• 제목/요약/키워드: source/drain

검색결과 578건 처리시간 0.03초

실리콘 선택적 결정 성장 공정을 이용한 Elevated Source/drain물 갖는 NMOSFETs 소자의 특성 연구 (A Study on the Device Characteristics of NMOSFETs Having Elevated Source/drain Made by Selective Epitaxial Growth(SEG) of Silicon)

  • 김영신;이기암;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권3호
    • /
    • pp.134-140
    • /
    • 2002
  • Deep submicron NMOSFETs with elevated source/drain can be fabricated using self-aligned selective epitaxial growth(SEG) of silicon for enhanced device characteristics with shallow junction compared to conventional MOSFETs. Shallow junctions, especially with the heartily-doped S/D residing in the elevated layer, give hotter immunity to Yt roll off, drain-induced-barrier-lowering (DIBL), subthreshold swing (SS), punch-through, and hot carrier effects. In this paper, the characteristics of both deep submicron elevated source/drain NMOSFETs and conventional NMOSFETs were investigated by using TSUPREM-4 and MEDICI simulators, and then the results were compared. It was observed from the simulation results that deep submicron elevated S/D NMOSFETs having shallower junction depth resulted in reduced short channel effects, such as DIBL, SS, and hot carrier effects than conventional NMOSFETs. The saturation current, Idsat, of the elevated S/D NMOSFETs was higher than conventional NMOSFETs with identical device dimensions due to smaller sheet resistance in source/drain regions. However, the gate-to-drain capacitance increased in the elevated S/D MOSFETs compared with the conventional NMOSFETs because of increasing overlap area. Therefore, it is concluded that elevated S/D MOSFETs may result in better device characteristics including current drivability than conventional NMOSFETs, but there exists trade-off between device characteristics and fate-to-drain capacitance.

Avalanche Hot Source Method for Separated Extraction of Parasitic Source and Drain Resistances in Single Metal-Oxide-Semiconductor Field Effect Transistors

  • Baek, Seok-Cheon;Bae, Hag-Youl;Kim, Dae-Hwan;Kim, Dong-Myong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제12권1호
    • /
    • pp.46-52
    • /
    • 2012
  • Separate extraction of source ($R_S$) and drain ($R_D$) resistances caused by process, layout variations and long term degradation is very important in modeling and characterization of MOSFETs. In this work, we propose "Avalanche Hot-Source Method (AHSM)" for simple separated extraction of $R_S$ and $R_D$ in a single device. In AHSM, the high field region near the drain works as a new source for abundant carriers governing the current-voltage relationship in the MOSFET at high drain bias. We applied AHSM to n-channel MOSFETs as single-finger type with different channel width/length (W/L) combinations and verified its usefulness in the extraction of $R_S$ and $R_D$. We also confirmed that there is a negligible drift in the threshold voltage ($V_T$) and the subthreshold slope (SSW) even after application of the method to devices under practical conditions.

서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상 (Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials)

  • 김승태;조원주
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Simulation of 4H-SiC MESFET for High Power and High Frequency Response

  • Chattopadhyay, S.N.;Pandey, P.;Overton, C.B.;Krishnamoorthy, S.;Leong, S.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권3호
    • /
    • pp.251-263
    • /
    • 2008
  • In this paper, we report an analytical modeling and 2-D Synopsys Sentaurus TCAD simulation of ion implanted silicon carbide MESFETs. The model has been developed to obtain the threshold voltage, drain-source current, intrinsic parameters such as, gate capacitance, drain-source resistance and transconductance considering different fabrication parameters such as ion dose, ion energy, ion range and annealing effect parameters. The model is useful in determining the ion implantation fabrication parameters from the optimization of the active implanted channel thickness for different ion doses resulting in the desired pinch off voltage needed for high drain current and high breakdown voltage. The drain current of approximately 10 A obtained from the analytical model agrees well with that of the Synopsys Sentaurus TCAD simulation and the breakdown voltage approximately 85 V obtained from the TCAD simulation agrees well with published experimental results. The gate-to-source capacitance and gate-to-drain capacitance, drain-source resistance and trans-conductance were studied to understand the device frequency response. Cut off and maximum frequencies of approximately 10 GHz and 29 GHz respectively were obtained from Sentaurus TCAD and verified by the Smith's chart.

