(X))^{hK})$$

$$\simeq C_{\mathbb{F}_p}(C_{\mathbb{F}_p}(X^K))$$

$$\simeq C_{\mathbb{F}_p}(X^K)$$

$$\simeq (C_{\mathbb{F}_p}(X))^{hK}$$

$$\simeq X^{hK}.$$

Therefore X^{hK} is \mathbb{F}_p -complete.

THEOREM 3.7.([4, 4.6]) Let X be a space with an action of the finite p-group A. Assume that X is \mathbb{F}_p -finite and that for each subgroup $K \subset A$, X^{hK} is \mathbb{F}_p -complete. Then X^{hA} is \mathbb{F}_p -finite.

THEOREM 3.8. Let G_{∞} be a p-discrete toral group and X be an \mathbb{F}_p -complete, finite complex with an action of G_{∞} such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Then the homotopy fixed point set $X^{hG_{\infty}}$ is \mathbb{F}_p -finite.

Proof. There exists a finite subgroup A of G_{∞} such that $X^{hG_{\infty}}$ is homotopy equivalent to X^{hA} by 3.4. Since X^{hK} is \mathbb{F}_p -complete for each

finite subgroup K of A by 3.6, X^{hA} is \mathbb{F}_p -finite by 3.7. Therefore X^{hG_∞} is \mathbb{F}_p -finite.

COROLLARY 3.9. Let $f: G_{\infty} \to G$ be a discrete approximation of the p-compact toral group G, and let X be an \mathbb{F}_p -complete finite complex with an action of G such that X^K is nilpotent for each finite p-subgroup K of G_{∞} . Then X^{hG} is \mathbb{F}_p -finite.

Proof. The action of G on X induces the action of G_{∞} by the proof of 2.3. Hence $X^{hG_{\infty}}$ is \mathbb{F}_p -finite by 3.8. Now $X^{hG_{\infty}}$ is homotopy eqivalent to X^{hG} by 2.3. Therefore X^{hG} is \mathbb{F}_p -finite.

References

- [1] A. K. Bousfield and D. K. Kan, *Homotopy limits, completions and localizations*, Lecture Notes in Math. Springer-Verlag, Berlin **304** (1972).
- [2] G. Carlsson, Equivariant stable homotopy and Sullivan's conjecture, Invent. Math. 103 (1991), 497–525.
- [3] T. T. Dieck, Transformation groups, Walter de Gruyter, 1987.
- [4] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), 395-442.
- [5] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélian élémentaire, Publ. I. H. E. S. 75 (1992), 135-244.
- [6] H. R. Miller, The Sullivan conjecture on maps from classifying spaces, Annals of Math. 120 (1984), 39-87; and corrigendum, Annals of Math. 121 (1985), 605-609.
- [7] D. Notbohm, Classifying spaces and finite loop spaces, Handbook of algebraic topology, 1995, pp. 1049–1094.
- [8] Lionel Schwartz, Unstable modules over the Steenrod Algebra and Sullivan's fixed point set conjecture, Chicago Lecture Notes in Mathematics, 1994.
- [9] E. Spainer, Algebraic Topology, Mcgraw-Hill book company, 1966.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEODAEMOON-KU, 120-750, SEOUL, KOREA

E-mail: hsl@mm.ewha.ac.kr