저전력 응용을 위한 28 nm 금속 게이트/high-k MOSFET 디자인 (28 nm MOSFET Design for Low Standby Power Applications)

  • 임토우;장준용;김영민
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.235-238
    • /
    • 2008
  • This paper explores 28 nm MOSFET design for LSTP(Low Standby Power) applications using TCAD(Technology Computer Aided Design) simulation. Simulated results show that the leakage current of the MOSFET is increasingly dominated by GIDL(Gate Induced Drain Leakage) instead of a subthreshold leakage as the Source/Drain extension doping increases. The GIDL current can be reduced by grading lateral abruptness of the drain at the expense of a higher Source/Drain series resistance. For 28 nm MOSFET suggested in ITRS, we have shown Source/Drain design becomes even more critical to meet both leakage current and performance requirement.

낮은 누설전류를 위한 소스/드레인-게이트 비중첩 Nano-CMOS구조 전산모사 (Simulation of nonoverlapped source/drain-to-gate Nano-CMOS for low leakage current)

  • 송승현;이강승;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.579-580
    • /
    • 2006
  • Simple nonoverlapped source/drain-to-gate MOSFETs to suppress GIDL (gate-induced drain leakage) is simulated with SILVACO simulation tool. Changing spacer thickness for adjusting length of Drain to Gate nonoverlapped region, this simulation observes on/off characteristic of nonoverlapped source/drain-to-gate MOSFETs. Off current is dramatically decreased with S/D to gate nonoverlapped length increasing. The result shows that maximum on/off current ratio is achieved by adjusting nonoverlapped length.

  • PDF

불규칙한 소오스/드레인 금속 접촉을 갖는 비대칭 n-MOSFET의 전기적 특성 및 모델 (Electrical Characteristics and Models for Asymmetric n-MOSFET′s with Irregular Source/Drain Contacts)

  • 공동욱;정환희;이재성;이용현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.208-211
    • /
    • 1999
  • Abstract - Electrical characteristics or asymmetric n-MOSFET's with different source and drain geometry are experimently investigated using test structures having various gate width. Saturation drain current and resistance in linear region are estimated by a simple schematic model, which consists of conventional device having parasitic resistor. A comparison of experimental results of symmetric and asymmetric devices gives the parasitic resistance caused by abnormal device structure. The suggested model shows good agreement with the measured drain current for both forward- and reverse-modes.

  • PDF

Symmetric high voltage MOSFET의 extended source/drain 길이에 따른 전기적 특성의 고온영역 신뢰성 분석 (A study on the reliability test of Symmetric high voltage MOSFET under the extended source/drain length)

  • 임동주;최인철;노태문;구용서
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 통신소사이어티 추계학술대회논문집
    • /
    • pp.309-312
    • /
    • 2003
  • In this study, the electrical characteristic of Symmetric high voltage MOSFET (SHVMOSFET) for display driver IC were investigated. Measurement data are taken over range of temperature (300K-400K) and various extended drain length. In high temperature condition(>400K), drain current decreased over 20%, and specific on-resistance increased over 30% in comparison with room temperature.

  • PDF

비대칭 소오스/드레인을 갖는 NMOSFET의 전기적 특성 (Electrical Characteristics of NMOSFET's with Asymmetric Source/Drain Region)

  • 공동욱;이재성이용현
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.533-536
    • /
    • 1998
  • The electrical characteristics of NMOSFETs with asymmetrical source/drain regions have been expermentally investigated using test devices fabricated by $0.35\mu\textrm{m}$ CMOS technology. The performance degradation for asymmetric transistor and its causes are analyzed. The parasitic resistances, such as series resistance of active regions and silicide junction contact resistance, are distributed in parallel along the channel. Depending on source/drain geometry, the array of those resistances is changed, that results the various electrical properties.

  • PDF

레이저 유도 원자층 도핑(Ll-ALD)법으로 성장시킨 SiGe 소스/드레인 얕은 접합 형성 (Ultra-shallow Junction with Elevated SiCe Source/ Drain fabricated by Laser Induced Atomic Layer Doping)

  • 장원수;정은식;배지철;이용재
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.29-32
    • /
    • 2002
  • This paper describes a novel structure of NMOSFET with elevated SiGe source/drain region and ultra-shallow source/drain extension(SDE)region. A new ultra-shallow junction formation technology. Which is based on damage-free process for rcplacing of low energy ion implantation, is realized using ultra-high vacuum chemical vapor deposition(UHVCVD) and excimer laser annealing(ELA).

  • PDF